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Section 1. Introduction

The theory of low rank representations for the symplectic group Sp2" over a local
field was introduced by Howe [5]. In this paper we develop the same theory for
all type 1 classical groups. As far as the ideas are concerned, we have little new to
offer, for most of them are already contained in [5]. However, we have a more
specific goal here. That is to complete the classification of all irreducible low rank
representations of a classical group, as promised in [16]. Given a type 1 classical
group G, we have constructed in [16] a collection of irreducible low rank
representations of G, all of them unitary. The main result of the present paper
states that these exhaust all irreducible low rank representations of G.
To be a little more precise, let F be a local field of characteristic not equal to 2.

Let G be a type 1 classical group over F. (cf. Definition 2.1). If G is Sp2n we let
G denote the metaplectic two-fold cover of SP2n. In all other cases let G = G.
Suppose G’ is another classical group so that (G, G’) is a reductive dual pair in the
sense of Howe [6]. Assume further that (G, G’) is in the stable range with G’ the
smaller member (cf. [4]). According to [16] we have an injective map

which arises from Howe’s local duality correspondence, and is explicitly
described. Here if G’ is not SP2,, then the set G’(03B5) is essentially just the unitary
dual of G’. Otherwise it is (roughly) half of the unitary dual of SP2,,._(The
metaplectic cover of SP2,,). (see Section 4 for the precise definition of G’(03B5)).
We prove

THEOREM. (Theorem 4.8 below) Let n be an irreducible unitary representation
of G. Assume n is of low rank. Then there is a group G’ as above, a representation
03C3 e G’(ë), and a character X of G such that
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Here n(a) is as in (1). Furthermore, the various sets of representations of the above
form associated to different G"s are disjoint.

For G = Sp2n, this was proved by Howe [7] under slightly more restrictive
condition. (namely the representation 03C0 should have rank not greater than n - 2.)
The analogous result for GL,, was proved by Scaramuzzi [19].

In Section 5 we define the notion of a distinguished representation. A notion
closely related to this was introduced in a global context by Piatetski-Shapiro
[17] (see also [3]). Roughly speaking, distinguished representations are the most
"singular" ones among representations which are not of low rank. In this regard
it is worth noting that low rank representations can never be local constituents
of cusp forms [14], while distinguished representations often arise as local
constituents of examples of cusp forms contradicting the Ramanujan conjecture.
(cf. [9] [11]) The main result of Section 5 is a characterization of distinguished
representations in certain cases. We remark that this has some global applica-
tions [15].

Section 2. Some algebra

(2.1) Throughout this paper, we let F be a local field of characteristic other
than 2. There are two types of classical groups over F. Those of type II are the

groups of invertible elements in simple algebras over F, i.e. general linear groups
with entries in a division algebra over F. These we shall not consider in this paper.
(When the division algebra is F itself the low rank representations have been
studied by Scaramuzzi [19]). Much more is known for general linear groups than
for other classical groups. Thus it seems the theory of low rank representations
has less to offer for type II groups than it does for type I.
Hence forward by a classical group G we shall mean the one as given in the

following definition.

DEFINITION 2.1. A type 1 classical group G is explicitly constructed as follows.
There is

(a) a division algebra D of F, with involution # ;
(b) a vector space V over D, with non-degenerate sesquilinear form (, ), which is

either hermitian or skew-hermitian; such that

(c) G is the identity component, in the algebraic sense, of the isometry group
of (, ).

Let Zo be the fixed points of the involution # in the center of D. Nothing will
change if we replace F by Zo. Hence we always assume

(d) Zo = F.
Since F is fixed, we shall not distinguish an algebraic group witn its F-rational
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points in our notation. It is important to realize that, according to our definition
the group G always comes together with a space V and a form (, ). For simplicity
we usually just speak of G, and let the data V, (, ) be implicitly understood. When
necessary we write G = G(V) to indicate the dependence of G on V. If Yo is
a non-degenerate subspace of V we let G( Vo ) denote the subgroup of G consisting
of elements which act as the identity on the orthogonal complement of Vo .

Because of the last assumption in the definition, D will either be a quadratic
extension or a quaternion algebra over F. Let

We list the possibilities as in [26], No. 27. There are five altogether.
(10) D = F,~ = -1; G = Sp2n is the symplectic group
(I1) D is a quaternion algebra over F with # the usual involution, and il = 1
(I2) D is a quadratic extension of F and # is the Galois involution. We may

take 1 = 1
(I3) D and # asin(Il),tl= -1
(I4) D = F, ~ = 1. The isometry group is denoted 0. if V has dimension m.

Then G = SOm, the special orthogonal group.
In cases (10 )-(I2 ) above, the isometry group of ( , ) is connected (as an algebraic

group). In case (I3) the isometry group has two connected components.
Nevertheless its F-points coincides with G. Thus (I4) is the only case when G is not
the full isometry group of (, ). The restriction from 0. to G = SOm in this case is
hardly necessary, but will save us a lot of trouble.

(2.2) For later purposes, we give a description of a typical maximal parabolic
subgroup of G. Fix once for all a maximal set of independent vectors

such that

The integer n is both the Witt index of (, ) and the split rank of G. For each
integer k with 1  k  n we let Xk be the span of el,..., ek and xt the span of
e 1, ... , e*k. Set Vk = Xk ~ X*k, and let V~k be its orthogonal complement in V with
respect to (, ). Let Pk be the parabolic subgroup of G preserving xt. We may take
for a Levi factor of Pk the group of elements preserving both X k and X*k. This
group is isomorphic to GL(X*k) · G(V~k). Write the Levi decomposition of Pk as
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where Nk is the unipotent radical of Pk. The group Nk is at most two-step
unipotent, and will fit into the following exact sequence

where ZNk denotes the center of Nk, except when k = 1 and G is of type (I4). In
this exceptional case the group N 1 is itself abelian, and (5) remains valid if we
consider ZN to be the trivial group. Let ~’ = -~. Let B(X k, ~’) be the space of all
sesquilinear forms on Xk having the opposite symmetry as (, ) under interchange
of the two variables. Thus if (,) is hermitian then B(Xk,~’) consists of skew-
hermitian forms, and vice-versa. Define B(X*, il’) analogously. There is a natural
isomorphism

The spaces B(X k, q’) and B(X*, 11’) are naturally dual to each other. To make this
explicit we note that there is an involution

defined by the identity

This involution will preserve HomD(Xk,X*k). (Which is to be identified with the
endomorphisms of V that vanish on X*k ~ V~k and have their images contained in
X*k). Similarly it preserves HomD(X*k,Xk). We have natural isomorphisms

Thus given z E B(Xk, q’) and z E B(X*k, 11’) the composite Z. Z is an endomorphism
of X*, etc, and the bilinear form

exhibits the duality involved. Here tr denotes the reduced trace in the simple
algebra End (X*), etc.
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Let ZNk be the Pontrjagin dual of ZNk. The linear duality between
ZNk = B(Xk,~’) and B(X*k,~’) enables us to identify B(X*k,~’) with ZNk as
follows. Let us fix a non-trivial character of F. Then for 03B2 E B(Xt, l’) we may
define a character t/J p by the formula

The map 03B2 ~ 03C803B2 establishes the required isomorphism.

(2.3) Let G1 be the isometry group of the form (,) in Definition 2.1. Suppose
that G 1 is a member of a reductive dual pair (G 1, G’) in the sense of Howe [6]. The
groups G1, G’ will be mutual centralizers in some symplectic group Sp. In
particular G ~ G1 ~ Sp. For F ~ C there will be a non-split short exact sequence

where Z2 denotes the group with two elements and Sp is of course the metaplectic
group.

LEMMA 2.2. (i) Suppose G is of type (10) so that G’ = Om is the orthogonal group.
Then (9) splits over G if and only if m is even.
(ii) If G is of type (I1), (I3) or (I4) then (9) always splits over G.
(iii) Let G be of type (I2). Then (9) does not split over G, but the obstruction is

very mild. More precisely, let G be the inverse image of G in Sp. Then there is
a character y of G which does not factor through G. Consequently, any
representation of G either factors through G or is the tensor product of y with
a representation which factors through G.

Proof. (i) is well know. We leave it to the reader to verify that (ii) and (iii) follow
immediately from [10], Lemma 7.

NOTATION 2.3. (i) Suppose F =1= C, and G is of type (10) so that G = SP2n. We
let G be the metaplectic two-fold cover of SP2n.

(ii) In all other cases we let G = G.
Thus we have a canonical map

In all cases (I 1 )-(I4), this is just the identity map. If E is a subgroup of G we let
É be its inverse image in G. Naturally, if it so happens that E has a unique lifting to
a subgroup of G we shall use E to denote the lifted subgroup as well.

Corresponding to (4) we have
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(2.4) Finally, we shall need to comment on the exact sequence (5). Write
W = HomD(Vt, xt). Since the restriction to vt of (,) is non-degenerate, we may
identify V’ with its own linear dual via a standard procedure. Hence we have

Suppose we are given a form 03B2 ~ B(X*k, ~’), and suppose that f3 is in fact

non-degenerate on X:. The formula

defines a non-degenerate symplectic form on W. (cf. [6]). Let Sp( W) be the
corresponding symplectic group. Let G’ be the stabilizer of f3 in GL(Xk). The
action by conjugation of G(V~k). G’ on N, preserves ZNI, and therefore gives rise
to an action on W = Nl/ZNl. Evidently this embeds G(V~k). G’ into Sp(W). It is
not difficult to realize that (G(V’), G’) is essentially a reductive dual pair in Sp(W).
The word "essentially" is needed only because we have replaced On by SOm in
case (I4), and thus when G is of type (I4) the full centralizer of G’ in Sp(W) is
slightly bigger than G(V~k). In similar occasions that we shall encounter later, we
shall directly speak of (G(V~k), G’) as a reductive dual pair. In the context of this
paper no harm will be caused by this slightly loose terminology.

Let N, be the quotient group of Nk obtained by dividing ZNk by the kernel of
03C803B2. It is easy to see that N, is a Heisenberg group with center

In fact N, is naturally isomorphic to the Heisenberg group attached to the
symplectic space W. Corresponding to (5) we have the exact sequence

Section 3. The ZNk-spectrum of a unitary representation

We place ourselves in the setting of Section 2.
Suppose that Tris a unitary representation of Pk. Consider the restriction 03C0|ZN03BA. By
the direct integral theory, this restriction is determined by a projection valued
measure on ZNk. We denote this measure by I1n. Since I1n comes from

a representation of Pk it will satisfy a transformation law under the co-adjoint
action of Pk. Specifically, for a Borel set S ~ ZNk we have
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Suppose 7T is a unitary representation of G. Then it restricts to one of Pk, so the
above applies to n.
Now the subgroup G(V~k) · N k of Pk centralizes ZNk, and hence acts trivially on

ZNk. The action of GL(X*k) will factor through GL(X*k). Finally through the
isomorphism ZNk ~ B(X*k, ~’), the action of GL(X*k) via Ad* is identified with its
natural action on B(X*k, ~’). Note that a GL(X*)-orbit in B(X*k,~’) is nothing but
an equivalence class of sesquilinear forms on X: of the kind specified by ~’. If
03B2 ~ B(X*k, ~’) we let (D p denote its orbit under GL(X*k). By the rank of a form p we
shall mean the maximal dimension of a subspace of X:, upon which the
restriction of p is non-degenerate. The rank of O03B2 is defined to be that of 03B2.

Set

We clearly have

THEOREM 3.1. Let n be a unitary representation of G on a Hilbert space H. Let
03BC03C0 be the ZNn-spectrum ofn. For each orbit (9 ~ B(X:’1’), set

Then for rankf3  rG, the subspace :Yt p is invariant under 03C0(G).
Proof. As in [5] we proceed by induction on rG. Our proof however will be

somewhat shorter than the one given in [5]. Set

IfrG = r then the only rank  rG is 0. Hence rank 03B2  rG means f3 = 0. In this case
the theorem follows from [8], which says Jf 0 in fact decomposes over one
dimensional representatives of G.
Now assume rG &#x3E; r. Since r  rG  n, P, and Pn together generate G. Since Ho

is clearly invariant under n(Pn) it will be enough to show that H, is invariant by
03C0(Pp).

Let us write G 1 for G(V’). We shall look at the subgroup G1 · Nr of Fr, and
examine its representations by means of Mackey theory. Let
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Let W = HomD(V~r, X*r). Consider the character 03C8r and the Heisenberg group N,
defined in Section 2.4. We may consider t/lt as a character of ZNr/Ker 03C803C4. By the
Stone-von Neumann theorem, there is a unique irreducible unitary representa-
tion p, of N03C4, whose central character is 03C803C4. Of course we may (and do) view p, as
a representation of Nr.
According to Section 2.4, G1 may be realized as a member of a reductive dual

pair in Sp(W). In particular, we may extend our representation t/I t to a two fold
cover of G1 (i.e., the pre-image of G1 in Sp(W)) by means of the oscillator
representation. But Lemma 2.2 guarantees that we may in fact extend p, to G 1.
The extension is in general not unique, but any two such will differ by a character
of G 1. Let us fix one such extension, and denote the resulting representation of
G1. Nr by the same symbol p,. Then Mackey theory tells us that the cor-

respondence

is an equivalence between the category of unitary representations of G 1 and the
category of unitary representation of G1 · Nr, whose restriction to ZN, is

a multiple of 03C803C4.
Now return to our representation n. Since the subspace of fixed vectors of

03C0(ZNr) in H is invariant under 03C0(G) ([8] again), we may as well assume that
aV contains no fixed vectors for ZN,. Then the analysis of the preceding
paragraph shows that 03C0|G1·Nr must decompose over representations of the form
(17). Since 03C0 comes from a representation of Pr we can be more specific about this
decomposition. Note that GL(X*r) acts on ZN, = B(X*r, ~’). Under this action
B(X*, ’1’) breaks up into finitely many orbits. We have

Here the summation extends over all non-trivial orbits O’ in B(X*r, ~’), and vt is
a unitary representation of G1 ~ G1 · Nr/Nr for each 03C4 ~ O’. Although it is

irrelevant to our proof, we observe that the measure di in (18) can be described as
follows: fix i E (9’ and let G’ be the stabilizer of r in GL(X*r). Then we may identify
O’ with GL(X:)/G’. Under the action of GL(X*r) the ZNr-spectrum of 03C0 will obey
the transformation law (13). It follows that di must come from the Haar measure
on GL(Xi)/G’ by "transport of structure".

Set
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Then X1, X1* are maximal isotropic subspaces of V~r, and P 1 is the stabilizer of
X1* in G1. Write the Levi decomposition (4) for P 1 as

To further analyze (18) we must describe the action of pt(ZNn). Observe that we
have the direct sum decompositions

These enable us to write

Write X = HomD(X1*, X*r) (cf. (11)). We may view X as the isotropic subspace of
W consisting of homomorphisms which vanish on X1 EB V’. According to [4],
there will be a Hilbert space IF, such that 03C103C4 can be realized on

the space of F-valued functions on X with square integrable norm. This is the so
called mixed model realization of p,. In this model the action of ZNn can be
described as follows. First

If z’ E ZN 1 - B(X1, ~’) then the composite x z’. x* lies in B(Xr, ~’) (cf. (6), (7)). We
have

The next lemma follows directly from these formulas.

LEMMA 3.2. Define a form Pt E B(X*, ,11’) by requiring that X’* is in its radical
and the restriction of Pt to X* is i. Then the ZN"-spectrum of 03C103C4 is concentrated on
the Q-orbit of 03B203C4.
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Corresponding to (18) we have a decomposition

where H03C4 denotes the Hilbert space on which 03BD03C4 acts. Our aim is to get a similar
decomposition for Jep. Suppose 03B2’ e B(X1*, f1’) and O03B2’ is its orbit under GL(X1*).
Define the subspace (H03C4)03B2’ of H03C4 is analogy to (15). We may extend 03B2’ to a form on
X* by requiring X*r to be in its radical. By Lemma 3.2 the ZN,,-spectrum of

(H03C4)03B2’ 0 y03C4 will be supported on the set

Note that the group Q centralizes ZN1. Let ~ denote equivalence of forms in
B(X*n,~’). For (H03C4)03B2’ ~ y03C4 to make a contribution to Je p we must have

By Witt cancellation (cf. [20]), we see that the orbit (9 p’ is uniquely determined by
the GL(X*r) orbit (9’ to which r belongs. In conclusion we have

LEMMA 3.3. For each (9’ in (18) let (9p’ be the unique GL(X*r)-orbit with 03B2’
satisfying (23) for all T E (9’. Then

The group Gl is a classical group (Definition 2.1) of the same type as G. We
have rG1 = rG - r. Thus we may assume inductively that the theorcm is valid for
G 1. From (23) we get

The inductive hypothesis implies each (H03C4)03B2’ in (24) is a G1-module, and hence
(24) exhibits Xe, as a module for G1 · Nr. But G1 · Nr together with Pn already
generate G. This means e, is a G-module and concludes our proof of Theorem
3.1.

Section 4. Low rank representations

We keep the notations of Section 3.

DEFINITION 4.1. Let 1 be an integer. The representation 03C0 is said to be of
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rank  1 if the support of its ZN n -spectrum 11ft is contained in the set of

03B2 ~ B(X*, il’) with rank f3  l. It is said to be of rank 1 if it has rank less, but not
strictly less, than 1. Finally 03C0 is said to be of pure rank 1 if 11ft is supported on the
orbits O03B2 ~ B(X*n, ~’) with rank O03B2 = l.
For any integer l a 0 we let Gj denote the subset of the unitary dual

of G consisting of representations of pure rank 1. For an orbit ~03B2 ~ B(X*n, ~’), we
let G, be the set of irreducible unitary representations whose ZN,,7spectrum is
supported on O03B2. Theorem 3.1 implies that the whole unitary dual G is a disjoint
union

The purpose of this section is to give a description of G, when rank fi  rG.
We start with the description of Go . By the theorem of Howe and Moore [8],

this is precisely the set of characters of G.

LEMMA 4.2. Assume n &#x3E; 0. Let [G, G] be the commutator subgroup of G
(a) I n cases (I0) and (I1) the group G is perfect. That is G = [G, G].
(b) Suppose G is of type (I2), so that D is a quadratic extension of F. Let D1 be the

group of norm one elements in D. Then taking determinants gives rise to an
isomorphism

In other words, [G, G] is precisely the special unitary group.
(c) Suppose G is of type (13)’ If F = R then G is a perfect group. Otherwise we have

an isomorphism

(d) Let G be of type (14), i.e. G = SOm. Assume m  3. Then taking the so called
spinor norm gives us an isomorphism

Proof. These statements are classical results. Here we merely remark that in
case G is of type (I3) the results of [1], [23] and [24] imply an isomorphism

But it is well known that [D B D ] coincides with the norm one subgroup of D .
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So taking the standard norm N gives us an isomorphism

But

Hence (27) follows.

THEOREM 4.3. Let n be a unitary representation of G of pure rank 1  r,,, then

n(P,) and n(G) generate the same Von Neumann algebra. In particular, n is

irreducible if and only if n Ipl is irreducible. If n’ is another representation of pure
rank 1 then n and n’are equivalent if and only if nlp, and 03C0’ are equivalent.

Proof. For 1 = 0, we consider P, to be G itself, so there is nothing to be proved.
Assume 1 &#x3E; 0. Let r and other notations be as in the proof Theorem 3.1. For each
0 ~ 03C4 E B(X*r, ~’) we let rot denote the restriction of p, to G1. According to (18) we
have

where each 03BD03C4 is a representation of G1 of pure rank 1 - r  rG1.

First, let us take l = r. Consider G(Vr). Since G(V,) and P, together generate G,
it will be enough to show that the algebra generated by n( G(Vr» is contained in the
one generated by n(P,). Set

It sufhces to show that 03C0(Qr) and 03C0(G(Vr)) generate the same algebra.
Since r = 1  rG, G(Yr) will be conjugate to a subgroup of G1. Let g E G be an

element realizing this conjugation, and let g be its image in G. Set

Then Q’ is the parabolic subgroup of G(Ur) = g · G(Vr)g-1 preserving Y*r. It is
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enough to show that 03C0((Q’r) and 03C0(G(Ur)) generate the same algebra. But then in
view of (29), it sufhces to prove this statement with n replaced by the

representations v03C4 and 03C903C4 in (29).
Since 1 = r, each vr is a rank 0 representation and therefore decomposes over

characters of G1([8] again). The question for Vt then comes down to whether
a character of G(Ur) is determined by its restriction to Q-’. That the answer is
affirmative is an immediate consequence of Lemma 4.2 (applied to G(Ur)). For
example, suppose G is of type (14). Then the Levi component of Qr is isomorphic
to GL2 (F), and Qr may be realized as matrices of the form

with A ~ GL2(F). The image of such an element of Qr under the map (28) is
represented by det(A). (cf. [20], Chapter 9, Example 3.5). It follows that taking
spinor norm maps Qr surjectively onto F /F 2. This verifies our assertion for
type (,4). The other cases are similar but easier, and are left to the reader.
Next we turn to the representation co,. Let G’ be the stabilizer of i in GL(X*) (as

in the proof of Theorem 3.1). According to Section 2, (G1, G’) is a reductive dual
pair. We shall call 03C903C4 the oscillator representation associated to (G1, G’). Similarly
(G( Ur), G’) is a reductive dual pair. Let 03C9’03C4 be the oscillator representation
associated to the pair (G(Ur), G’). By the "functorial" property of the oscillator
representation with respect to direct sums of symplectic spaces, the restriction
03C9r|G(Ur) is a multiple of 03C9’03C4|G(Ur) (cf. [5]). Consequently we only need to prove that
03C9’03C4(Q’r) and 03C9’(G(Ur)) generate the same algebra. But the L2-version of Howe’s
duality conjecture states (in our situation) that ay(G(Vr)) generates precisely the
centralizer of 03C9’03C4[(G’). Howe [4] has proved a some what more precise version of
his conjecture for stable dual pairs, which in the case that we are considering here
says that 03C9’03C4(Q’r) already generates the full centralizer of 03C9’03C4[(G’). It follows in

particular that 03C9’03C4(Q’03C4) and 03C9’03C4(G(Ur)) generate the same algebra. This finishes the
proof of our theorem in the case 1 = r.

From now on we assume 1 &#x3E; r. Then P, and.P, together generate G. In fact the
group G 1 together with P, already generate G. Set Q = G 1 n Pl . The representa-
tion 03BD03C4 of G 1 in (29) is of rank

We may inductively assume that our theorem is true for G1. This implies vz(Q)
and 03BD03C4(G1) generate the same algebra. But Q ~ Pi, so the algebra generated by
03BD03C4(G1) is contained in the one generated by Vt(P,). Now we have Nr ~ Pl. The
representation p, is already irreducible on Nr, and is simply extended to G1. Thus
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the algebra generated by 03C903C4(G1) = 03C103C4(G1) is certainly contained in the algebra
generated by p,(N,). Putting things together, we see that (29) implies the algebra
generated by n(G1) is contained in the one generated by 03C0(Pl). This concludes the
proof of our theorem.

REMARK. By inspection of the above proof we see that the theorem remains
valid if we replace Pl by any Pk with k &#x3E; 1. Indeed this is the version which was

proved in [5] for G = SP2n. The reason for this seemingly more general statement
is as follows. Consider the subgroup

of Pl. If n is a representation of G of pure rank 1  rG, then n is largely determined
by the restriction naz already. (It is in the case when G is a perfect group). But for
any k  1 we clearly have H1 ~ Pk.

Fix a GL(X*n)-orbit O03B2 ~ B(X*n, ~’). Let 1 = rank 03B2 and assume 0  1  rG.
Theorem 4.3 implies that restriction gives us an injection

We may of course assume that the restriction of f3 to X* is non-degenerate. Set

LEMMA 4.4 Let 7r c- G,. Then the ZN,-spectrum of n is supported on the
GL(X*l)-orbit of y.

Proof. The set of 03B2’ ~ O03B2 which restrict to degenerate forms on X*l is

a sub-variety of O03B2 of positive codimension. On the other hand if 03B2’ ~ O03B2 restricts
to a non-degenerate form on X* then we clearly have 03B2’|X*l ~ y. The lemma
follows immediately from these two observations.
For 03C0 ~ G. we may now describe the restriction nlpl according to Mackey

theory. Let 03C803B3 be the character of ZNl defined by (8). Let J be the isotropy group
of 03C803B3 in Pl with respect to the co-adjoint action. Then Mackey theory tells us that
we must have

where L 1 is an irreducible unitary representation of J which restricts to a multiple
of 03C803B3 on ZN,. Let G’ be the stabilizer of y in GL(X*l). It is clear that
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In complete analogy with the analysis in the proof of Theorem 3.1, there will be
a unique irreducible unitary representation py, of Nl, with central character 03C803B3.
Let W = HomD(V~l, X*l). According to Section 2, W is a symplectic space and
(G(vt), G’) is a reductive dual pair in Sp(W). Let us first assume G is not of type
(10 ), or it is of type (I0) but F = C. Let G’ be the pre-image of G’ in Sp(W). The
group G(V~l) x 6’acts on N, via its projection to G(V~l) · G’. Thus we can form the
semi-direct product

There is an obvious projection J ~ J. Let Z2 Z J be the kernel of this projection.
It will be convenient to describe L 1 as a représentation of J trivial on Z2. The
restriction to G’ of the oscillator representation of Sp(W) extends p. to G’ . The
extension is such that the subgroup Z2 will act according to (a multiple of) its
unique non-trivial character, which we denote be e. According to Lemma 2.2, we
may further extend py to J. Fix one such extension. From now on p, is considered
a representation of J. Since the restriction of 03C41 to ZN, is a multiple of 03C803B3, we must
have

where 03C31 is an irreducible unitary representation of G(Yl ) x G’, and is extended
to J by making it trivial on Nl. We have of course

where x is a representation of G(V~l) and J is a representation of G’ . Let G’(E) be
the subset of the unitary dual of G’ consisting of representations which restrict to
e on Z2. Since i 1 comes from a representation of J, we must have (JE G’(03B5).
Furthermore, an argument precisely analogous to the one leading to Lemma 3.3
shows that the representation x of G(V~l) is of rank 0, and hence must be
a character. In conclusion we have obtained an injection

which takes 03C0 ~ G p to the pair (x, 6) as above.

REMARK. Except when G = SOm with m odd, the set G’(03B5) is identified with the
unitary dual of G’ in an obvious way.

Next assume G is of type (10). This case is of course spelled out in [5]. From [5]
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we know that G03B2 consists of representations which factor through G if and only if
1 is even. The extension of 03C103B3 to J can be chosen in such way that its restriction to
Z2 ~ J is trivial or not according as 1 is even or not. There is an injection

which takes 03C0 ~ G, to (JE G’, so that with r 1 as in (31), we have

(Note that since G(vt) is a perfect group, the character x must be trivial here.)
The relations implied by (31), (34) and (37) show that the group G(V~l) plays

a quite insignificant role in determining n. More precisely we have

THEOREM 4.5. (a) Let H, = GL(X*l) · Nl. Suppose 03C0 ~ G p, then the restriction
03C0|Hl is already irreducible. (b) Suppose G is not of type (12). Let n’ E C, be another
representation such that 03C0|Hl ~ 03C0’|Hl. Then there is a character X of G, such that
03C0’ ~ ~ ~ n.

Proof. According to the preceding analysis we have

The space of the induced representation on the right consists of functions from
P, to the space of 03C3 ~ 03C103B3, which transform on the left by J according to
(x 0 Q) (g) py. In particular, they transform on the left by J1 = G’ Ni according to
the representation (g) py. It is immediately seen that restriction from P, to Hl is
an isometry onto the space of Ind71(u ~ 03C103B3), and intertwines the action of Ai.
Since Indf1’(u ~ p.) is evidently irreducible for Hl, the first statement of the
theorem follows.

From Lemma 4.2 we see that x can be extended to a character of G, which we
still denote by x. Let x -1 J be the twist of Q by ~-1|G’. From (38) we have

If G is of type (I0) or (I1) the only character of G is the trivial one. If G is of type
(7g) or (,4) then the restriction of X to G’ must be trivial. Hence the second
statement of the theorem follows from (39).

COROLLARY 4.6. Suppose G is of type (I0) or (I1 ); or of type (I3) with F = R; or
of type (14) with F = C. Let 03C0 be a unitary representation of G of pure rank 1  rG.
Then x(Hi) and 03C0(G) generate the same Von Neumann algebra.

Proof. For G as specified in the statement, the group G is perfect. (cf. Lemma
4.2) Hence the result follows from Theorem 4.5.
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We are ready to show that the maps (35), (36) are in fact surjective. This will use
results from [16]. Observe that the groups G and G’ evidently form a reductive
dual pair. In the statement of the next theorem, we do not assume 1  rG. The set

G03B2 and the group G’, etc., are certainly defined even if 1 = rG. However when
1 = rG the group N, may sometimes be abelian, so that N, = ZNl. In such case we
let p. denote the character 03C803B3. The relation 1  rG implies that the dual pair (G, G’)
is in the so called stable range [4]. In [6] Howe conjectured a relationship
between admissible representations of certain two-fold covers of G and G’. This is
called Howe’s duality correspondence in the literature. The covering groups
involved in the duality correspondence are of course not necessarily our G and G’ .
But Lemma 2.2 shows that there exists a slight modification, so that Howe’s
correspondence may be thought of as expressing a relationship between
representations of G and G’. With these understood, the following is then a simple
reformulation of the main result of [16].

THEOREM 4.7. Suppose G is not of type (lo) (resp. of type (I0)). To each 6 E ê"(E)
(resp. (1 E G’), there is a representation 03C0(03C3) E G,, which is associated to 6 by means
of Howe’s duality correspondence, such that

Comparing (40) with (39), we obtain

THEOREM 4.8. Suppose rank 03B2 = 1  rG. Then each 03C0 ~ Gp is of the form

where x is a character of G and u E (;’(e). (a E G’ when G is of t ype (I0)). In particular,
the maps (35) and (36) are bijective.

Section 5. Distinguished representations

Having described the set 03B2 for rank fl  rG, it is now natural to ask whether 03B2
admit a similar description when rank 03B2 = rG. Let us introduce the following.

DEFINITION 5.1. A unitary representation of G is called distinguished, if its
ZN"- spectrum is supported on a single GL(X*n)-orbit of rank rG.

Suppose, for example, G is of type (I4). Then a distinguished representation of
G is simply a unitary representation of maximal pure rank rG. Such representa-
tions are of course not so "distinguished" at all. One way to remedy the situation
is perhaps to put more restrictive conditions in Definition 5.1, as was for example
done in [17]. We shall not enter into this here. Instead we would like to discuss
the validity of the following
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STATEMENT 5.2. Suppose 03C0 is a distinguished representation of G. Then 03C0(Pn)
and 03C0(G) generate the same Von Neumann algebra.

As we have indicated, this statement is certainly false in many cases.

Nevertheless we have

PROPOSITION 5.3. Let r be 2 or 1 according as G is of type (14) or not. If
Statement 5.2 is true for rG = r, then it is true in general.

Proof. Let O03B2 be the GL(X*)-orbit on which the ZN -spectrum of 03C0 is

supported. Let :Yf be the space of 7L The assumption is that rank j3 = rG, and

H03B2 = A.
Since the statement is assumed to be true for rG = r, we may suppose rG &#x3E; r.

We review the proof of Theorem 3.1. The argument leading to (18) certainly
does not depend on the assumption that rank 03B2  rG. Thus, with notations as in
the proof of Theorem 3.1, we have

Since Jf = Jfp by our assumption, Lemma 3.3 implies that 03BD03C4 is a distinguished
representation of G1. We may inductively assume that Statement 5.2 is true for
G 1. That is to say Vt(G1) and vz(P" ~ G1) generate the same Von Neumann
algebra. But p, is an irreducible representation of Nr extended to G1 · Nr. So the
algebra generated by 03C103C4(G1 · Nr) is certainly contained in the one generated by
pt(Nr). It follows from (41) that the algebra generated by n(Gl) is contained in the
one generated by 7r(PJ. Since G1 and Pn together generate the whole group G, the
proposition follows.
The next result shows that Proposition 5.3 is not always empty.

PROPOSITION 5.4. Let F be a non-anchimedean local field and G = SP2n. Let
p be the residue characteristic of F.

(a) Statement 5.2 is valid for G if p :0 2.
(b) Ifp = 2 then a distinguished representation of G factors through G if and only

if n is even.
Proof. Consider (a) first. By Proposition 5.3 it suflices to check the case when

n = 1. And this comes down to an inspection of the known classification results
for the unitary dual of G = SL(2). From [2] [18] and [22] we see that for each
non-zero f3, the set Gp consists of three representations. One of them factors to
G and is supercuspidal. The other two are just the two irreducible components of
the oscillator representation of G associated to the character 03C803B2. (To put it

another way, they are provided for by the procedure prescribed by Theorem 4.7).
Since these three representations obviously have pair-wise inequivalent restric-
tions to P1, the assertion of part (a) follows.
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For part (b) we use induction on n. Suppose n = 1. Then a result of [12] implies
that no supercuspidal representation of SL2 is distinguished, while the analysis of
[2] on induced representations shows that no non-supercuspidal representation
of SL2 is distinguished. Thus there are no distinguished representation of SL2 and
this is precisely the content of (b) when n = 1.
Now let us assume n &#x3E; 1, and look at the decomposition (41). We may assume

the result is valid for G 1. As we have seen before, each 03BD03C4 in (41) is a distinguished
representation of G1. So it factors through G1 if and only if n - 1 is even. But it is
well known that the restriction of p, to the kernel of the projection G1 ~ G1 is the
non-trivial character. It follows from (40) that 03C0|G-1 factors through G1 if and only
if n factors through G. This proves part b).

Together with Theorem 4.7, the above proposition yields

COROLLARY 5.5. Suppose F is a non-archimedean local field of odd residue
characteristic, and G = SP2,, Fix an orbit O03B2 g B(X:, fi’) of fudl rank n. Let 03C0 ~ G03B2.
If n is even we assume 03C0 factors through G; if n is odd we assume n does not factor
through G. Then there is a a E G’, such that n = 03C0(03C3) as in Theorem 4.7.

REMARK. (i) There is no reason to expect part (a) of Proposition 5.4 to fail
when p = 2. (ii) Proposition 5.4 and Corollary 5.5 are the main local ingredients
for [15].
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