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Abstract. A complete classification of compact C-analytic surfaces which occurred as analytic
compactifications of Stein surfaces is given. For Stein surfaces X which admit non algebraic
compactifications, it is shown that (a) the analytic Kodaira dimension of X is - oo (b) X also carries
some affine structure and (c) all algebraic (resp. non algebraic) compactifications of X are birationally
(resp. biholomorphically) equivalent provided X ~ C* x C*. Throughout, analytic surfaces will
mean 2-dimensional connected C-analytic manifolds. Purely 1-dimensional C-analytic spaces will be
referred to simply as analytic curves. Furthermore, all compact analytic surfaces are assumed to be
minimal [6], i.e. free from exceptional curves of the first kind.

1. Structures of compactifiable Stein surfaces

DEFINITION 1. Let X be a non compact analytic surface. A compact analytic
surface M is said to be a compactification of X if there exists a C-analytic
subvariety r c M such that X is biholomorphic to MBr. Furthermore, M is said
to be an algebraic compactification (resp. a non algebraic compactification) if M is
an algebraic surface (resp. a non algebraic surface). X is called compactifiable if
X admits some compactification M.

PROBLEM 1. Let M be a compactification of some Stein surface X (i.e. 2-
dimensional C-analytic subvariety in some CN). What analytic structures

M might be equipped with?

REMARK 1. Since X is Stein, one can easily check that 0393 is a connected compact
analytic curve.

Now a complete answer for Problem 1 is provided by the following:

THEOREM 1. [3] Let M be a compactification of some Stein surface X and let
r := MBX. Then M is either (i) algebraic.

(ii) b, = 1, b2 = 0, M admits no non constant meromorphic functions and con-
tains at least one compact analytic curve.

or (iii) b, = 1, b2 = n  1 and M contains at least one compact analytic curve.
(Here bl (resp. b2) denoted the first (resp. the second) Betti number for M)

REMARK 2. (a) For compact analytic surfaces with bl = 1 and b2  1, it
follows that M admits no non constant meromorphic functions.
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(b) For compact analytic surfaces M with b, = 1 and without non constant
meromorphic functions, it is known [6] that M contains only finitely many
compact connected analytic curves. Since X is Stein, one can check that r is the
only compact curve in M. Furthermore it follows from [6] that, for the option
(ii), r is irreducible; on the other hand it follows from [la.b], for the option (iii),
r consists of exactly n irreducible components.

DEFINITION 2 [6]. A compact analytic surface M is called a Hopf surface if
its universal covering is biholomorphic to C2B{0}. A Hopf surface is called non
elliptic if it does not contain any non constant meromorphic functions.

Interestingly, the alternatives (ii) and (iii) in Theorem 1 indeed occurred:

EXAMPLE 1. Let Mi be a non elliptic Hopf surface containing exactly one non
singular elliptic curve r[6]. Then one can check that X 1:= M1B0393 is a Stein
surface (see Remark 4 below); in fact, X1 is biholomorphic to C* x C*.

EXAMPLE 2. Not until 1978, a first example of compact analytic surface M2
with bl = b2 = 1 containing exactly one compact analytic curve r was explicitly
exhibited [5]; precisely r is a rational curve with an ordinary double point and
r 2 = 0. Furthermore, X 2 := M2Br is Stein; in fact, X 2 is biholomorphic to an
affine C-bundle of degree -1 over some non singular elliptic curve A (see
Proposition 3 below).

On the other hand, X 1 (resp. X 2 ) also does admit an algebraic compactifica-
tion, P 1 x P 1 (resp. a P 1-bundle over A). In view of this strange phenomenon, it
is natural to raise the following:

QUESTION 1. Let X be a Stein surface.
If X admits a non algebraic compactification, does X always admit some
algebraic compactification?

Notice that the converse to question 1 is false; in fact, the only compactifica-
tions of C2(resp. C x C*) are the algebraic ones! [10] [11].

2. Existence of compactifications

Our question 1 is motivated by the following:

PROBLEM 2. Let X be a Stein surface.
If X is compactifiable, does X always admit some algebraic structure?

We are now in a position to exhibit an explicit example of a non elliptic Hopf
surface alluded to in Example 1:

Let G be the subgroup of GL(2, C) generated by
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with 0  |03B1|  1. One can check that [6]

(i) G is a properly discontinuous group with no fixed points on C2B{0}.
(ii) H03B1 := C2B{0}/G is a compact analytic surface without any non constant

meromorphic functions, with b, = 1 and b2 = 0.
(iii) Let x := (z, w) E C2 and let Il: C2B{0} ~ H03B1 be the natural projection map.

Then the punctured line C2B{0} n {w = 0} is G-stable and hence is mapped
by II onto a non singular elliptic curve 039403B1 := C*/(a) which is the only
compact analytic curve in H03B1.

REMARK 4. [3] Let us use the same notations as in Definition 2 and let us
consider the following holomorphic map:

03A6: C2B{w = 0} ~ C* x C*

(z, w) H [exp(203C003B1iz/w), w-1 exp(03B1z/w.log 03B1)]

Now one can check that:

(i) 4Y is a well defined surjective map.
(ii) 0(x) = 0(x’) iff x’ = gk(x) for some k.

Hence (D induces a biholomorphism H03B1B039403B1 ~ C* x C*.
Also it follows from the construction that

PROPOSITION 1. H03B1 is biholomorphic to H, iff a = p.
In general non elliptic Hopf surfaces are characterized by:

PROPOSITION 2 [6]. Let M be a compact analytic surface with bl = 1, b2 = 0
and without any non constant meromorphic functions. Let us assume that

M contains at least one compact analytic curve. Then M is biholomorphic to some
non elliptic Hopf surface.

Now for some fixed integer n &#x3E; 0, a E C with 0  |03B1|  1 and t := (to,..., tn) e
C", Enoki [la] constructed compact analytic surfaces, denoted by Sn,03B1,t which
have the following intrinsic properties: 

(i) b 1 = 1 and b2 = n.
(ii) Sn,03B1,t contains a compact analytic curve, denoted by Dn,03B1,t with (Dn,03B1,t)2 = 0.

and

(iii) Sn,03B1,tBDn,03B1,t =: An,03B1,t has a structure of an affine C-bundle over some non
singular elliptic curve 039403B1:= C*/03B1&#x3E;.

DEFINITION 3. Sn,03B1,t are called parabolic Inoue surfaces. Meanwhile An,03B1,t will
be referred to as their associated affine C-bundles. 



4

REMARK 5. In the special case where n = 1 and t ~ 0, D1,03B1,t is a rational curve
with an ordinary double point and S1,03B1,t is exactly the compact analytic surface
alluded to in Example 2.
Now parabolic Inoue surfaces are characterized by the following result:

THEOREM 2. [la] Let M be a compact analytic surface with bl = 1 and b2 = n.
Now let assume that M contains a divisor D ~ 0 with D2 = 0.

Then M is biholomorphic to Sn,03B1,t and D = rDn,03B1,t for some 0  |03B1|  1, t ~ Cn
and reZ.

Our main focus on certain of these Sn,03B1,t stems from the following
PROPOSITION 3. If t ~ 0 then Sn,03B1,t contains exactly one compact analytic curve.

Proof. Let E be an irreducible compact analytic curve in Sn,03B1,t other than any
irreducible components of Dn,03B1,t. Then 039E ~ Dn,03B1,t. Since the first Chern class of
Dn,«,t is zero, one has, by considering the intersection number, that E n Dn,03B1,t =
0. Since Sn,a,t does not have any non constant meromorphic functions,
039E2 = m  0. Furthermore, by construction, Sn,03B1,tBDn,03B1,t =: An,03B1,t admits an

algebraic compactification M which is a P 1-bundle over some non singular
elliptic curve 039403B1:= C*/03B1&#x3E;. Now let r := MBAn,«,t, it follows from [la] that
r2 - n. Since H2(M, Z) is generated by E and F, the fibres of M, one has
E = ah + bF. By construction 039E.0393 = 0 and 039E.F  0, this will imply, by some
tedious calculation, that

Therefore E is a section of the P 1-bundle M and hence of An,03B1,t. Consequently
t = 0. Q.E.D.

We are now in a position to provide a positive answer for Problem 1 as well as for
Question 1.

’ THEOREM 3. Let X be a given Stein space. Then X is compactifiable iff X admits
some algebraic structure.

Proof. (a) If X is algebraic it follows readily that X is compactifiable (see e.g.
[2])

(b) So let us assume that X is compactifiable and let M be its compactification
with r := MBX and let A:= [aij] be the intersection matrix determined by the
irreducible components 0393i of r. It follows from Theorem 1 that M has three

possibilities:

(i) If M is of type (i), certainly X is algebraic.
(ii) If M is of type (ii), one has, in view of Proposition 2 that M is a non elliptic

Hopf surface. Following remark 2(ii), one can check that X = MB0393 ~
C* x C* which certainly carries some affine algebraic structure.
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(iii) If M is of type (iii), it follows that A is negative semidefinite since M does not
have any non constant meromorphic functions (see remark 2). Furthermore,
since X is Stein, in view of Hartogs theorem, A cannot be negative definite
[3] [12a]. Therefore A is singular, consequently one can find a divisor
D c M supporting on r such that D2 = 0. Hence Theorem 2 and Proposi-
tion 3 tell us that, for some a E C, t E C" with t ~ 0, X = MB0393 ~ Sn,03B1,tB
Dn,03B1,t =: An,03B1,t which is an affine C-bundle over some non singular elliptic
curve. Consequently, again X does admit some affine algebraic structure.

Q.E.D.

REMARK 6. (i) A proof of Theorem 3 given in [12b] was incomplete.
(ii) For t ~ 0, An,03B1,t is an affine surface.

(iii) In contrast with the case where t ~ 0, Sn,03B1,0 contains exactly two disjoint
connected compact analytic curves [1b]:
(a) D",«,o which consits of n irreducible components, and (b) E, a non singular
elliptic curve with E2 = -n. Furthermore, X : = Sn,03B1,0BDn,03B1,0 is a strongly
pseudoconvex surface; in fact X is holomorphic line bundle over E such that
the first Chern class of X is equal to - n (see [12a.b.c])

(iv) S1,03B1,0 was first constructed by Inoue in 1974 (see e.g. [la] [5])

3. Uniqueness of compactifications

At this stage the natural question is to inquire about the uniqueness of
compactification for Stein surfaces. However, in view of the results in section 1,
our question can be formulated in a precise manner as follows.

PROBLEM 3. Let Mi (i = 1 or 2) be two algebraic (resp. non algebraic)
compactifications of some Stein surface X.
Do M, birationally (resp. bimeromorphically) equivalent?

Unfortunately, the answer is No for both cases as we shall see below.

COUNTEREXAMPLE 1. Let us consider the following construction which is
due to Serre [9].

Claim. C* x C* is biholomorphic (as algebraic group) to a non trivial
extension of an elliptic curve A by the additive group C.

In fact, let V := C2 and let V z3 U : = Zel + Ze2 be a discrete subgroup which
does not contain in any complex line where e1 := (1, 0) and e2 := (0,1 ) . Certainly
one can find a complex line D ~ C in V such that D n U = 0. Now let I: V ~ C
be a map defined by 1(e,) = 1 and 1(e2) = i, then one obtains the following exact
sequence of groups:
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It is clear that V/U is biholomorphic to C* x C* and Climl -= C/Z + Zi
which is some elliptic curve A and our claim is proved.
Now let M1 be an algebraic compactification of Xi := C* x C* such that

03931 = M1BX1 is an irreducible compact connected curve (notice that such an M 1
exists, see e.g. [10]). Then one can check that [8] the Albanese map A: Ml -+ A
maps 03931 biholomorphically onto A and M 1 has a structure of a P 1-bundle over A.
Hence one obtains a Stein surface Xi admitting two algebraic compactifica-

tions which are not birationally equivalent: one M1, a non rational surface and
the other one M2 := P 1 x P1 a rational surface.

COUNTEREXAMPLE 2. Let us consider the following two non elliptic Hopf
surfaces M 1: = Ha and M2 : = H, with 03B1 ~ fi. Let rl : = 039303B1 (resp. r2 : = 039303B2) be the
unique compact analytic curve in Ml (resp. in M2). Following Remark 4, one has

Therefore one obtains a Stein surface X2 := C* x C* admitting two non
algebraic compactifications, namely M1 and M2 which are not, in view of
proposition 1, bimeromorphically equivalent.

Our main purpose here is to investigate further these two counterexamples.
First of all few basic ingredients are in order.

Let M be an algebraic compactification of some Stein surface X, let r := MBX
which is assumed to be a divisor with only normal crossings and let KM be the
canonical bundle of M. Now let us consider a basis {~0,..., ~N} for the »vector
space V:= H°(M, O(mKM + (m - 1)0393) which gives rise to a well defined holo-
morphic map:

where N := dim. V - 1

Following [7] let N(X):= {m &#x3E; 0|dimV &#x3E; 0} and let us define

DEFINITION 4. x(X) is called the analytic Kodaira dimension of X.

REMARK 7. (i) Notice that when X is compact, i.e. r = Ø, then the analytic
Kodaira dimension coincides with the standard notion of Kodaira dimension for

compact analytic surfaces. [4]
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(ii) In the previous definition, if one replaces the vector space V by W :=
H°(M, O(m(KM + r))), then one obtains the notion of logarithmic Kodaira
dimension K(X). Since V is a subspace of W, hence

Furthermore, if we replace V by U := H°(M, O(m0393)) where r is some divisor in
M, then K(r) := x(X) is the so called litaka’s D-dimension. See [4] [7]

(iii) By definition 03BA(X) = - oo, o,1 or 2 and furthermore, one has,

Now notice that K(C* x C*) = - oo, more generally one has

THEOREM 4. Let X be a compactifiable Stein surface. Then either 03BA(X) = - 00
or 2.

Proof. Let r = U ri where ri are the irreducible components, be the compact
analytic curve in M such that X = MBr. Since X is Stein, so r is connected and
the intersection matrix (ri, 0393j) is not negative definite [3]

(i) 03BA(M) = - oo. In this case, M is a ruled surface or a P2. Now if M is a P2, it
follows from [7] that K(X) = - oo or 2. So let us assume that M is a ruled surface.
Now let 03C0: M ~ B be a surjective morphism onto some compact analytic curve B.
It is known that M ~ P(E) where E is a locally free sheaf of rank 2 on B. Let e be
a divisor on B corresponding to 039B2E, and let e:= - deg e. Now let us fix a section
039E of M with OM(039E) ~ OP(E)(1) and let us denote the fibre of M by F. It is shown [2]
that

From now on let us denote by C an irreducible compact curve in M such that
C ~ 039E and F. Since H2(M, Z) is generated by E and F, one can write

where a, b E Z and = stands for numerical equivalent. Now in view of (*) and (#)

Case 1. For e &#x3E; 0, one has (see [2] Prop. V.2.20) a &#x3E; 0, b  ae.

(a) If for at least one i, one has ri = C, it follows from (§) that r2 &#x3E; 0; hence
one can find integers {ai} such that D2 &#x3E; 0 where D:= Y-,a,F,; but X does not
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contain any compact curve, so D is ample and X is affine and we are done by
Proposition 4 below.

(b) Otherwise, one must have ri = E for some i and 0393j = F for all j ~ i. Then
certainly K(X) = - oo .

In fact, since KM ~ - 2E + nF (see e.g. [2]) and since 0393 ~ 039E + pF, hence
O : = KM + r = - E + kF for some integers n, p and k. Hence if 03BA(X)  0 one
can find an effective divisor D which is linearly equivalent to m0 for some m &#x3E; 0;
it will follow that D · F = - m  0 which is a contradiction since F2 = 0.

Consequently x(X) and hence in view of ( * ) of Remark 7, 03BA(X) = - oo

Case 2. For e = 0, one has ([2], loc. cit.) a &#x3E; 0 and b  0

(a) If b &#x3E; 0, then r 2 &#x3E; 0; consequently X is affine and we are done by
proposition 4 below.

(b) If b = 0 and r is irreducible then 03932 = 0.
Now if F * ’-z then, since F - E = 0, X := MBi’ is not Stein. Hence one must

have r = E and the same argument as in Case 1 (b) will tell us that K(X) = - oo .
On the other hand if r is reducible, then certainly 03932 &#x3E; 0; consequently X is

affine and we are done again in view of Proposition 4.

Case 2. For e  0, one has (see [2] Prop V. 2.21)
either (i) a = 1, b  0.
Now if b &#x3E; 0, it follows from (§) that r2 &#x3E; 0 and we are done by Proposition 4.
On the other hand, if b = 0, (#) tells us that r is actual a section of M. Then the

argument in Case 1(b) tells us that 03BA(X) = - ~
or (ii) a  2, b  1 2ae.

Claim. If IF is irreducible then b -lae cannot occur.
In fact, if it does; then let Y = a’03A3 + b’ F with b’ = 1 2 a’e. Consequently
r Y= 0, i.e. there exists a compact analytic curve Yin X which is not possible
since X is Stein. Hence our claim is proved.
On the other hand if r is reducible then 03932 &#x3E; 0, consequently X is affine and

we are done.

Now for b &#x3E; tae, it follows from (§) that r is ample and we are done in view of
Proposition 4.

(ii) If 03BA(M)  0, then it follows from [12c] (Corollary 3) that K(X) = 2.
Q.E.D.

On the other hand, in contrast with the Counterexample 2, one has

THEOREM 5. [lb] Let Sn,03B1,t(resp. An,03B1,t) and Sm,03B2,s (resp. Am,03B2,s) be two given
parabolic Inoue surfaces (resp. their associated affine C-bundles). Then Sn,a,t is
biholomorphic to Sm,p,s iff and Am,p,s are biholomorphically equivalent.

In retrospect, in view of these results, it follows that the Counterexamples 1 and
2 are in some extent unique; in fact, one has
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THEOREM 6. Problem 3 admits an affirmative answer provided Mi are not ruled

surfaces (resp. not non elliptic Hopf surfaces).
Proof. (i) Let Mi (i = 1 or 2) be two algebraic compactifications of some Stein

surface X. Following Theorem 4, 03BA(X) = - oo or 2. However, if K(X) = - oo,
then in view of (**) in Remark 7, 03BA(Mi) = - ~ ; therefore, Mi are ruled surfaces
[6] which are excluded by our current hypothesis.
Now if K(X) = 2, it follows from [7] that Mi are biholomorphic.
(ii) Let Mi be two non algebraic compactifications of some Stein surface X and

let ri be the compact analytic curves in Mi such that X = MiBri. In view of
Theorem 1 and our hypothesis, Mi are parabolic Inoue surfaces. But MiBFi are
biholomorphic as affine C-bundle. Hence it follows, from Theorem 5, that Mi are
biholomorphic. Q.E.D.

4. Open questions

In order to complete Theorem 4 it remains for us to establish the following:

PROPOSITION 4. Let X be an affine surface. Then K(X) = - o0 or 2.
Proof. Let us use the notations of definition 4. If N(X) = 0 for any m, then

certainly K(X) = - oo . Otherwise, let us assume that there exists an mo such that,
for m  mo

Since X is affine, one can assume that r is ample. Since

where D : = 2mKM + 2(m - 1 )r. Hence in view of the hypothesis (*) with m  mo,
D is linearly equivalent to some effective divisor, i.e. D + 0393  r. Since r is ample,
therefore x(2mKM + (2m - 1)0393)  x(r) = 2. Consequently K(X) = 2. Q.E.D.

REMARKS. Notice that Proposition 4 as well as Theorem 4 are false if one
replaces the analytic Kodaira dimension by the logarithmic one. Here we would
like to exhibit few concrete examples in order to illustrate the main difference
between these two concepts.

(a) Let us use the same notations as in counterexample 1 and let X : = C * x C *.
Now if M, is its compactification, then it follows from the proof of Case 1(b) in
Theorem 4 that K(X) = - oo. On the other hand, if M2 was its compactification,
then x(X) = 0 (see (b)(ii) below). Meanwhile, K(X) = - oo in either cases. This
shows that logarithmic Kodaira dimension is not even biholomorphic
invariant; meanwhile the analytic Kodaira dimension is indeed bimeromorphi-
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cally invariant [7] which is quite suitable within the framework of analytic
compactifications.

(b) Let r c P2 be a compact analytic curve and let X := P2Br be the Stein
(and even affine) surface. Let us consider the following cases (see [4] and [7])

(i) if r is a union of three lines which meet exactly at one point, then
K(X) = K(X) = - oo.

(ii) if r is a union of three lines in a general position then x(X) = 0 and
03BA(X) = -~.

(iii) if r is a union of four lines with the configuration as shown by Fig. 1 then
03BA(X) = 1 and K(X) = - 00.

Fig. 1

(iv) if r is a union of 4 lines with the configuration as shown by Fig. 2 then
K(X) = K(X) = 2.

Fig. 2

Also notice that if a Stein surface admits a non elliptic Hopf surface (resp.
a parabolic Inoue surface) as its compactification, it follows from its construction
(see [6] resp. [1.b]) that X also admits an elliptic rules surface M with invariant
e  0 as its compactification such that r = MBX is a section of M with 03932 = e.
Therefore, from the argument of the Case 1.(b) in the proof of Theorem 4, we
obtain, without using Sakai’s result [7], the following:

COROLLARY 4. Let X be a Stein surface which admits a non algebraic com-
pactification. Then K(X) = - oo
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Also with similar arguments, Theorem 4 remains valid if one replaces Stein
surface by strongly pseudoconvex surface; this answers affirmatively a question
raised in [12c].
As far as the existence of compactifications is concerned, it follows from

Theorem 4 and Proposition 4, that Problem 2 can be sharpened as follows:

PROBLEM 2’. Do compactifiable Stein surfaces always admit some affine
structure?

Incidentally, in view of the proof of Theorem 3, one has:

PROPOSITION 5. Problem 2’ admits a positive answer for Stein surfaces which
admit non algebraic compactifications.

On the other hand, as far as the uniqueness of compactifications is concerned,
Theorem 6, in effect tells us that C* x C*, up to biholomorphism, is the only
Stein surface admitting non algebraic compactifications which are not bimero-
morphically equivalent.

However, regarding the situation for algebraic compactifications, Theorem
6 leaves a bit to be desired, namely

QUESTION 3. Is C* x C* the only (up to biholomorphism) Stein surface
admitting non birationally equivalent algebraic compactifications?
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