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Section 0. Introduction

Let n be an integer, n ~ 2 (mod 4) and let 03B6n = e203C0i/n, a primitive nth root of unity.
Clearly with this choice we have Çi’"’ = 03B6m for any min. Let En be the group of units
of the field Q(03B6n), Vn the subgroup of Q(03B6n)  generated by

and Un = En n Vn. Then Unis the group of cyclotomic units of Q(03B6n). It is known
that Unis of finite index in En([13]). In particular rankz Un = rank7-En =
1 2~(n) - 1.
Our goal in this paper is to provide a basis (minimal set of generators) for

Un, and to use this basis to show that U’ = Um for all mln where G =

Gal(Q(03B6n)/Q(03B6m)).
There are relations among the elements of (1).

The first one is immediate and the second one comes from the identity

It had been conjectured by Milnor (unpublished) that every relation among the
cyclotomic units is a consquence of (A) and (B), and H. Bass [1] claimed to have
proved the conjecture. After a few years, V. Ennola [2] proved that twice any
relation is a combination of (A) and (B), but not every relation is such

a combination.
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We will begin by finding a basis of the universal punctured even distribution
(A0n)+, which is the abelian group with generators

and relations

We introduce a theorem on (A0n)+ which we use later and we refer the reader to
L. Washington [5] for details.

THEOREM. Let n ~ 2 mod 4. Then there is a split exact sequence

where g(g(aln» = 1 - 03B6an mod(±03B6n) and r is the number of distinct prime factors
of n.

Section 1. Basis of (A0n)+

Let n be an integer, n ~ 2(mod 4), and pil ... p;r be its prime factorization. Let
Ki = Q(03B6peii). If pi is odd, Gal(Ki/0) is cyclic. Let ai be a fixed generator of
Gal(K;Q),’ or the corresponding element of Gal(Q(03B6n)/Q) which fixes Q(03B6n/peii).
Under the natural isomorphism 

which maps a to y : ’n H- 03B6an, we may view 03C3i as an element of (Z/nZ) , or even
a positive integer  n, relatively prime to n, since they form a set of representa-
tives. If Pi is even, Gal(Ki/Q) = (ait) where ai is a fixed élément of order 2e - 2 and
t is the element of order 2 corresponding to complex conjugation. We let
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Then we consider the 6k’s as elements of (Z/nZ)  as before.

LEMMA 1. Suppose (b, n) = 1. Then

for some c.

Proof. Let pi = p, ei = e and ui = Q for simplicity. From the relation (B1) in
Section 0, we have

But, since 6 fixes u ~ 1(mod n/pe). Thus

On the other hand, let io be such that

and let b + io(n/pe) = cp. Then (c, n) = 1 and {i0 + tpl is the set of all solutions for

as t runs through all integers satisfying 0  io + tp  pe. Hence

Let n = pi1 ... prr as before and let
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and I’n = {(i1,..., ir) ~ In satisfying one of the followingl

Note that

Let Tn be the group generated by

and let

where Td is defined similarly to Tn.

REMARK. Since the number of generators of Tn is at most #(I’n) =
1 203A0(~(peii) - 1) + 1 2, Tn  T’n is generated at most by rankZVn + 2r-1 - r
elements, which is the minimum number of generators of (A0n)+. Hence this
theorem provides a basis of (A0n)+.

Proof of theorem. By induction on r. By using the relations (A 1 ) and (B 1 ) with
m = pk, we can prove the theorem for r = 1 easily. Assume the theorem holds for
n a product of r - 1 distinct primes. It is not hard to see (A0n)+ = Tn x Tln if and
only if g(03C3i11 ... 03C3irr/n) e Tn x T’n for every (i1,..., ir) e ln. As a matter of notation,
we let
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Proof. If none

Also,

by the relation (B2) in Lemma 1. Thus gOÍ2...ir E Tn x Tn. If two of i1,...,ir-1 are
0, say i 1 - i2 = 0, use the relation (B2) again:

Since gjOi3...ir E T,, x T’n if j ~ 0 by the previous case, gooi3...ir E Tn x Tn. Then
argue similarly for the case when there are exactly three zeros, and then four zeros
and so on.

Proof. We prove when 1 = r - 1 (the proof of the rest is quite similar to this
case). We have to show git...ir-10 E Tn x T’n when 1  ir-1 1 2~(per-1r-1) - 1 and
i1, i2,..., ir-2 arbitrary.

If none of i1, i2,... ir-2 is 0, then by the definition of I’n, we are done. If only one
of them is 0, say i1 = 0, use the relation (B2) again:

Since gji2...ir-10 ~ Tn for j ~ 0, g0i2i2...ir-10 e Tn x T’n. Then prove when there are

exactly two zeros and proceed as we did in case (i).

Proof. Since case (i) treats the case ir ~ 0, we assume ir = 0 and prove
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First, we claim that

Consider

But Then by the relation
in Section 0,

by (i). Also, since

Since the left side of (*) is in Tn by Lemma 1, so is the right side. Therefore

Suppose 1 are 0, the result follows from
case (ii). Suppose only one of them, say it, is 1 2~(pett). Consider

Since gi1...il0...0 ~ Tn  T’n by (ii) and since 03A3j~0,1 2~(pett)gi1...ii0...0j0 ~ Tn  T’n by
assumption, gi1...il0...0~(pett)/20...0 ~ Tn x T’n. Then we can prove the case when
two of il+1,..., ir-1 are non zero b, then three nonzero b, and so on.

Suppose Consider
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By arguing similarly as before, we can show that every term but the first of the
right side of (**) belongs to Tn x T’. Since the left side of (**) is also in Tn x T;n,
we conclude that gi1...il03B41+1...03B4r-10 E Tn x Tn.

(iv) g03B41...03B4r-10 ~ Tn X T’n
Proof. We know that go...o = g(l/n) E Tn. If only one ôi is different from 0, say

ô 1, consider

Since every term except g(~(pe11)/2)0...0 belongs to Tn x T’n, so does

g(~(pe11)/2)0...0. Then prove the case when there are two non zeros, and so on.
This finishes the proof of Theorem 1.

Section 2. Basis of Un

Let n = pÍ1 ... prr be an integer ~ 2(mod 4) as before. To find a basis of Un, we
eliminate certain generators of T". To be precise, let

REMARK. The passage from g to g takes account of the fact that 1 - ’n is a unit
if and only if n is not a prime power. When n is a power of p, 1 - (n is a divisor of p.
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Note that

THEOREM 2. Un = ~(G1)  ~-03B6n~ where ~ : (A0n)+ ~ Vnmod~-03B6n~ is as in
the theorem of Section 0.

REMARK. Since G1 is generated by at most rankz Un elements, this theorem
provides a basis of Un.

Before we prove Theorem 2, we need several lemmas.

LEMMA 2. 2g(1/n) e G1 if n is composite.
Proof If r is even, there is nothing to prove. So we assume r is odd. Let

mi = 1 2~(peii) - 1, Mi = ~(peii) - 1 and let

and for each 1, 1  1  r, let

Then Ri + Ri+ 1 e T’n for each i = 1, 2, ... r - 1 by Lemma 1. Hence

Ro +Rr = (R0 + R1) - (R1 + R2) + (R2 +R3) - ... + (Rr-1 + Rr) ~ T’n. But
since Ro = Rr, we have 2Ro e T’n. And in the sum of Ro, every term except go...o
belongs to Tn x T’n. Therefore 2go...o = 2g(1/n) ~ Tn x T’n = G1. Q.E.D.

LEMMA 3. The given generators of G1 x G2 are linearly independent over 7L.
Proof In the proof of Theorem 1, we used the fact (0,..., 0) ~ I’n only in step

(iv). But since 2g(1/n) ~ G1 by Lemma 2, 2g03B41...03B4r ~ G1. Thus G1 x G2 is of finite
index in (A0n)+, hence cp(G1 x G2) is of finite index in Vn. Since G 1 is mapped to Un
and since G2 is mapped to nonunits, ~(G1) is of finite index in Un. Since ~(G1) is
generated at most by rankz Un elements, the generators of cp(G1) are linearly
independent. Therefore the given generators of G1 are linearly independent and
so are the generators of G1 x G2. Q.E.D.
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LEMMA 4. Let r  3 odd. Then there is a unique R ~ (A0n)+ such that

R ~ 0, 2R = 0 and R is of the form

with f(a/n) ~ 7L.
Proof. Uniqueness is immediate by Lemma 3. We prove existence by

induction on r. Suppose r = 3. Since Tor(A0n)+ ~ Z/2Z by the theorem in Section
0, there is an R ~ 0 such that 2R = 0. Since (A0n)+ = G 1 x G2 x G3, we may
write

Since 2g(1/n) ~ G1,

with h(a/n) ~ Z. Thus we may assume m = 0 or 1. But if m = 0, then

implies f(a/n) = f(1/peii) = 0 by the linear independence (Lemma 3), which forces
R = 0. Hence m = 1 and

Now apply the map 9 to both sides to obtain

Since the first two terms of the right side are units, f(1/peii) = 0 and R has the
desired form.

Suppose the lemma is true for all d less than r. For any d of the form

pei1i1cdotspeilil with 3  1  r, 1 odd, there is an element Rd ~ (A0n)+ such that
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Rd ~ 0, 2Rd = 0 and Rd is of the form.

by the induction hypothesis. Note that Ra’s are linearly independent, i.e.

Rd 1 + ... +Rds ~ 0 for any distinct choice of d,..., ds, for otherwise, g(1/d1)
would be expressed by other generators of G, x G2 x G3, which is impossible.
So we have

independent elements of Tor(A0n)+. But since

there is one more generator of Tor(A0n)+, say R 1. We can write

As in the case r = 3, we may assume c = 0 or 1. Suppose c = 0. Then

in an element of Tor(A°)+ with f(1/d) = 0 for any g(1/d) E G3. Then, by Lemma 3,

which is impossible since R1 is not in the span of Rd’s. Hence c = 1 and Ri is of the
form
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Since f(1/peii) = 0 as in the case r = 3, we get a desired element

Proof of Theorem 2. It is easy to prove if n is a prime power, so we assume n is
composite. By step (iv) in the proof of Theorem 1, it is enough to show that
~(g(1/n)) ~ ~(G1). But this is obvious by Lemma 4. Just apply qJ to R to obtain

COROLLARY 1. Suppose m and n are integers, ~ 2(mod 4), and (m, n) = 1. 7hen

where G = Gal(Q(03B6mm)/Q(03B6n)) and Umn is the subgroup of Umn fixed under the
action of G.

Proof. By Theorem 2, we can extend a basis {~1,...,~s} of Unmod~-03B6n~ to
a basis

Then since ba = b for any Q E G,

Hence

Therefore, b1 = bt = 0 and
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Section 3. Basis of Upn when pin

In this section we will show Up = U", where G = Gal(Q«(pn)/Q«(n» by extending
a basis of Un to that of Up". When p 1 n, Corollary 1 in Section 2 proves it. So we
assume pin and let n = pe11 ... prrpe be the usual prime factorization of n with
e &#x3E; 0. As before we let ai be a fixed generator of Gal(Q(03B6peii/Q)) for i = 1,..., r and
let u be a fixed generator of Gal(Q(03B6pe+1)/Q). If pi is even then we define 03C3ki as in
Section 1. For each d|n such that (d, (n/d)) = 1 and (d, p) = 1, say, d = pii ... peitit,
let T"d be the subgroup of (A0n)+ generated by

and let

Then it is easy to check that Tn is generated at most (actually, exactly by the
following theorem) by rankz Upn - rankz Un elements.

THEOREM 3. Upm = qJ(Tn x Tn x Tri ) x ~-03B6pn~.
Proof. We prove this only when p is odd. The proof for the even case is almost

the same. We will show Udpe+1 = ~(Tdpe x T d pe x T"dpe) for each d with

(d, p) = 1 (d, n/d) = 1 by induction on w(d) = number of distinct prime factors of d.
Let w(d) = 0(d = 1). By Theorem 2, it is enough to show

for 1  j  1 2~(pe+1) - 1, hence for 1  j  1 2~(pe) - 1 be definition of r;e. First
we need a Lemma.

LEMMA 5. For any j, 1  j  1 2p(pe) - 1,

Proof. Immediate from the relation (B 1 ) since
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In the left side of Lemma 5, every term except for gj(k = 0) belongs to T pe since
for 1  k  (p - 1)/2,

by the definition of T;e, and for (p + 1)/2  k  p - 1 we have

Similarly,

Since go = 1 and since

This settles the case d = 1.

Now we assume Udpe+1 = ~(Tdpe x T d pe x T"dpe) for each d with w(d)  r, and

we will show that it is also true for d = n/pe. By Theorem 2, it is enough to show
that for each d = pi:1 ... pit

for (j1,j2,...,jt,j)~I"dpe+1, but actually we will show this for all (j1,...,jt,j)~
Idpe+1 case by case.

Proof. If none of jz, 1  l  t, is 0, there is nothing to prove. Suppose exactly
one of them, say ji , is 0. Then

by Lemma 1 (with a slight modification), and the induction hypothesis. But since
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by the definition of T"dpe, g0j2...jtj ~ Tdpe X Tâpe x T"dpe. Then we can proceed as
we did in step (i) of the proof of Theorem 1.

Proof. From the relation (B 1 ), we have

We consider two cases 1  k  (p - 1)/2 and (p + 1)/2  k  p - 1 separately to
show

as in the proof of the case w(d) = 0. Thus we get the result.

Proof. Quite similar to the proof of (ii) by considering

This finishes the proof.

COROLLARY 2. Let p 1 n for n ~ 2(mod 4). Then

where G = Gal(Q(03B6pn)/Q(03B6n)).
Proof. Similar to Corollary 1.

COROLLARY 3. For any integers m and n, m, n ~ 2(mod 4), such that n|m, the
natural map

is an injection.
Proof. By Corollary 1 and 2.
Remark. As an application of Corollary 3 consider Q(03B6n), Q(03B6m) as two layers in

the cyclotomic Zp-extension of some 0«d). Greenberg’s conjecture asserts that
the p-primary part of En/Un has bounded order as n ~ ~. Assuming that
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Greenberg’s conjecture is true, Corollary 3 implies that the map (En/U n)p -+
(Em/Um)p is an isomorphism for m &#x3E; n » 0. It follows that the map in the opposite
direction induced by the norm is the zero map for m » n » 0. Therefore the

projective limit of (En/Un)p is trivial. It follows that (lim EnAim Un)p = 0 or, in
other words, p[E’n: Un] for any n where E’n = ~mnNm,n(Em).

References

1. H. Bass, Generators and relations for cyclotomic units, Nagoya Math. J. 27 (1966), 401-407.
2. V. Ennola, On relations between cyclotomic units, J. Number Theory 4 (1972), 236-247.
3. W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2)

108 (1978), 107-134.
4. W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62

(1980), 181-234.
5. L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Mathematics, Springer-

Verlag, New York, 1980.


