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Introduction

Let H be an algebraic group over the complex numbers with an irreducible linear
representation V as given in one of the following cases.

I. SOn+ 1 with the standard representation on Cn + 1.
II. SLn + 1 with the action on S2Cnll = symmetric n + 1 x n + 1-matrices

induced from the standard representation on Cn+ 1.
III. SLn + 1 x SLn + 1 with the product representation on Cn+ 1 (D cn+ 1 =

n + 1 x n + 1-matrices.

IV. SL2nl2 with the action on A2C2n,2 = antisymmetric 2n + 2 x 2n + 2
matrices induced from the standard representation on C2n + 2.

V. The group of type E. with the standard 27-dimensional representation.

The simply connected form G of H acts via the quotient map G --+ H also on V. We
will study the G-action on the projectivized space P(V) and the induced action on
the polynomial algebra C[V] given by

This results in a description of the G-orbits and their closures in P(V) and
a classification of all graded G-invariant ideals in C[V].
The case 1 is trivial. The cases II, III, IV have been studied in [Ab], [CEP] and

[ADF] respectively. In their method a basis, explicitly chosen case by case, is used
in order to describe the G-module structure and invariant ideals of C[V].
A disadvantage of the method is that a great deal of the work has to be done in
each case again, while the obtained results are of a similar nature. It will appear
that in our approach all five cases can be studied simultaneously. In order to
study the invariant ideals we will follow the line of [CEP]. Several proofs in this
paper do not use the explicit basis and can be used in our method.
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In all five cases G has an open orbit in P(V) and there is an involutive

automorphism 0 on G and subgroup K = G’ such that GIN,(K) maps
isomorphically onto the open orbit via a G-equivariant map. In Section 2 we
establish that our list is complete with respect to this property. From this we
obtain an injective graded G-equivariant C-algebra homomorphism

It is a well known fact that as G-modules

where (G, K) ^ is the set of all finite dimensional spherical irreducible representa-
tions of G with respect to K (an irreducible representation W, of G is said to be
spherical for K if dim(WK) = 1). From this we deduce that C[V] has as G-module
a unique decomposition’as sum of homogeneous spherical irreducible represen-
tations, which is multiplicity free in each degree. At the end of Section 2 we use
results of [CP] in order to describe this decomposition explicitly.

Since the decomposition is multiplicity free in each degree, each graded
G-invariant ideal has to be a subsum of the decomposition. Therefore it is useful
to have information about the G-span of the product of homogeneous irreducible
components in order to describe the graded (prime, primary, radical) ideals and
their arithmetic. In Section 3 we prove that a G-submodule spanned by the
product of homogeneous G-submodules is already spanned by the product of
their K-fixed elements. After that we focus our attention to the algebra of K-fixed
elements C [ V] K. Using the morphism 0 * above it turns out that we are interested
in product formulas for the K-fixed elements (D. in C[G/K], where

More precisely, for y, v c- (G, K) " we can write

and we are interested in the set of Â for which d( p, v, À) # 0 since these elements
determine the G-span of O, . O .
By general theory there is a torus A z G - the maximal split torus, see Section

2 - such that the (D. are already completely determined by their restriction to
A/A n K 4 G/K. These functions restricted to A/A n K are apart from a différent
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normalization precisely the multivariable Jacobi polynomials as used in [H] and
some results of that paper are used in the appendix in order to obtain information
about the set of Â with d( u, v, Â) :0 0. In the appendix parameters ma &#x3E; 0 come in,
while we need the results only for special values of ma, see table in Section 2.
However we will use explicit expressions for several d(u, v, Â) which are only
defined for ma &#x3E; 0 generic and yield zero divided by zero in our cases.
A continuity argument is needed to get the desired results for our parameter
values.

The above mentioned decomposition of C[V] will be indexed by Young
diagrams, i.e. by sequences of integers 61 &#x3E; U2 &#x3E;1 ... &#x3E;1 a. 11 1&#x3E; 0, where n =

dim(A) and A the torus mentioned above. If we use the results on products of
K-fixed elements in order to describe products of homogeneous G-submodules
then we get in terms of Young diagrams for all five cases precisely the same
results. This enables us to study the cases simultaneously.

In Section 4 we classify all G-invariant graded (prime, primary, radical) ideals
in C[V], and describe the symbolic powers of prime ideals, and primary
decompositions and integral closures of arbitrary ideals. We will work in terms of
Young diagrams and it turns out that all problems are combinatorial questions
on these diagrams. Since we need the several combinatorial results on Young
diagrams on many places in Sections 2, 3, and 4 we have gathered most results
in Section 1.

In the last Section we use our results in order to describe P(V) as G-variety. As
full set of closed G-stable subsets we obtain a sequence

Each Xi is irreducible and we describe a set of generators of the prime ideal that
defines X i . We also show that X can be obtained from X 1 as union of all i - 1
dimensional projective planes through i points on X 1. Consequently the rank
2 cases of II, III, IV and V (I is always of rank 1) yields precisely the standard
Severi-varieties, see [LV].

Section 1. Combinatorics of Young diagrams

A Young diagram a is a sequence (Ti, 1 U2, U3, ... ) of non-negative integers with
61 &#x3E; U2 1&#x3E; U3 &#x3E; ... and ai = 0 for all i sufficiently large. If Qn t 1 = 0 we also write
u = (al, U2, ... , a,,) and D. denotes the set of all these Young diagrams. A Young
diagram in Dn can be represented in the plane by a set of (at most) n rows of boxes;
the i-th row consisting of u, boxes. For instance if Q = (4,2, 1)c-D3 the picture
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becomes:

In order to understand combinatorics of Young diagrams it is helpful to keep this
representation in mind. By transposing the names ’row’ and ’column’ we obtain
a duality on the pictures of Young diagrams. So there is a corresponding duality
on Young diagrams; given a Young diagram u = (Ji , ... , J), the dual u’ =

(Qi , ,U2 v ,.3v’..., aev), where ?’ = Q1, is given by uly = max{j &#x3E; 1 uj &#x3E; il.
We consider D,, as a subset ofZ" and provide Zn@ thus via restriction Dn, with

some structure. With a sequence a = (ai 1 ... 1 an) C- Z nwe associate the support

and integers

In particular the degree of a is

Furthermore we define three partial orders z ,  and  c on Z". Let a =

(a 1, ... , an), b = (b 1, ... , b") E 71" then

a g b if and only if ai  bi for all i = 1, ... , n,

a  b if and only if yi(a)  yi(b) for all i = 1,..., n,

a  lb if and only if ai  bi and aj., = bj+,,..., a. = b.
for some j e ( 1 , ... , n ) .

Clearly  extends g and  . extends  as partial order. The partial order  l is
even a total order and is also called the lexicographic order. Note that on D. the
partial order z means inclusion of the corresponding pictures.

Finally we define the set of strips
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and the subsets of m-strips

Using the usual addition on Zn, the strips will be the building blocks of the Young
diagrams.

Let p E Dn be a Young diagram. We say that p is stratified by the sequence of
strips e 1, e2 , ... , el if Si= 1 e’ is a Young diagram for all j 1 , ... , E and
p = 1=1 ei . Given a Young diagram 6 E Dn, we say that a sequence of strips
el, ... l e" is related to 6 if e = a, and le’(’) 1 = u Y for all i = 1 , ... , E for some

permutation n on { 1, ... , e 1. If p is stratified by a sequence of strips related to 7
we say that p is stratified by a.
A stratification of a Young diagram p by a sequence of strips el, ... et can be

represented in the plane as follows: We represent p as before and for each
1  i  t’ and each j e supp(e’) we put the value i in one of the boxes of the jth row
of the picture of p, such that the numbers in each row are strictly increasing and
the numbers in each column are non-decreasing. It turns out that the set of boxes
with numbers  i is precisely the picture corresponding to the Young diagram
Y. i= 1 e . For example, (4, 2,1 ) is stratified by the sequence e 1 = (1,1,0), e2 =
(1,0,1), e3 = (1,1,0), e4 = (1,0,0). In a picture

Also (4, 2,1) is stratified by (2,2,2,1)" = (4, 3).
Note that each Young diagram u can be stratified by a itself in a standard way;

since

and

is a Young diagram for all 1  j  e = u 1 the sequence e’ = (a 9 Y) v satisfies. In the
picture of u it means that we put the number i in all boxes of the i-th column.
We are interested in the set of all i E Dn stratified by some given a c- D,,. By

definition the degrees of a sequence of strips related to (7 are in one to one
correspondence with the coordinates of a’ via some permutation n. We want to
show that it is no restriction to fix the choice of n.
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LEMMA 1.1. Let u c- D,, and e, f E E" such that u + e, a + e + f E D", and let d be
an integer with supp(e) n supp(f 1  d  supp(e) u supp(f ) l. Define é E E" by
è is the minimal element in E" with respect to the partial order  such that 1 ê = d
and supp(é) a supp(e) n supp( f), and put f = e + f - ê c- E,,.
Then J + é, J + é + f = J + e + fED".

Proof. In order to show that a + ê is a Young diagram, we have to verify

Only if êi = 0 and éi + 1 = 1 this needs some verification. In that case it follows
from the minimality of ê that

i e supp(e) r) supp(f )

but

i + 1 e supp(e) n supp( f ) .

Hence

thus indeed ai &#x3E;, 61 + 1 + 1.

PROPOSITION 1.2. Let Q e D,, and n a permutation on ( 1 , ... , E = Q1} . The set
of Young diagramsr stratified by sequences of strips el,..., e" with 1 e’(i) = uy for
all i = 1 , ... , E does not depend on the choice of n.

Proof. Let T be stratified by a sequence e 1, ... , e’. Fix an 1  i  t’ and put

Let d = If 1. By lemma 1.1. r is also stratified by

where

Thus the choice n can be replaced by 7c o (i i + 1). Since the transpositions
(i i + 1) generates the permutation group on { 1, ... , } thé proposition follows.

Fi
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Consequently it is no real restriction if we work with sequences of non decreasing
degree in order to describe all T stratified by some a. In that case the following
lemma says that we can even add an assumption on the last strip in the sequence.

LEMMA 1.3. Let i E D" be stratified by a sequence of strips e’,..., et of non
decreasing degree. Suppose ïp &#x3E; T,, 1 for some 1  p  n. Then is T also stratified
by a sequence of strips ê’, ê" with 1 ê’l = 1 e’l for all i 1 , ... , E and moreover
=1. .

Proof. By induction on E. For = 1 is the assertion trivial. Now assume the
assertion to be proved up to E - 1 &#x3E; 1. If et p = 1 the assertion holds for the
sequence el et itself, so assume e’ ’ p = 0. Write p = E i = i e‘; this Young diagram
is stratified by the sequence e 1, ... , e"- 1. Now p p = i p &#x3E; rp, P p + 1, thus by the
induction hypothesis we can replace e 1, ... , 1 et - 1 by a sequence as in the lemma.
We therefore may assume e pl-1 = 1. Since 1 e’ ’ e’ ’ and e’ ’ = 0, there is

a minimal j with e Jl = 1 and e-1 = 0, and thuspj  pj-,. Define _ (Ôll 82 , ... )
by bi = - 1, bp = 1 and bi = 0 for i :0 j, p. We claim that r is stratified by the
sequence el 1 ... 1 ee- 2, eL -1 - ô, e’ ’ + b and satisfies the desired properties. Picturing
the stratification as mentioned before we in fact interchange two boxes of the
last two strips e’ ’ - 1 and e’ ’:

Namely the last box in the pth row that belongs to the (?’ - l)-th strip (the
non-shaded boxes) is interchanged with the last box in the jth row which belongs
to the Eth strip (the shaded boxes).
By construction it is only necessary to verify whether e’ + - - + e’- +

ô = p - ô is a Young diagram. Since p p = jgp - 1, Pj Pj + 1 and p 1 = pi.
for i p,j it is sufficient to check p p &#x3E; p p + 1 and Pj pj- 1. Using the
(in)equalities above, we get p p = p p - 1 = Tp 2013 1 &#x3E; Tp + 1 pp + 1. If j = p + 1
we are ready, while for j # p + lpj= pj+ 1  pj-1 = pj-1. n

We need Proposition 1.2. and Lemma 1.3 in order to prove our main com-

binatorial result:

PROPOSITION 1.4. Let a be a Young diagram.
(a) If p is a Young diagram with p &#x3E; a then there exists a Young diagram r such

that p 2 T,T &#x3E; a and lrl = [ J ) .
(b) If-r is a Young diagram with 1 T 1 = 1 a then r a a if and only if T can be stratified

by a.
Proof. (a) Assume 1 p &#x3E; 1 a 1. Let j be the minimal with pj &#x3E; pj + 1 and define

p = (Pl 5 P2, * * *) by Pj = p; - 1 and pi = pi for i :0 j. Clearly P z p, and we claim
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that also p &#x3E; u . We prove this by contradiction, so suppose that not p &#x3E; 6. Then
there is a maximal p such that y,(p)  yp((y). Of course p  j and p p  7p, thus

But then is

contradicting 1 p &#x3E; 1 a 1. Now we have found a p satisfying p a #, ) # ) = ) p ) - 1
and p &#x3E; u, so repeating the constructing sufficiently many time yields the desired
T. (b) First let r be stratified by a sequence of strips e’,..., e" related to u. Write
bi = (i)’ = (1,..., ,1), i times 1, for i = 1, 2,..., then ôi  ô for all ô c- E,,,i. Now
by the definition of stratification we have

We prove the converse by induction on,/ = a,. For e = 1 r = u is a strip. Now
suppose the assertion to be proved up to E - 1 &#x3E; 1. We use transfinite induction
on the T with i ( = 1 a and r a J (with respect to the order  ). If r = J the earlier
on mentioned standard stratification satisfy. Now let T &#x3E; p adjacent, i 1 = 1 pl =
) J ) , p &#x3E; 6 and suppose that p is stratified by (7. Fix j maximal with yj(p)  yj(,r)
and after that a 1  i  j maximal with y,(p) = y,(,r). Then pi &#x3E; Ti &#x3E; Ti &#x3E; Pj, thus

pi &#x3E; pj + 2. Therefore we can find i  p  q  j such that

Hence, if we define

with

and

then p + a is again a Young diagram and 1 p + à ) = 1 u 1. By construction also
p  p + ô  r, thus T = p + ô by the adjacency. By assumption p can be
stratified by a. Then by Proposition 1.2. and Lemma 1.3. we may assume that
p can be stratified by a sequence of strips el , ... , ee related to u of non-decreasing
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degree and ep = 1. With help of this stratification we will find a desired

stratification for T. We distinguish three cases corresponding to the following
three pictures:

In the first case we assume eq = 0. Then e’ + Hs a strip with ec + à) e" so
e 1, ... , e t-1 el + à is a desired stratification of T.

In the other cases we suppose eq = 1.
If for all p  i  q holds ei = 1, then il = Y,- le’ and il + ô are Young

diagrams, ri  ri + à and il is stratified by e 1, ... , ec -1. Thus by the induc-
tion hypothesis ri + ô can be stratified by a sequence of strips é 1, ... , é c -1
with lê’l le’l, i = - 1. Since r = p + ô = 1 + ô + e" it follows that
é 1, ... , é ‘-1, et is a desired stratification of T.
The third case that remains is ep = eq = 1 and ei = 0 for some p  1  q,

suppose i to be maximal with this property. Write 1 = Ej e il 1 is stratified by
el 1... 1 e"- 1. We have tji = Ti and

thus tji 1,1 + 2, furthermore q; = r; &#x3E; r; + - l = q; + 1 and il,  rq-, -
1 1 rq _ 1. From thèse inequahties follows that if we define ô’ = (ô’, with
à/ = -1, 8q = 1 and ô! = 0 for j:o i, q then il + ô’ is a Young diagram with
Pl + ô = il and q + b; &#x3E; 1. By the induction hypothesis follows that 1 + ô
can be stratified by a séquence of strips é 1, ... , é -1 with lê’l = leil for

1. Now define b2 = (,62@ &#x26;2@ ... ) by b2 l@ ô2 =1 and ô? 0 for
j # p, 4 so b i + 6’ = à. By construction is e" + b 2 a strip and [e/ + ô2l = le"1.
Since

it follows that ê’, ... , ê’ ’ - ’, ec + ô’ is a desired stratification for r. D

From part (b) of the proposition follows that given a sequence of strips e 1, ... , e"
related to a such that p+lij=ië’ is aYoung diagram for all j= 1,..., / and some
Young p, then r = o + £(= i e’ a p + a. Part (b) says that in the special
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case where p is the zero diagram the converse holds too. Unfortunately in general
if r a p, [ r [ = [ p + J and T &#x3E;, p + a there needs not exist such a stratification.
A counter example is already given by r = (2, 2, 2), p = (2,1) and 6 = ( 1,1,1 ).
However in the following special case, where it is essential that we work inside
a set of Young diagrams D,, with n fixed, there is:

PROPOSITION 1.5. Fix n &#x3E; 0 and let a e D., ?’ = a,. There exists a m &#x3E; 0 such
that for all p E D" with 1 p = 1 (m + 1)u 1 holds: p &#x3E; (m + 1)u if and only if there is
a sequence of strips el, ..., em" related to ma such that a + Y-j= 1 e’ is a Young
diagram for all j = 1 , ... , m . E and p = a + e’.

Proof. First suppose we have already a m &#x3E;, 0 that satisfies, then m + 1, and
hence all m’ &#x3E; m, satisfies. Namely, assume P &#x3E; (m + 2)Q for some p E D". From
Proposition 1.4 follows that p can be stratified by a sequence of strips

related to (m + 2)Q and by Proposition 1.2 we may assume that

is related to (m + 1 ) Q . Put

by Proposition 1.4 again we have p &#x3E; (m + 1)u. By assumption we may apply the
proposition, so there is a sequence e 1, ... , em.l as stated in the proposition. Now
it is obvious that

is a desired sequence for p .
We now prove by induction on E = Ji that the proposition holds if we take

m= n 2
For e = 0 there is nothing to prove. If l = 1, then u (j)’ (1, ... 1), j times

1, for some 1  j  n. If we take in this special case m = 0 then the only
p satisfying the conditions is p = a, and the assertions become trivial. Thus for
E = 1 the proposition holds for all m &#x3E; 0.

Next suppose l &#x3E; 1 and the proposition to be proved up to l - 1. Let p E Dn
satisfy the conditions. By Propositions 1.4 and 1.2 p can be stratified by
a sequence of strips el e(m + 1),, related to (m + 1)J and of non-decreasing
degree.
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We claim that we can choose this sequence such that in addition we may
assume e = ( 1, ... ,1 ), j times 1, where j = 61 is the maximal degree in the

sequence, for some (m + 1)(,e - 1)  i  (m + 1)E.
Before we prove this claim, we finish the proof of the proposition. Clearly the

Young diagram

is stratified by the sequence of strips

related to à = (m + 1)(a - e’). Since 61 = f 2013 1 there is by the induction hypo-
thesis a sequence of strips

related to mà such that

and each initial sum

of the sequence

is a Young diagram. It follows that

and each initial sum of the sequence
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is a Young diagram. Now e’can be found in the last part of the sequence and is
itself a Young diagram. Thus in a picture the stratification looks like

where 6 and e’ are the dotted and shaded area respectively and the blank part
corresponds to the remaining strips.
Because the sum of Young diagrams is again a Young diagram it follows that
each initial sum of the sequence

is a Young diagram. In the picture this can be interpreted as shifting the shaded
strip into the first position:

Now a corresponds to the union of the dotted and shaded area and the remaining
set of strips yield the blanks area.

Since the total sum equals p, we have found a desired sequence.
It remains to prove the claim.

In the first instance we only know that the sequence has non-decreasing degree.
We define

Thus

We first show that the séquence e’,...,e(m+l).t can be chosen such that in
addition
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Here [a, b], a, b c- Z, denotes (c e Z [ a  c  b} and as before i = u î . Thus the
picture of such a stratification looks like

where the shaded area corresponds to e a--, 11 + ... + e , a. the dotted area to
ea,, - 2 + 1+ ... + ea,, -1, etc. Write p’ = Ek =1 ek; each time we change our choice of
the sequence el 1... 1 e(- + 1)’ below we suppose that the definition of the p change
with it. We need the following fact:

Let 1  s  t  (m + 1)e and suppose

for some 1  p  n, then p) &#x3E; p) + i thus by Lemma 1.3 we may assume esp = 1 for
an appropriate chosen sequence el 1 ... 1 e .
We now prove (*) for i = n. Since e°i has degree j, there is a j  q  n with

eqi = 1. Now fix t = ai and let s run through the row ai - 1, ai - 2,... as long as
there is a maximal p  q (now p depends on s) such that

and replace the sequence el, ... 1 es by an other choice such that ep = 1. Clearly
s stays a a; - (n - 1), thus after the algorithm we get the desired assertion for
i = n. It is obvious that we can repeat this algorithm for i = n - 1, n - 2,..., 1 (in
this order!) such that we get ultimately ( * ) .
We now assume that we have chosen a sequence e 1, ... , le("’)" that in addition

satisfies ( * ) . We use Lemma 1.1 in order to alter this sequence into a sequence that
satisfies the claim.

Let i run through the sequence (m + 1)e - 2,(m + 1)e - 3,..., (m + 1)e - n’
(in this order), and replace e" 1, e i+2 by ê’+ 1, êi+2 in accordance with Lemma 1.1.,
where (7 = p’, e = e’+ 1, f = e’ +2 and d = j. After carrying out the step for i = ap,
p = n - 1, n - 2,..., 0 it follows from ( * ) that

{1, 2,..., minimum ( j, n - p)j g supp(e a_+ 1).
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Hence ( 1 , ... , j) z supp(ei) for some i &#x3E; ao = (m + 1)E - m, and thus e’ =

(1,..., 1), j times 1, because 1 e’l = j. D

Section 2. Structure and représentation theory

Let G be a semisimple simply connected algebraic group over the complex
numbers with an involutive automorphism 0 and fixed point group K = G’. By
definition the quotient space G/K is a semisimple symmetric space. Among the
tori A with 0(a) = a-’ for all a e A we fix a torus A of maximal dimension. This
torus is called a maximal split torus and its dimension the rank of the symmetric
space G/K. There always exists a maximal torus T such that A g T and T is
0-stable. We fix one such T. Let g be the Lie algebra of G, A" the character set
of A and Âc-A^. Put

Furthermore let N,(A) and C,(A) be the normalizer and centralizer of A in
K respectively. Put

The set R(g, a) is named the restricted rootsystem. It is a possibly non-reduced
rootsystem with Weyl group W. The restricted rootsystem is called the type of the
symmetric space G/K. If it is irreducible then we say G/K is irreducible. Let E be
the real vectorspace spanned by R (g, a). We define

where oc ’ = 2oc/(ot, a) and R+(g, a) a set of positive roots in R(g, a) such that the
induced order is compatible with the order on all weights. Here (’,’) is
a W-invariant inner product on E. Since by assumption G is simply connected the
character lattice A^ of A equals P. For any finite dimensional irreducible
representation V of G holds dimc VI  1. If this dimension equals 1 then V is
called a spherical representation, and each non-zero K-fixed vector a spherical
vector. (G, K) ^ denotes the set of all finite dimensional irreducible representa-
tions. Helgason’s theorem [Hel 2, chap. V ] says that there is an one to one
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correspondence

Given Â e P + then the character 2Â on A extends in a unique way to a character 21
on T by demanding 2.Z(t) = 1 for all t e T with 0(t) = t. We thus obtain a spherical
irrreducible representation V. of G with the highest weight 2À, and this gives the
one to one correspondence mentioned above. Since the C-algebra C[G/K] is as
G-module isomorphic to the direct sum of all spherical representations in (G, K) ^
we get

Now take a Â e P,, Â * 0, and a spherical vector v e V.. In the projectivized space
P(V.) holds stabG(v) = NG(K), see [CP, (1.7)], thus the G-orbit of v in P(V.) is
isomorphic to GIN,(K). We are interested in the cases where the closure of the
orbit Gv is the whole projective space P(V.). In that case the map

given by

has an open dense image in V.. This induces an injective graded G-module
homomorphism:

Consequently for any d &#x3E; 0 CIVÂ]D is a multiplicity free G-module or equiva-
lently C[V.] is a multiplicity free G x C*-module. A complete list for irreducible
G/K with Gv = P(V.) is given in the following table:
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Strictly speaking we have, in accordance with the assumptions, to replace the
pairs G, K by their simply connected forms. Note that all cases are of type A,,,
where n is the rank. Let the Dynkin diagram be

where al, - - -, an are the simple roots of R(g, a) = An . The fundamental weights
À i , ... , Ân are the duals of the coroots ce ( , ... , a" and after eventually transposing
the Dynkin diagram we may assume that A = Ân-
The table can be obtained as follows: In [Ka, Theorem 3] Kac gives a complete

list of multiplicity-free irreducible linear actions of connected reductive algebraic
groups, i.e. irreducible linear representations such that C[V] decomposes
multiplicity free. By the above mentioned facts our cases must be contained in this
list. A case by case verification using the classification of irreducible symmetric
spaces in [Hel3] yields the table. This table is also obtained by Heckman
[personal comm.], who determined all cases where the closure Gv in P(V) has the
Betti-numbers of a projective space.
For the rest of this paper we will restrict ourselves to the cases of the table.

We want to describe C[V.] as G-module. We already know that 0* embeds for
any d a 0 the homogeneous component CIVÀ]D in C [G/K] lh£ EDÂr-p, V.. Work of
de Conicini and Procesi gives an explicit decomposition. In fact we also be able to
give our own proof, see remark to Corollary 3.9. As usual we provide P and
P+ = (ni Ài + ... + nnânlni &#x3E;, 0} with the partial order

THEOREM 2.1. CIVÂ]D - ED,-dÂ V,-
Proof. Let X(dÀi ) be the closure of the G-orbit of the spherical vector in VdÂ,.

Denote by LdAi the restriction of the trivial line bundel W(1) on P(VDÂ) to X(dîl).
The composition of the G-equivariant map

and the projection

on the Cartan component induces a natural isomorphism X(Ài ) --+ X(dÀi ) and
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through this isomorphism the line bundle X(dÂ,) corresponds to the linebundle
L Id on X(Â,). Since C[]j can be interpreted as the sections in the linebundle

on we have

Because in our special case X(Âl) = P(V.), we get

and using the isomorphism above

The theorem in [CP, Section 8] says

The disjoint union Ild,O{JUC-PII Y  dÂ,l figures as index set for the decomposi-
tion of C[V.] as G-module. Later on we will study the multiplicative structure
and then it is for combinatorial reasons easier to work with Young diagrams. In
order to attach to each pair (y, d) with p  dÂ, a Young diagram, we need the
following.

LEMMA 2.2. Let £?= i a;À; e P+ and d  0, then 

if and only if

for some integer an+1 &#x3E; 0.

Proof. In order to write the fundamental weights in terms of the fundamental
roots one has to invert the Cartan matrix. For the rootsystem A" we get, see
[Hul l, Section 13]:
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From this follows that Âi , iÂl and 0  (n + 1) . Ài. But then

so that "if " part follows. Conversely, if £?= i a;À;  dÂ 1, then the coefficient of a,,
of dÀi - £?=ia;À; expressed in terms of the fundamental roots is a.,, =

(d - E"=1 ai - i)/(n + 1). By assumption an+ 1 must be a nonnegative integer, thus
d = E?= i ai ’ i + a., 1 (n + 1) is of the desired form. D

Now we attach to the pair y = Sc= 1 ai Âj e P + and d &#x3E; 0 with p  dÀi the
Young diagram a = Ud,, = (Ji , ... , l ait+ 1) defined by aj = Ejq=’ 11 aj, where an+ 1 is
defined as in the Lemma. Then

Conversely let a = (u 1, ... , a,, , 1) be a Young diagram. Define d = 1 u l and
li = IÀ,,,, = £?= i (J; - ai, )Â,. Now we have

Now by the Lemma p  d-Âl.
We have that D n+1 is the disjoint union of the subsets

We just proved a one to one correspondence between the ,u E P + with y  dÂ 1
and the elements of Dn+i,j. Let £ denote the irreducible summand V in
C[V,1]1,,, then theorem 2.1 translates into

THEOREM 2.3. C[VÂ] -- ® V .
OEDn+ 1
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Section 3. Multiplicative structure

The first purpose of this section is to relate the multiplicative structure of
irreducible G-submodules of C[V.] and C[G/K] to the multiplicative structure
of the K-fixed elements. For each /LeP+ we choose the elementary spherical
function (D. e V’ normalized by (D,(e) = 1, where e denotes the coset of the unit
element of G. These elementary spherical functions form a C-basis for the set of all
bi-K-invariant functions C[G/K]l on G. So for any p, v e P+ we can write

Also for each a c- D. , 1 is the irreducible G-submodule V,, of C [ V,,] spherical,
thus we can choose a spherical vector «),, in V,,. The morphism
0*: CIVAI C- ED d.ZC[GIK] T d maps V isomorphically onto V,,,, - Tl«l and we
normalize (D,, in such a way that it is mapped by 0* to . TI"1. These functions
(D,,,, also called spherical functions, form a C-basis for C[V,]’. As above we can
write for any a, T e D,, , 1

We also define a multiplication of the irreducible G-modulesV,, and V, in C[V,,]
by

V - V = G-module in C [ VÂ ] spanned by {f . g [ fe V., g c- V,

Of course there is for C[GIK] a similar definition.

THEOREM 3.1. V,, - V, V where the sum is taken over all p e Dn+1 with
d(a, T, p) :0 0.

Proof. Using the morphism §* we get

d(u,,r, p) :0 0 if and only if [ J [ + [ r = 1 p and d(IÀ,,,, li,, lÀ,) 0 0.

It is therefore equivalent to prove

THEOREM 3.2. V - V, = EDÂ VÂ, where the sum is taken over all Â with

d(p, v, Â) * 0.
Proof. We begin with some general theory.
After extending the Zariski-topology on G/K to the C-topology one can take

a compact real form Go/Ko of it. Define
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the space of all Ko -finite functions f e C - (Go IKO). i.e. Ko -f is contained in a finite
dimensional subspace. The unitary trick says that the restriction map gives an
isomorphism

r: C[GIK] --+ C’(GOIKO)’O--"n.

The advantage of working in CI(GOIKO )Ko-fin is that the restriction of the

Go -invariant Hermitean innerproduct of the unitary representation I? (Go/Ko)
provides a Hermitean innerproduct ( . ; ) on it. The decomposition of C[G/K]
carries over to a decomposition in pairwise orthogonal irreducible components
of C-(GOIKO )Ko--rn as Go-module. Write Vr = rYu and Or, = r«D,).
For any irreducible unitary spherical representation W of (GO,Ko) with

innerproduct  -, - &#x3E; and ew c- W a spherical unit vector we now define

and a C-linear Go-equivariant embedding

For W = V" A an irreducible summand q5 becomes in fact a map of V’ fli into itself
given by multipliction with some scalar a 14 e C*. Thus for e, = a - ’ - g 0" 14 and f e V£
we get

We are now ready to prove the theorem.
Given p,ve P+, we provide the vectorspace V’ 0 V’ with a Hermitean

innerproduct ( . , . ) by demanding

Then there is an orthogonal direct sum decomposition

where the Wj are irreducible spherical representations of (Go, KO) and W do not
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contain any spherical vector. The orthogonal projection on W will be denoted by
7rj,j = 1, ... , m. In each Wj we choose a spherical unit vector ej, then we can write

Given/i c- V, and f2 c- V, we get for any g e Go/Ko

Since the products /i -f2 span Vr - Vr,, this gives that each Vr occurring in W, - vr,
must be isomorphic with some Wj with aj * 0.
On the other hand if we take f, = e. and f2 = ey then (*) becomes

For each j = m we have an embedding Oj: Wj -+ CM(GOIKO) Ko-fin as
defined above, thus W= ^-_r Oj(W j) - Vr Âi for some Âj. Moreover

so if ai :0 0 then occurs V’j in V’ - V,.
Reformulating this in terms of spherical functions gives

and V. occurs in V, (g) V, if and only if /). = Âj for some j with aj :0 0, thus if and
only if d(IÀ, v, Â) :0 0. D

We now focus our attention to the spherical functions C[GIK]’. From general
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theory, see [R], [V 1 ], we know that KÀK g G is a dense subset, thus spherical
functions are completely determined by their restrictions to

Each K-orbit in G/K that intersects A/A n K, intersects in a W-orbit, where as
before W = NK(A)/CK(A) is the Weyl group of R(g, a). Thus there is a restriction
isomorphism

Since A n K = {a c- A 1 a = a -’l we have an isomorphism

defined by g/(a) = a’, and an induced isomorphism

Put

By composing r and w* -1 we get an isomorphism

and

Apart from a différent normalization the polynomials P(Â, a) are the multi-
variable Jacobi polynomials as introduced in [H]. Let T be the real compact form
of the complex torus A provided with the C-topology, and provide C[A]’ with
a Hermitean innerproduct  -, - &#x3E; defined by

and weight function
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where the ma are the multiplicities defined in Section 2, R+ the set of positive roots
in R(g, a) and dt the normalized Haar measure on T. Then the polynomials form
an orthogonal basis.

Let y, v e P + , we have

Define

It follows from [H, Section 7] that

PROPOSITION 3.3. S(y, v) = (p + C(v)) n P + D

The results of the same paper are used in the appendix to make a calculation in
order to prove:

PROPOSITION 3.4. Let p, v e P + and p + w(v)eP+ for some w e W, then

For general y and v these propositions do not give sufficient information in order
to describe S(y, v), however if we take v = Âi, i = 1, ... , n, a fundamental weight
they do. Since R(g, a) = A" we know that all fundamental weights are minuscule
(see [Hu, ex. 13.4.13]), i.e. C(À;) = WÀ; for i = n. Thus combining the
propositions we get

PROPOSITION 3.5. S(p, À;) = {,u + w(Âi) w e Wl n P +. Q

In order to employ this proposition we study the W-orbits of the fundamental
weights Â 1, ... , Â,,.

LEMMA 3.6.
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Proof. Let sal, i = 1, ... , n, denote the fundamental reflections, thus

Clearly the set on the right hand side is closed under the W-action and contains
{,1, ... , ,n}, thus contains W{Â 1, - - - , Â. 1 - It is also clear that it contains

2 - 2" - 2 = 2n+1 - 2 elements. When we prove that W{Â 1, ... , Â,, 1 contains the
same number of elements we are done.

Fix j, then the stabilizer in W of Âj is generated by the fundamental reflections
.., 1 soli_ 11 S",j+ 11 ... 1 S,,,. and thus contains j! (n - j + 1)! elements. Hence WÂj j
contains (n + 1)!Ij!(n - j + 1)! = (": i ’) elements. Since the W-orbits of the

fundamental weights are disjoint we get

Given li c- W{Â Â,, 1, we can write

with a,e e ( - 1 , 0, 1 ) . We define

otherwise.

A straightforward calculation gives that the number

is constant on Weyl group orbits and d(WÂj) = d(Âj) = j.
We define
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Because ai = e(li)i - e(IÀ)j , 1 i = 1,..., n we can, given sM, find back 1À, thus e is
injective. From the identity

follows that

For each j = 1,..., n the sets WÂj and E,, + i,j contains both (n ti) i elements, thus
for the restriction of e holds 8: WÂj --&#x3E; E,, + j,j is a bijection.
We are now ready to state the main result about products of irreducible

G-summands in C[V.]. Let bj = 1)c-D,+,,j times 1, for j = n + 1
and thus Vbj a unique irreducible summand of C[VÀ]j.
THEOREM 3.7. Let u c- D., 1, then

where the sum is taken over all p c- D. , 1 with p 1 = 1 u + j and

REMARK. The assertion is in accordance with a special case of the "Littlewood-
Richardson-rule", see [M]. In case III of our classification this rule can be used in
order to describe the product of V. - V, for a, T e D. , 1 arbitrary. In virtue of the
many analogies between the cases of our classification we conjecture that the rule
be satisfied for all of them.

Proof of 3.7. In the beginning of the proof of Theorem 3.1 we noted that

d(u, bj, p) * 0 if and only if 1 a + j = 1 p and d(ju,,, Âj, IÀP) :0 0. From proposition
3.5 follows that d(IÀ,,, Âj, Â) :0 0 if and only if Â = ju,, + u e P+ for some y e WÂj -
Let p e WÂj arbitrary, then

so y,, + IÀ c- P + if and only if
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This séquence of inequalities is also equivalent with u + e(p) is a Young diagram.
Because y,, +,(.) = IÀ« + ,u and

we find d(or, bj, p) * 0 if and only if p E Dn + 1 is of the form a + e(IÀ) for some
’y c- WÂj. Since e: WÂj --&#x3E; E,, , j,j is bijective the theorem follows. D

The special case j = 1, thus Ya = C[V,],, plays an important role in the
classification of G-invariant ideals. In this case is 1 p 1 = 1 u + 1 and pi - Qi = 0 or
1 for i = 1,..., n + 1 equivalent with p ::&#x3E; a adjacent (i.e. if p a r a J then p = T
or r = J).

COROLLARY 3.8.

Using our combinatorial results on Young diagrams we can prove two other
corollaries. Let Q E D" + 1 and write u = Si" t=l ai bi, where the a, are non-negative
integers and as before bi = (1,..., 1), i times 1.

COROLLARY 3.9.

Proof. By Theorem 3.7. Yt is summand of the left hand side if and only if

and there is a sequence of Young diagrams T 11 T2, - .., T. = T where a =

£?Îl a; = Q such that

is a sequence of strips with degrees

By definition this is equivalent with saying that T can be stratified by (7. Hence
by Proposition 1.4 the corollary follows. D
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REMARK. One can prove that for a, T e D. , 1 with 1 u [ = [ r [, r a j is equivalent
with cz  cQ in P+ . Using this one can translate the corollary to C[G/K]. For
a 1, ... , a" &#x3E; 0 the statement becomes:

where the sum is taken over all /).e P + with Â  a 1 Â 1 + - - - + a. Â,,. This fact and
the embedding 0* makes it possible to prove Theorems 2.1 and 2.3 in an other
way.

Let J = SI+’ a,ô, be as above.

COROLLARY 3.10. There exists an integer m &#x3E; 0 such that

Proof. By Corollary 3.9 the left hand side is in fact the sum of all V, withr e
i E D" + 1 i &#x3E; (m + 1)u and 1 T = (m + 1 ) I o’ I, and the right hand side is

By a likewise reasoning as in Corollary 3.9 using again Theorem 3.7 one
deduces that the right hand side is the sum of all V, with  E D" + 1, and
T = u + s M=*", e’ for some sequence of strips e’, ... , e"’ related to mu such that
0, + E1-1 ei is a Young diagram for all i = 1,..., me. By Proposition 1.5 now
follows that both sides are a sum over the same set of r’s. D

Section 4. The invariant ideals

In the preceding sections the main work has been in order to classify the graded
G-invariant ideals in C[V,,]. Let I be such an ideal, then I = ® d o I d where
id = , n CIVÂ,ld. Since  [ V 1 ] d has a multiplicity free decomposition as

G-module, it follows that 7j is a sum of some V,,, with 7e D,, + 1, 1 a = d. Hence
I = ®QEDI V« for some subset DI - D,, + 1. Let I,,, denote the graded invariant
ideal generated by V ,,,. First we describe these minimal ideals:

THEOREM 4.1.
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Proof. By the definition

Now the theorem follows by Corollary 3.8. D

A subset D z D,, , 1 is called a diagrammatic ideal, shortly d-ideal, if

u c- D, r c- D,, , 1 and a - r implies reD. For each d-ideal D there is a unique
minimal finite subset {i 1, ... , T. 1 such that

for some

and we will write

It is easy to give a direct proof for this, however it follows already from the
classification theorem below and the fact that C[V,,] is a Noetherian ring.

THEOREM 4.2. 1 --+ DI is a bijective map from the set of G-invariant ideals to the
set of d-ideals, it preserves containment and commutes with taking intersections.

Proof. For any subset D z D" + 1 the ideal generated by all Yz with reD is
’rc-DI,. From Theorem 4.1 follows E,cD i, = (Dp V. where the sum is taken over
all p c- D., 1 that contains some reD, thus the map is bijective. The other
assertions are trivial. D

Because the partial order  extends the partial order z , we have that

are graded G-invariant ideals for any a e Dn + 1. We can write a = SI" ai bi, where
the ai are non-negative integers and bi = (i)" = (1, ... ,1), i times 1. Put

for

PROPOSITIONS 4.3. A,,, = I" - - - - - I’-’l
Proof. By Proposition 1.4a and Corollary 3.9 both sides are generated by the

V,with Tc-{pc-Dn+l Ip &#x3E;u and Ipl = jall. Q

Now the invariant ideals are classified by d-ideals we want to describe the
d-ideals corresponding to the invariant prime, primary and radical ideals. We
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first introduce the corresponding notions for the d-ideals and after their

classification and some preparation we prove in Theorem 4.7 below that they
indeed correspond to the usual ones.

Let D be a d-ideal :0 Dn+1. We say that D is

prime if u + r e D implies cr e D or r e D,
primary if a + reD implies a c- D or yM’TeD for some m,
radical if m - a c- D for some m implies u c- D.

The radical of any d-ideal D is defined as

and is clearly a radical ideal.

THEOREM 4.4.

(a) T he prime d-ideals are (Ôl)l (Ô2), (ô,,, 1) and the empty set.
(b) The radical d-ideals are just the prime d-ideals.
(c) The primary d-ideals with radical (ôj) are the d-ideals generated by m - ôj for

some m &#x3E; 0 together with some elements oftheform Y-"+’ a,,Ô,, a, &#x3E; 0 and not all
zero. 

Proof. (a) and (b). Let D be a prime or radical d-ideal, and a = Y-4= L’ 1 aibi C-
D with ai * 0. Since (11= , ai)ôj -2 u, a multiple of ôj lies in D, so bj e D. Thus
D must be of the given form. The converse is trivial.

(c). Let D be a primary d-ideal with radical (bj). Of course there is some

minimal m such that m - bi c- D. Now let peD and write p=r+T where
7 = a, ô, and ï = Yi- 1 ai bi. Since -r e (bj), thus mT e D for any m, it follows that
a c- D. Because p 2 a we see that a set of generators can be chosen of the desired
form.

Conversely let D be a d-ideal generated by elements of the given form. It is clear
that for i E Dn + 1 holds kr e D for all k if and only if we can write r=

Yi- 1 ai bi. So if or + T 2 p, u, T c-D, + 1, for one of the generators p, but kT e D for all
k, it follows that u - p, thus D is primary. Q

Let u,,r c- D,, , 1, we have the following inclusions:

The first inclusion holds since ,uQ + t = y,,, + ,ut, thus V ,, +, is the image of the
Cartan component of V,, 0 V, -+ V - ,, V The second inclusion is a consequence
of Corollary 3.9 if one write u, r and a + T as sum of ô,, ... , ô,, , 1.
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Now let f, g c- C [ VÂ ] two non-zero elements. Write

with £ c- V, non-zero and some unique finite set F c D,,, 1.
Similarly write

Let u e F and r e G be the unique minimal elements in these sets with respect to
the lexicographic order  c defined in Section 1.

LEMMA 4.6.

Proof. Because the lexicographic order &#x3E;,,, extends the partial order &#x3E;, it

follows from (4.5) that for any pi e F and P2 c- G

Since p 1 &#x3E; , u and P 2 &#x3E;,,,r we get, using the definition of &#x3E; , p 1 + p2 &#x3E; L Q + i
and equality holds only ifpi = a and P2 = i. From this follows the first assertion
of the lemma and also that the only contribution off- g to h,,, +, comes fromf,,, - g,.
This reduces the proof of the second part to the case f = £ and g = g, in order to
prove the second part of the lemma. In other words we have to prove that the

G-equivariant projection p : V - ,,, V , -+ V on the Cartan component maps f - g
to a non-zero element. Suppose we have fixed a Borelsubgroup B = T- · U of G,
where T is the maximal 0-stable torus of paragraph 2 and U a maximal unipotent
subgroup, so that we can talk about (highest) weight vectors. We fix highest
weight vectors h,,, c- V ,,,, h, c- V, and h,, p(h,,, - h,) c- V, ,. Since V,,, is an

irreducible representation, there is a non-empty open subset (9 f z U such that for
all u E Cf uf = au h,, + terms of lower weight with au :;é 0. Similarly their is

a (9, - U. Thus for u c- (9f n (9g :0 Qj we get p(uf ug) = flu - h,, +, + (terms of lower
weight) and fi. * 0. Then u - p(f - g) = p(uf - ug) * 0, thus p(f - g) :0 0. 1:1

THEOREM 4.7. The 1-1 correspondence I H DI of Theorem 4.2 preserves the
notions prime, primary and radical.

Proof. We first prove that I --+ DI preserves these notions. It needs easy
commutative algebra to see that the properties prime, primary and radical of an
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ideal I gi C[V,,] can be characterized by: for all finite dimensional C-vector-
spaces V, W of C [ VÂ, ] holds (prime) if V- W gi I then V gC I or W z 7, (primary) if
V- W G I then V g I or W’ z I for some m and (radical) ifV’ z I for some
m then V C I. Since V,, , - Vn, - V, for all (7, r e D,, , 1 (4.5), it is obvious that I -+ DI
preserves the notions.

Now let D be a d-ideal. We write

and

Suppose D is a prime or radical d-ideal. We have to prove for all f, g e C[V,,] with
flge,D that fge,D. Write f = fl + f2 and g = g, + g2, where fl,gl EID and
f2,g2 c- I’. D Then

So we may assume f, g c- I’. By Lemma 4.6.

for some J, r e D + i )D. Since u,,r e D implies 6 + r e D it follows that f- g 0 ID -
Now suppose D is a primary d-ideal. From the classification of prime

and primary d-ideals follows ,,FD = (ôj) and môj e D for some m and some
1  j  n + 1. By (4.5) holds

and r a m(n + I)ôj means in particular yj(,r) &#x3E; m . (n + 1) from which follows
T 2 mô i. Thus Vj z (, so I D ç I, f ç I D. Since II-D- is a prime ideal we get

In order to prove that ID is primary, it is sufficient now to show for f IID- and
g e Ic, g :0 0, that f- g e I. Given such f and g we get by Lemma 4.6, using the same
definition of u and r, f. g = Ep &#x3E;- eu , hp with h p e vp and h,, , * 0. Because f II-D-
and ,.,,,FD = (bj) it follows that a 0 ,ID, namely diagrams not in (ôj) are in the
lexicographic order smaller then elements in (ôj). Then a + r  D, thus f - g e I.

n

In a Noetherian ring each ideal has a primary decomposition, i.e. can be
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written as intersection of primary ideals. We give an algorithm in order to write
each graded G-invariant ideal in C[VÂ,] as intersection of graded G-invariant
primary ideals. By Theorem 4.2 and 4.7 we can work with d-ideals.
For u,,r ~ D. , 1 we define

Clearly u is commutative and associative and for any r c- D. , 1 holds

for some ai &#x3E; 0, ai e Z. Thus each Young diagram can be written as union of so
called rectangular Young diagrams.

It is also straight forward to verify that the following identity for d-ideals holds:

As a special case we get

Now let D be any d-ideal. The algorithm in order to obtain the primary
decomposition of D runs as follows.

First choose a finite set of generators for D, and write each generator as a union
of rectangular diagrams as mentioned in (4.8). Next use (4.10) repeatedly in order
to write D as an intersection of d-ideals, all generated by rectangular diagrams
only. By Theorem 4.4.c d-ideals generated by rectangular diagrams are primary,
so we have obtained a primary decomposition.
The intersection of primary ideals that belong to the same prime ideal is again

primary, (4.9) can be used for taking these intersections. Finally we have to
remove the superfluous primary ideals in order to obtain an irredundant primary
decomposition.
For the minimal ideals h, i E D" + 1, we can give an explicit primary de-

composition. Namely in accordance with (4.8) we can write
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where b, &#x3E; b2 &#x3E; ... bn +1 . Since bibi c-- bibi if bi = bi for some 1  i  j  n + 1,
also

for some subsequence bml &#x3E; bm2 &#x3E; - - - &#x3E; bmm &#x3E; 0. Now the algorithm above
gives

PROPOSITION 4.11.

is an irredundant primary decomposition. The associated prime ideals are

Iml, ... , Imm.

In order to give an explicit primary decomposition of the A,,,, (y e Dn+1, we need
two Lemma’s.

For ueD.+, put

LEMMA 4.12. For any i E Dn+ 1 holds

J(7) is a minimal subset of n + 11 with this property.
Proof. By definition r &#x3E;, a if and only if yj(,r) &#x3E;, yj(u) for all j a 1. Clearly

the j with uj = 0 are redundant since for such j yj(a) = 0. Now let 1  j  n + 1
and suppose uj * 0 and (n + 1 - jxuj - l )  yj, 1 (a). If Ti &#x3E;, ai then yj(,r) &#x3E;, ïj(u)
will be a consequence of yj + 1 (,r) -&#x3E;- yj + 1 (u), whereas Tj  uj implies yj , 1 (T) 
(n + 1 - j) (uj - 1)  yj , 1 (u). So the test of the inequality is superfluous for j if
we test j + 1. Since for j sufficiently large always holds y/r) &#x3E; yj(a) it follows that
we can restrict ourselves to J(7).
Now let j c- J. But

Then yj(T)  yj(a) and y;(r) a y;(J) for all i :0 j, thus J is minimal. D

LEMMA 4.13. Dj,m = {a e Dn+1 1 yj(a) &#x3E; ml is a primary d-ideal with radical (bj)
for all 1  j  n + 1 and m &#x3E; 0.
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Proof. We show that Dj,m can be generated by elements of the form as desired
in Theorem 4.4c).

m * ui c- Dj,m because yj(maj) = m.
If r c- Dj,m then

thus r’c- D,,m and is clearly of the desired form. D

We now give the primary decomposition of Aa in terms of d-ideals.

PROPOSITON 4.14.

is an irredundant primary decomposition.
Proof. Combining Lemmas 4.12 and 4.13 yields the décomposition. Since J(6)

is minimal the intersection has to be irredundant D

Let P be a prime-ideal in a Noetherian ring. For fixed m &#x3E; 0 occurs in each

irredundant primary decomposition of Pm a primary ideal P(-) associated to
P (i.e. IP(--) = P). P(-) does not depend on the chosen decomposition and is
called the m-th symbolic power of P.

In C [ VÂ ] the G-invariant prime ideals are Ii = Iô, i = 1, ... , n + 1. We
determine a primary decomposition of their powers and describe the symbolic
powers.

PROPOSITION 4.15.

and

is an irredundant primary decomposition, where e’ = max(l, n + 1 - (n + 1 - j)m).
Proof. By definition A..,,,j = Ijm and in Proposition 4.14 an irredundant

primary decomposition of Am.,,,j is given in terms of d-ideals:
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We determine J(m - aj). Of course J(m - ai) g {1, - - - , jl, so let 1  E  j. Then
l e J(m - J .) if and only if

thus if and only if

So we get

In particular the bi-primary component môj is Dj,.. Now the proposition follows
by translating these facts back to G-invariant ideals. n

Finally we want to describe the integral closures of G-invariant ideals in

C [ VÂ ]. Given a graded G-invariant ideal I, an element fc- C [ VÂ ] is said to

be integral dependend on I if it satisfies an equation of the form zc +

a, ze - 1 + - - - + a,, = 0 with ai c- I’. This is equivalent with M . f z M’7 for some
finite dimensional C-vectorspace M z C [ VÂ ], see [ZS, appendix 4]. The integral
closure of I is the ideal of all integral dependend elements, and is again a graded
G-invariant ideal.

We first determine the integral closures of minimal ideals.

PROPOSITION 4.16. The integral closure of I,,, is A,,,.
Proof. By Corollary 3.10. there is a m &#x3E; 0 such that for

and

holds

Because N generates A lu and V ,, generates I,,, it follows that A,, is integral over I,,.
In order to show that A,, equals the integral closure of I. we prove that for any
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i E Dn + 1 with not T &#x3E;, u, their do not exists a finite dimensional vectorspace
M such that M - V, 9 M - I,,. Clearly we can restrict ourselves to G-invariant
vectorspaces M. If notr &#x3E; a, then yi(T)  yi(u) for some 1  1  n + 1. Now take
p c- Dn 11 such that Yp is summand of M with yi( p) minimal. By (4.5) Vp +r, is
a summand of M V,, but for each summand V,, of M - I,, holds

thus Vp +, is not a summand of M - I,,. 0

Via the 1-1 correspondence I H D j we have for d-ideals the notion integral
closure. We describe the integral closures of arbitrary invariant ideals in terms of
d-ideals.

We extend the partial order  on D,, + 1 to 0" + z-D D,, +as follows: let

a = (a,,..., a,,, 1), b = (bl,..., b,,, 1) c- enll then

n+l n+l

a  b if and only if £ a;  £ bi for all j = 1, ... , n + 1.
i=j i=j

PROPOSITION 4.17. The.integral closure of the d-ideal (a1, ... Qp) is

for some

Proof. First note that from Proposition 4.16 follows that for any u in the
integral closure and any i E Dn + 1 with T &#x3E; o- also T is in the integral closure.
Now let Tc-D,,,, with -r &#x3E;,ala, + ’" + apu, for some a; e Q, a; a 0 and

£f= ia; = 1. Choose a positive integer m such that mai is integral for all

i = 1,... p. Then mi &#x3E; mai Ji + - - - + mapQp and E,,= 1 mai = m. By (4.5) we get

and

Thus by the remark at the beginning of the proof it follows that VI’ is contained in
the integral closure of I’ Using the definition of integral dependence it
follows that Yt is integral over i,...,).

Conversely suppose V, is integral over I(,,i, .... ,,). Then for m &#x3E; 0 sufficiently
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large is

By (4.5) Yp is contained in the right hand side implies p &#x3E; £f= i b;J; + bp+ 1 i for
some non-negative integers b bp + 1 with Ef+l bi = m and bp + 1  m.
In particular since V., g V’ this holds for p = m.r. In this case put
k = m - bp+l = £f= i b &#x3E; 0, then kr a SP L= 1 bjui or equivalently -r &#x3E;,

£f= 1 (b;/k)J;, where bilk e 0, bilk &#x3E; 0 and Yf 1 bilk = 1. D

Section 5. The G-orbits in P(V.1).

In Section 4 the graded G-invariant prime ideals of C [ VÂ have been classified.
We found a chain of prime ideals I 1 -2 2 2 ... 2 In + 1 In + 2 = (0). Where I i
is generated by the homogeneous polynomials of degree i in Mai for

i = 1, 2,..., n + 1. We consider C [ VÂ ] as the homogeneous coordinate ring of
the projective variety P(). The ideal Il equals the maximal homogeneous ideal
and does not play a role. For i = 1, ... , n + 1 we define

PROPOSITION 5.1.

(a) {X 1, ... , Xn + 1 1 is a complete set of G-invariant closed subsets.
(b) Xl9X2 - Xi,... 1 Xn 11 - X,, are the G-orbits.
(c) Xi is the orbit of the highest weight vector.
(d) Xi is the union of all (i - 1)-dimensional projective planes through i points of X 1

together with their limit positions.
(e) X 1, ... , Xn are normal varieties with rational singularities.

Proof. Since X 1 9 X2 9 ... z X+ i form a complete set of G-invariant

irreducible closed subsets and any G-invariant closed subset is a union of them (a)
follows immediately. Because any G-orbit is open in its closure [Kr, 112.2] (b)
follows from (a). The orbit of the highest weight vector is always closed [Kr,
1113.5] and of course G-stable thus, combining (a) and (b), equal to X1 .
Now fix a Borel subgroup B = T U with T the maximal 0-fixed torus defined in

Section 2 and U a maximal unipotent subgroup. Choose highest weight vectors
hi e vu, for i = 1,..., n + 1. Since for any Q, i E Dn + 1 V + z corresponds to the
Cartan component of V, 0 Vi, see (4.5), it follows that for any a = El+’ aibi the
U-invariant element h,,, hai ’" -h a.,l is a highest weight vector in Vu. We
also get that C [ V 1 ] U = C [h 1, ... , hn + 1 ] is a polynomial algebra and thus
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(C[VÂ]/Ii, 1)u C[hj, hi], i = 1,..., n + 1. Several geometric properties
hold for the affine varieties Yi corresponding to C [ VÂ ]lIi + 1 if and only if they
hold for the affine varieties YilU corresponding to (C[VÂ,]/Ii, 1)1. This is proved
for normality [V2] or [Kr] and for having rational singularities only [Br]. So
Yi , ... , Y" + 1 are normal varieties with rational singularities. From this follows
(e). It remains to show (d). This will be proved after the case by case study below of
our classification given in the table of Section 2.

In order to describe generators for the invariant prime ideals we need

PROPOSITION 5.2. In+, is generated by one G-fixed homogeneous element of
degree n + 1. For i = 1,..., n is I, generated by the set of all partial derivatives of
a set of generators of Ii + 1 

Proof. Since I. is generated by V ,&#x26;., 1 and ,uan+ 1 = 0 E P + the first assertion
follows. Now fix 1  i  n. The symbolic power I ( m), m &#x3E; 1, can be interpreted as
the set of functions in C[V.1] vanishing to order &#x3E; m on Yi- 1, see [EH]. By
Proposition 4.15 / is generated by Y2ai and V., Given bases f l, ... , fp of V,,, 1
and Z 1, ... , Z qof C [ VÂ 1 ] 1 the partial derivatives (à/ôZi ) f vanish to order &#x3E; 1 on
Yi -1, thus are all in Vd,. Clearly for any g e G g(DIDZI)fk can be written as a linear
combination of the partial derivatives, so they form a set of generators for Yai .
Since Yal generates Ii and Yai + 1 generates ii + 1 the proposition follows. D

Now we describe the situation case by case for the classification given in
Section 2.

(I) G SO. + 1, K = Om, VÂ 1 = Cm + 1 the standard representation and rank
n= 1.

Let Z 1, ... , Zn + 1 denote the coordinate functions, then

(111) G = SL. x SLm, K = SL. c+ diag, V,,, = Cm 0 C’and rank n = m - 1.
V., can be identified with the set of complex m x m-matrices Mm,m such that the
G-action becomes (A, B)M = AMB - 1, (A, B) e G, M e Mm,m. Let Zijg 1  i, j  m,
denote the coordinate functions on Mm,. and Z the m x m-matrix with i-j entry
Zij. Clearly det(Z) is a G-invariant homogeneous polynomial of degree m, hence
I m = (det(Z)). Because the partial derivatives of the k-minors of Z, k &#x3E; 1, are zero
or (k -1 )-minors it follows by Proposition 5.6 that for i =1, ... , m I; is generated
by the i-minors of Z. Consequently the variety Yi (and Xi) consists of (the classes)
of rank  i matrices.
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(II) G = SL m, K = SO., VÂ = S2 Cm and rank n = m - 1.

V., 1 can be identified with the set of symmetric complex m’x m-matrices
smm,m z M,,m such that the G-action becomes A - M = AMA’, A c- G,
M e SM.,m. Let Zii = zji, 1  i, j  m, denote the coordinate functions on SM,n,,n
and Z the m x m-matrix with i-j entry Zii.
As in case III we get for i = 1,..., m:

ij is generated by the i-minors of Z.

Yi (and Xi) consists of the (classes) of rank  i symmetric matrices.

(IV) G = SL m, m even, K = Spm, Y1 - A 2Cm and rank n = (m/2) - 1.
V., 1 can be identified with the set of anti-symmetric complex m x m-matrices
AMm,m 9 Mm,m such that the G-action becomes A - M = AMA’, A c- G,
M E AMm,m. Let Zij = - Zji, l  i,j  m, denote the coordinate

functions on AMm,m and Z the m x m-matrix with i-j entry Zij. Since Z is an
antisymmetric matrix we can take its pfaffian Pf(Z), this is a G-invariant

polynomial of degree m and thus I(m/2) = (Pf(Z». In order to obtain generators
for 1(,/2) - 1 we have to take partial derivatives. Let 1  i  j  m then

(DIDZij)Pf (Z) is precisely the pfaffian of the (m - 2)-minor obtained from Z by
cancelling the i-th and j-th row and column. Repeating this argument yields that
for i = n + 1 = m/2:

ij is generated by the pfafhans of the 2i-minors of Z of which the involved
row-set and column-set are equal.

Yi (and Xi) consist of the (classes) of rank ,2i anti-symmetric matrices.

(V) G of type E., K of type F4, V., the standard 27 dimensional representation
and the rank n = 2.

V., can be identified with the vectorspace of triples of 3 x 3 matrices (M3,3 )3 such
that the G-action leaves the cubic form

invariant, the Dickson representation, see [D] or [F]. Here Z’ denotes the 3 x 3
matrix with i-j entry Z§, where Z., 1  i,j, k  3 are the obvious coordinate
functions. Thus 13 is generated by the cubic form. In order to obtain the
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generators of 2 we have to determine all the partial derivatives of the cubic form.
We claim that I2 is generated by the 27 functions:

Here adj(A) denotes the adjoint matrix of A. It is an explicit calculation to obtain
this result:

Using the identity

one obtains that the partial derivative to Zà, 1  i,j  3 of the cubic form is

where the ’co-factor’ (Z’)j, denotes (- 1)"j times the minor of Z 1 obtained by
cancelling the i-th row and j-th column. The other partial derivatives are obtained
in a similar way by permuting the Z’, Z’, Z’ in a cyclic way.

We now prove Proposition 5.1(d). Put

Ti = union of all (i - 1)-dimensional projective planes through i points of X 1
together with their limit positions.

for some

Clearly Si and Ti are G-stable, Si - T, and Si = Ti, thus it is suScient to prove
Xi = Si.
For case 1 there is nothing to prove. Using the matrix representations

above the assertion follows for the cases II, III and IV from the facts:

( 1 ) Xi contains a basis for V., and (2) rank (A + B)  rank (A) + rank (B) for
matrices A, B. It remains to prove case V. Since S2 is G-stable and S2 -2 X 1,
S2 * X 1 it is sufficient to prove S2 C X2 . For this purpose we use the description
above of the 27 dimensional representation.

Let (A, B, C), (A’, B’, C’) E Vzl two triples of 3 x 3-matrices with their equi-
valence class in Xi. Thus these triples are zero’s of the 27 functions of I2 or
equivalently:
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and similarly for (A’, B’,C’). We show that s · (A, B, C) + t(A’, B’, C’) is for any
s, t e C a zero of the cubic form (5.3), and thus an element of X2 .
We will use that for all 3 x 3-matrices M and N holds:

This identity can be derived from

by substituting sM · N -1 for M and multiplying with det(N).
Substitute s(A, B, C) + t(A’, B’, C’) in the cubic form (5.7), we obtain

This is a homogeneous polynomial of degree 3 in the variables s and t. We

determine these coefficients:

The coefficient of s3 is

Since 13 - I2 this coefficient must be zero.
The coefficient of s2 t is

tr(adj(A) - A’) + tr(adj(B) - B’) + tr(adj(C)’C) - tr(A’ BC + AB’ C + ABC’).

Substituting (*) in this expression gives

Since the trace function is linear and tr(MN) = tr(NM) for all 3 x 3 matrices
M, N, it follows that this coefficient is zero. By symmetry the coefficients of st’
and t3 are also zero. This finishes the proof for case V and of assertion 5.1 (d).

Appendix. Multiplication of multivariable Jacobi polynomials

Let R be an irreducible root system, not necessarily reduced, with Weyl group W.
Fix a base and denote by R + , P and P + the positive roots in R, the weight lattice
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of R and the dominant weights of R respectively. Attach to each oce R a ma E R , 0
such that mwa = m,, for all w E W, and define ma = 0 for oc e PBR. Let H be
a complex torus with character lattice equal to the weight lattice P, and with
compact form T. Define a Hermitean inner product on C[H]’, the W-invariant
polynomial functions on H, by

where the weight function b is given by

and dt the normalized Haar measure on T.

One can write  [H] ^_r EDÂC,C - XÂ, with XÂ: H -+ C* the character given by
xÂ: h H h’. We recall some facts from [HO] and [H].
C[H]’ has a basis of orthogonal polynomials of the form

with

Here the partial order  on P is as usual defined by

Our notation is fairly différent from that in [HO] and [H]; ma corresponds to 2k,,,
in [HO] and our P(p, h) corresponds to 0(wo y, k, h) in [HO, (3.11) ... (3.14)] and
P(wo li, k; h) in [H, (8.2)], where wo denotes the longest element in W.
So given 1À, v eP+ we can write

We are interested in the coefficients d(p, v, À). Note that these coefficients
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correspond to d(woy, wo (v + P), wo (v + p + wy» in [H, (7.10)]. From the

orthogonality relations follows d(p, v, Â) = 0 if not WojM + v  Â , ii + v, see

[H, 8.4)]. Write m 1 = 1/2 ma + for oc eR+ a short root, m2 = 1/2m if there exists
a fi e R + indivisible but not a short root and m2 = 0 otherwise.

THEOREM. Let 1À, v and wy + v e P+ for some w e W. Then d(,u, v, wy + v) &#x3E; 0

for all ma &#x3E; 0. In fact d(,g, v, wp + v) can be written as product of non-zero factors
(ami + bm2 + C)± 1 with a, b, c e Z&#x3E;o.

This proposition is an immediate consequence of the two lemmas below. In fact
all we have to do is to work out the following identity proved in [H, (7.10)]:
For ma &#x3E; 0 generic

where the c-function is defined by

with

and co = co (mQ) a nonzero constant, p = 4 aER + ma a, a" - 2a/(a, oc), and (’,’)
a W-invariant inner product on the real vectorspace spanned by R.

First substitute the product formula (2) in (1), we have

Now use c,,,(wÂ) = cw -1 a (,), WoR+ = R- and o - 1. We get
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Now write

then the factors in both products corresponding to the a in R + n wR + cancel out,
hence

LEMMA 1.

Now fix oc E R + n wR -, oc indivisible. Then

LEMMA 2.

and

can be written as product of non-zero factors (am 1 + bM2 + c)±’ with a, b, c C-Z&#x3E;_,.

In the proof of this lemma we will use the following facts:
- (wiÀ, a’) = (.u, (w-’a)’) , 0 since w- la c- R-.
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- If 2oc e R then §(wp, oc ) = (wy, (oc/(oc, oc))) (wiÀ, (2a)’) e Z.
- (p, a" ) am 1 + bm2 for some a, b e Z and a * 0 if a is a short root while

b # 0 if a is not a short root.

To see the last fact, write p = ml pl + M2P2 with pl = 2Ea, sum over all short
and indivisible roots a c- R + and p2 = -1 2 y- oc, sum over all not short and indivisible
roots a E R + . Now (a,,o) = m1 (ce, pi ) + m2 (a, p2 ) and (oc, p 1) gÉ 0 if a short and
indivisible, while (a, P2) # 0 if a not short and indivisible.

Furthermore we denote (z)x = r(z + x)/r(z).
The duplication formula of the r-function gives (2z)2x = (z)x - (z + -L)x - 2 2"1
If we take x = n a positive integer then we have the Pochhammer symbol

Proof of Lemma 2. We begin with the substitution of formula (3). We have

and in a similar way

Now distinguish the two cases 2a e R and 2a e R.
If 2a eR then we know that - -I(wy, a’) is a positive integer. Then we can
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rewrite (7) into

Next write out the Pochhammer symbols in (8) and (9) in order to obtain the
desired product formulas. By the third fact mentioned before the proof it is clear
that all coefficients of ml and m2 are non-negative.
Now assume 2a e R. Then m2,. = 0, so we can use the duplication formula in

order to rewrite (7) and (8). We get

We can finish the proof as in the first case. D
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