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1. Introduction

Suppose that A and B are residually finite groups and that A ~ Z ~ B ~ Z,
where Z represents an infinite cyclic group and the product is direct. Then it does
not follow in general that A and B are isomorphic [3, 4, 5]. However Baumslag
[1] has pointed out that A and B must have the same finite images and he has
used this result to give simple examples of groups A and B which are not
isomorphic but do have the same finite images. These are groups which are
extensions of a finite cyclic by an infinite cyclic group. Two such groups may be
represented as

We find necessary and sufficient conditions for the isomorphism of the direct
products

Using these conditions and a simple property of p-Sylow subgroups we get the
converse: if Gm,s and Hm, have the same finite images then (2) holds. An example
involving just infinite groups shows that this result is not true in general.

Moreover, it is true that A (g) Z ~ B (g) Z implies that the automorphism
groups Aut (A) and Aut (B) are isomorphic if A and B are the groups in (2).

THEOREM 1. Let Gm,s and Hm,t be given by (1). Then (2) holds if and only the
system of congruences

has a solution x = u, y = v.
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Remark that if o(t) denote the order of t then the greatest common divisors
(o(t), u) = (o(t), v) = 1. Otherwise, since t"" - t, tuv-1 ~ 1 and so o(t)| uv - 1; thus
if for any prime p, p| (o(t), u) or p| (o(t), v) then p = 1. Similarly (o(s), u) =
(o(s), v) = 1. Of course (3) at once implies that o(s) = o(t).

Proof. (a) Assume that (3) holds. Generators for Gm,s ~ Z are (a, 0), (b, 0), and
( l, 1 ) with group multiplication on the first components and addition of integers
on the second components. For example (b, O)j(a, 0)i(1, 1)k = (bia’, k) which is
a generic element of Gm,s ~ Z. We wish to set up a map (1: Gm,s (g) Z ~ Hm, (g) Z
which will be an isomorphism. For the element (a, 0) of finite order we must have
an image of finite order: (c", 0), where gcd (m, r) = 1. Suppose

Since the product is direct, the image (dk, g) must commute with the other images.
Thus (dk, g)-1(cr, 0) (dk, g) = (cr, 0). Performing the calculations we get (crtk, 0) =
(cr, 0). This yields rtk ~ r (mod m) and so tk ~ 1 (mod m). Hence we may put
k = o(t).
We want to ensure that Q given by (4) is:
(i) Injective. Suppose (b, 0)y(a, 0)’ (1, 1)z - (1, 0). Then (dh,f)Y(cT, 0)’(d’, g)z ~

(1, 0). Carrying out the calculations and using the fact that tk ~ 1 (mod m) we get
(dhy+kzcrx,fy + gz) = (1, 0)). This gives x = 0 (mod m) and the simultaneous
integral system hy + kz = 0, fy + gz = 0. To have injectivity this system must
have only the trivial solution for y and z. To ensure this we need

(ii) Surjective. It suffices to show the existence of p’, q’ such that (dh,f)p’
(dk, g)q’ = (d, 0) = (dhP’ +kq’,fp’ + gq’). This yields

where without loss of generality we can have gcd( f, g) = 1. Choose h = u, the
solution for x in (3). By the remark preceding the proof, gcd(u, k) = 1 so that there
are integers p’, q’ to make up’ + kq’ = 1. Thus the first equation of (6) is satisfied.
Taking f = -q’, g = p’ will now satisfy the second. Since ug - kf = up’ + kq’ =
1 ~ 0 condition (5) also holds. Thus with these choices for h and k (4) establishes
the isomorphism (2).

(b) Now assume that (2) holds under the isomorphism (b, 0) ~ (dYcX,f),
(a, 0) - (c", 0). Since (b, 0) -1 (a, 0) (b, 0) = (as, 0) therefore (c-xd-y, - f ) (c", 0)
(dYcX,f) = (crs, 0) = (c-Xd-YcTdYcx, 0) = (Crty, 0). It follows that rtY ~ rs (mod m)
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and so tY ~ s (mod m). By symmetry there exists x such that sx ~ t (mod m), hence
(3) follows and the proof is complete.

THEOREM 2. Let Gm,s and Hm,t be given by (1). If these groups have the same
finite images then (2) follows.

Proof. Choose e such that se ~ 1 (mod m). Then

By assumption Hm, must have a finite factor H and there is an isomorphism
03C3: G ~ H. Let pk be the highest power of a prime factor p of m, m = pkh, (h, p) = 1.
Now ah is an element of order pk in G. Let S be a p-Sylow subgroup in G which
contains ah. S must have an isomorphic image T in H which is a p-Sylow
subgroup of H. Then a h corresponds under 03C3 to an element w of order pk in T.
Since Ch of order pk is contained in a p-Sylow subgroup of T, and since all p-Sylow
subgroups are conjugate, there is an inner automorphism i i : w - cfh, ( f, m) = 1.

Let i2 : cfh ch, d -+ d. Suppose 03C3: b ~ dycx. Define 6p = 03C303C4103C42 (acting on the
right). Then (b) 03C3P = dycz. Since any automorphism takes c into a power and since
an inner automorphism preserves the first factor dY, this is the same y as in the
image of b under 03C3, and so remains the same for all p. We now have 6p: ah - ch,
b ~ JV. Since b -1 ab = as, b -1 a"b = a hs. Under 03C3P this gives (dycz)-1ch(dy cz) =
c hs = chty. Then t’’ == s (mod m/h = pk). Since this is true with the same y for all
maximal prime power factors of m, we have tY ~ s (mod m). By symmetry there is
a solution sx ~ t (mod m). By Theorem 1 the proof is complete.

REMARK 1. In the proof of Theorem 2 the full hypothesis was not used. The
isomorphism of only a single pair of finite images, G and H in the proof, will
ensure that Gn, s and Hm, have the same finite images.

REMARK 2. Gm, s (g) Z ~ ··· (D Z = H,n, t ~ Z ~ ··· (D Z also imply that con-
ditions (3) hold so that the consequences of this statement are entirely equivalent
to those of (2).

3. More generally let A and B be arbitrary groups and let C be an infinite cyclic
group. Suppose A ~ C ~ B ~ C.

If U = A ~ C then the right hand side of the isomorphism can be viewed as
another decomposition U = B’ ~ C’ where B ~ B’ and C hÉÉ C’. In this way we get
the equality

Denote by 03C01, 1t2, respectively 03C0’1, 03C0’2 the projections corresponding to thèse
decompositions. Let 03C01(B’) = Al, 03C0’2(C) = C2. Now in each case the kernel of
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these restrictive maps is B’ n C. Thus

If B’ n C ~ 1 then C/B’ n C is a finite cyclic group and by the second equation
C2 = 1 so that B’ n C = C, C  B’. Since C is a direct factor: B’ = B" (g) C.
Then A (g) C = B" (g) C (g) C’ and this modulo C gives A ~ B" 0 C’ EÉ B" (g) C =
B’ ~ B. Thus Aut(A) = Aut(B). If B’ ~ C = 1 then the first equation of (8) shows
that B’ ~ A’. Then Aut(B) = Aut(B’) = Aut(A’). Hence in order to have Aut(A) =
Aut(B) we must have Aut(A) = Aut(A’), where A’ is a proper normal subgroup of
A. For the groups in (2) this is the case.

THEOREM 3. Let Gm,s’ Hm,t be given by (1). Then the relation (2) implies that
Aut(Gm,s) = Aut(Hm,t).

Proof. By Theorem 1 there exists x = u, y = v satisfying (3). Then the map
03C3: Hm,t ~ Gm,s defined by c ~ a, d ~ bu satisfies the relation d-lcd = c’ and is an
isomorphism, so that we have

An arbitrary automorphism r e Aut(Gm,s) is given by

If i is restricted to A’ we get an automorphism of A’ which we denote by i’. The
map i - i’ is injective: suppose 03C4 ~ 03C4’ = 1. Then it follows that ar - a,
bu - (axbe)u = (bu)axL. This implies that r = 1, e = 1 and xL == 0 (mod m). Here
L =(1 + s + s2 + ... +su-1)=(su- 1)1(s - 1) == (t - 1)1(s - 1) (mod m). Now
the relations (3) imply that (L, m) = 1, so that x == 0 (mod m) and so r = 1. We
have now Aut(Gm,s)  Aut(A’) = Aut(Hm,t). Then the result follows from sym-
metry.

Recall that a group is called just infinite if it is infinite but all its proper quotient
groups are finite. Let A in (7) be just infinite. Since 1t2 (B’) = C2  C, where C2 is
an infinite cyclic group or 1, the definition yields C2 = 1 so that B’  A and B’ is
just infinite. Symmetrically A  B’. Thus A = B’ ’’’--’ B. Now there exists non-

isomorphic just infinite groups with the same finite images [2]. For two such
groups A and B we cannot have A 0 C ~ B ~ C.
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