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Section 0. Introduction

Let n be an integer, n # 2 (mod 4) and let {, = e*™/", a primitive nth root of unity.
Clearly with this choice we have ('™ = {_ for any m|n. Let E, be the group of units
of the field Q({,), V,, the subgroup of Q({,)* generated by

{1 -8 1<a<n}, (1)

and U, = E, " V,. Then U, is the group of cyclotomic units of Q((,). It is known
that U, is of finite index in E,([13]). In particular rank, U, = rank,E, =
3¢ — 1.

Our goal in this paper is to provide a basis (minimal set of generators) for
U,, and to use this basis to show that US = U,, for all mjn where G =
Gal(Q(,)/Q(n)).

There are relations among the elements of (1).

== =40 -0) (A)

(n/m)—1

1-f= Y (=80 if min (B)
i=0
The first one is immediate and the second one comes from the identity
d-1 .
X —1=[]X-8).
i=0

It had been conjectured by Milnor (unpublished) that every relation among the
cyclotomic units is a consquence of (A) and (B), and H. Bass [1] claimed to have
proved the conjecture. After a few years, V. Ennola [2] proved that twice any
relation is a combination of (A) and (B), but not every relation is such
a combination.
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We will begin by finding a basis of the universal punctured even distribution
(A%)*, which is the abelian group with generators

al a 1 a
—-):—e-272/Z,- #0
Wz)me sz #o)

and relations

)49

(nfm)—1 »
g(ﬁ) = Z g(a -;mz) if m|n and % # 0. (By)

m i=0

We introduce a theorem on (42)* which we use later and we refer the reader to
L. Washington [5] for details.

THEOREM. Let n % 2mod4. Then there is a split exact sequence
0 (222" = (4)* —— V,[K£L,> >0,

where ¢(g(a/n)) = 1 — {5 mod(+{,) and r is the number of distinct prime factors
of n.

Section 1. Basis of (49)*

Let n be an integer, n % 2(mod 4), and p§' ... pf- be its prime factorization. Let
K; = Q(pe). If p; is 0dd, Gal(K;/Q) is cyclic. Let o; be a fixed generator of
Gal(K;Q), or the corresponding element of Gal(Q((,)/Q) which fixes Q(C,,,pi.i).
Under the natural isomorphism

(2/n2)* — Gal(Q((,)/Q)

which maps a to y:{, (3, we may view o, as an element of (Z/nZ)*, or even
a positive integer <n, relatively prime to n, since they form a set of representa-
tives. If p; is even, Gal(K;/Q) = {(d,r) where 4, is a fixed element of order 2°~ % and
7 is the element of order 2 corresponding to complex conjugation. We let

g [ f0<k<2?
P ek 2k <2
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Then we consider the ¢¥’s as elements of (Z/nZ)* as before.

LEMMA 1. Suppose (b,n) = 1. Then

o(pgi)—1 bJ’,-‘ b c .
kgo g( n ) - g<n/lff"> - g(W) € (o) &)

for some c.
Proof. Let p; = p,e; = e and g, = ¢ for simplicity. From the relation (B,) in
Section 0, we have

b\ P& (b+i(n/p?)
g("—/f) B igo g( h )

b + i(n/p®) b + i(n/p°
B+i(n/pe).m)=1 n (b+i(n/pe),m#1 n

),6 = 1(mod n/p®). Thus

But, since ¢ fixes Q((,

n/p®

b+ i(w/p)\ _ *P2t (bo*
e M
(b+i(n/p),m)=1 n k=0 n

On the other hand, let i, be such that

b+ iy(n/p°)=0 modp
b+ iy(n/p°) #0 mod p?
0<i,<p®

andletb + iy(n/p°) = cp. Then(c,n) = 1and {i, + tp} is the set of all solutions for

b+in/p°)=0 modp
0<i<p®

as t runs through all integers satisfying 0 < i, + tp < p°. Hence

bk) g () _ )
(b+i(ﬂ/§‘;),n)¢l g< n Et:g n/p g n/p° . Q.E.D.

Let n = p§! --- pe- as before and let

I =

(iys---»i) |0 <i, <3o(pi)—1 and
0<i<olp)—1 for I<r
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and I, = {(i;,...,i,) € I, satisfying one of the following}

(i,#0 and iy #0 for all I<r—1
1< <%o(p=i)—1 and i, #0 for I<r—2
<i,=i_1=0, 1<i,_, <3p(pf~3)—1 and i, #0 for I<r—

=i_y=-=i=0, 1<i; <lo(pf)—1

r
-
It
-
|
-
Ii
Ii
-
N
I
-
o,
It
o

Note that

#(In) = 3e(p) — Die(pr=i) — 1)...(@(pf") — D + 3.

Let T, be the group generated by

it .o\ .
990 ) G el
{g< " >|(l1 i,)e }

and let
T,= H T,
@n/d)=1
d#1,n

where T is defined similarly to T,.

THEOREM 1. (40)* =T, x To= [] Ta
d,njd)=1
d>1
REMARK. Since the number of generators of T, is at most #(I,) =
M(p(pf) — 1)+ 4, T,x T, is generated at most by rank,V, +2""! —r
elements, which is the minimum number of generators of (42)*. Hence this
theorem provides a basis of (42)*.

Proof of theorem. By induction on r. By using the relations (4,) and (B,) with
m = p*, we can prove the theorem for r = 1 easily. Assume the theorem holds for
n a product of r — 1 distinct primes. It is not hard to see (42)* = T, x T%if and
only if g(¢% ... o"/n)e T, x T, for every (i,,...,i,) € I,. As a matter of notation,
we let

ol... g
g T )T i
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If (iy,...,i,)€l,, then g; . €T, by definition. We prove g; , €T, x T, for
(iys-..,i,)el, — I, case by case.

@) gi,...,€T, x T, ifi, #0.

Proof. Ifnone of iy,...,i,_, is O, then (iy,...,i)€ I, so g, ; €T, Suppose
only one of iy,...,i,_, is 0, say i,. Then for j # 0, g;, ; € T, since (j,i5,...i,)€
I,,. Also,

o(pe1)—1

Z Gjiy.ir € T,

j=0

by the relation (B,) in Lemma 1. Thus g, ; € T, x T} Iftwo of i,,...,i _ are
0, say i; =i, =0, use the relation (B,) again:

e(p§—1

Z 9jois...ir € T,.

j=0

Since g;q;,. ;. € T, X T, if j # 0 by the previous case, go;,. i, € T, X T, Then
argue similarly for the case when there are exactly three zeros, and then four zeros
and so on.

(ii) For each L1<I<rg, ; €T, xT,ifi=i_,=--=i,;, =0 and
1<i <3o(pf) — 1.

Proof. We prove when [ = r — 1 (the proof of the rest is quite similar to this
case). We have to show g; ; €T, x T, when 1 <i,_, <}¢(pi~})—1 and
i1,15,...,1,_, arbitrary.

Ifnoneofi,,i,,...i,_,is 0, then by the definition of I, we are done. If only one
of them is 0, say i, =0, use the relation (B,) again:

o)~ 1

Y Gjizip0€ The

j=0

Since g;;, ;.-,0€ T, for j # 0,go:, i..,0 € T, X T,. Then prove when there are
exactly two zeros and proceed as we did in case (i).

(iti) Let 8; = 0 or 3o(p§). If (iy,...,4,) # (y,...,9,), then g, , €T, x T,

Proof. Since case (i) treats the case i, # 0, we assume i, = 0 and prove

Giy.in0 € T, X Ty when (iy,...,0,_1,0) #(dy,...,0,_1,0).
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First, we claim that g; , ,€T,x T, when i,_, #6,_,. If 1< i, <
$o(pe=t) — 1, the result follows from case (ii). Suppose ¢ P +1<i,_, <
o(pf=+') — 1. Consider

o(per)—1 to(pir) -1
Z Gis..i-1j = Giy.ip-10 T Z Gir.oip-1j
j=0 j=1
o(per)—1
+ Gis.ip-roen2 T Y G *)

i=%o(per)+1

But T32 1 9is...i,, € T, X T, by (). Let i; = i; + $¢(p{"). Then by the relation
(4,) in Section 0,

o(per)—1 3o(pir)—1
Y Giroipoy = ), gir..io_ s €T, x T,
j=%e(pgr)+1 i=1

by (i). Also, since 1 <i,—; < 3o(pr=}),

is.cir-r0ery2 = Gir..iv_ 0 € Ty X T

Since the left side of (*) is in T, by Lemma 1, so is the right side. Therefore
9iy...i,,0€ T, x T, when i, _; #6,_;.

Now we assume g; ..., 0€T,x T, when (i,...,0,_;,0)#
(01415-++50,-1,0), and we will show g; ;... . o€T,x T, if i,# 5, and
Grt1sevvslpe150)# (Oj115---50,_1,0)

Suppose 1 < i, < $o(pf) — 1.Ifallof i, ,,...i,_, are 0, the result follows from
case (ii). Suppose only one of them, say i,, is $¢(pf*). Consider

o(pgt)—1

’
2 9i,...i0...0j0...0 € T
j=0

Since g;,...i0...0 € T, x T, by (i) and since zj;éo,«}(p(pft) gi,...iw0...0,0 € T, x T}, by
assumption, Gir...0...00(pery20...0 € T, X T Then we can prove the case when
two of i;,,,...,i,_, are non zero 4, then three nonzero &, and so on.

Suppose 1o(pf’) + 1 < i, < o(p§') — 1. Consider

olper)—1

Z gi1...i151+1...5,-—1j

j=0
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1o(pir)—1
= gin...i(&xu(’r«lo + Z gix...i]&u]...ér—lj
i=1
elpir)—1
+ gil---il(’l*'l-uér—1¢(P:")/2 + Z gh...i[l’u]...d;--]j’ (**)

j=%e(pir)+1

By arguing similarly as before, we can show that every term but the first of the
right side of (**) belongs to T, x T. Since the left side of (x*)is alsoin T, x T},
we conclude that g;, 5., 5._,0€T, X Ty

(iv) 95,..5,-,0€ T, X Ty

Proof. Weknow that g, , = g(1/n) e T,. If only one §, is different from 0, say
d,, consider

e(pf)—1

Z 9jo..0 € T,.

ji=0
Since every term except gpey2)0...0 belongs to T, x T,, so does
Jips1/200...0- Then prove the case when there are two non zeros, and so on.
This finishes the proof of Theorem 1.

Section 2. Basis of U,

Let n = p{'...p¢" be an integer #2(mod 4) as before. To find a basis of U, we
eliminate certain generators of T,. To be precise, let

L [Li={©00...,0} if r=odd
"L if r = even

fa gm if n is composite
IN\n) = Ygee — gue if n=p°

(il,...,i,)elj{}

T, = group generated by {g (%)

T,= [l T, whereT,is defined similarly to T,.
din
(d,n/d)=1
d#1,n

REMARK. The passage from g to § takes account of the fact that 1 — {, is a unit
ifand only if nis not a prime power. When nis a power of p, 1 — {, is a divisor of p.
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Note that

(AT = G, x G, x G, where

G, =T,xT,

1 .
G, = group generated by {g (p_e> ‘ 1<i<g r}

1
G, = group generated by {g<pe—1—_z> ‘l >3, odd}.

THEOREM 2. U, = ¢(G,) x {—{,>, where ¢:(A2)* - V,mod{—{,> is as in
the theorem of Section 0.
REMARK. Since G, is generated by at most rank, U, elements, this theorem

provides a basis of U,,.
Before we prove Theorem 2, we need several lemmas.

LEMMA 2. 2g4(1/n) € G, if n is composite.
Proof. 1If r is even, there is nothing to prove. So we assume r is odd. Let
m; = 3¢(pf") — 1, M; = o(p{") — 1 and let

Z Z Z 9i,..., = Ro

0<it<m; 0<iz<my 0<ir<m,

and for each ;1 <1<, let

Z Y Y e iy..i, = Ry

my+1<ii<M;y m+1<ii<M; O<ij+1<mp+1 0<ir<m,

Then R; +R;,, €T, for each i=1,2,...r—1 by Lemma 1. Hence

Ry+ R, =([Ry+R,)— (R, +Ry)) + (R, + R3) — - + (R,_; + R,)e T,. But
since R, = R,, we have 2R, € T;. And in the sum of R, every term except g, o
belongs to T, x T,. Therefore 29, , = 2g(1/n)e T, x T;, = G,. QED.

LEMMA 3. The given generators of G, x G, are linearly independent over Z.
Proof. In the proof of Theorem 1, we used the fact (0,...,0) € I, only in step
(iv). But since 2g(1/n) € G, by Lemma 2, 2g;, .5, € G,. Thus G, x G, is of finite
index in (A42)*, hence p(G, x G,)is of finite index in V,. Since G, is mapped to U,
and since G, is mapped to nonunits, ¢(G, ) is of finite index in U,,. Since ¢(G,) is
generated at most by rank, U, elements, the generators of ¢(G,) are linearly
independent. Therefore the given generators of G, are linearly independent and
so are the generators of G, x G,. Q.E.D.
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LEMMA 4. Let r>3 odd. Then there is a unique Re(A2)* such that
R # 0,2R = 0 and R is of the form

w=oi)+, 2. 70)0)

with f(a/n)eZ.

Proof. Uniqueness is immediate by Lemma 3. We prove existence by
induction on r. Suppose r = 3. Since Tor(A42)* ~ Z/2Z by the theorem in Section
0, there is an R # 0 such that 2R = 0. Since (49)* = G, x G, x G,, we may
write

enfl)s 27 )

Since 2g(1/n)e G,

ufi)= 2 G)C)

with h(a/n)e Z. Thus we may assume m = 0 or 1. But if m = 0, then

0-2=37(2)a(%) + 2 1(5)o(5)

implies f(a/n) = f(1/p§) = 0 by the linear independence (Lemma 3), which forces
R =0. Hence m =1 and

=g<%)+27<§) () Zf( > <P1)

Now apply the map ¢ to both sides to obtain

o)1) o)

Since the first two terms of the right side are units, f(1/p{") = 0 and R has the
desired form.

Suppose the lemma is true for all d less than r. For any d of the form
pfircdotspgt with 3 <1 <r,l odd, there is an element R,e(A2)* such that
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R, # 0,2R, =0 and R, is of the form.

Rd=g<$)+z....

by the induction hypothesis. Note that R,’s are linearly independent, i.e.
R, + -+ +R,, #0 for any distinct choice of d,...,d,, for otherwise, g(1/d,)
would be expressed by other generators of G, x G, x Gj, which is impossible.
So we have

G>+<9*””+CIQ>=2*-¢_1

independent elements of Tor(42)*. But since
Tor(Ap)* ~(Z/22)* ",

there is one more generator of Tor(A42)*, say R,. We can write

1 a a 1 1
%) 2 TGR6) )G
' n é(a/nz):ecx n n g(1/1§:eez pi pi’
1 1
* 2o 00
9(1/a)eG3 d d
As in the case r = 3, we may assume ¢ = 0 or 1. Suppose ¢ = 0. Then
1
Ry =Y 1(5) R,
in an element of Tor(4?)* with f(1/d) = 0 for any g(1/d)€ G;. Then, by Lemma 3,
1
Rl — Zf 2 Rd = 0

which is impossible since R, is not in the span of R,;’s. Hence ¢ = 1 and R, is of the
form

e () )
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Since f(1/pf') = 0 as in the case r = 3, we get a desired element

R=R, — Zf(é)Rd.

Proof of Theorem 2. 1t is easy to prove if n is a prime power, so we assume n is
composite. By step (iv) in the proof of Theorem 1, it is enough to show that
¢(g(1/n))e ¢(G,). But this is obvious by Lemma 4. Just apply ¢ to R to obtain

= ofof2) <o (2) e

COROLLARY 1. Suppose m and n are integers, #2(mod 4), and (m,n) = 1. Then
vs, =U,
where G = Gal(Q((,,,)/Q(,,)) and US, is the subgroup of U,,, fixed under the
action of G.
Proof. By Theorem 2, we can extend a basis {n,,...,7,} of U,mod{—{,) to
a basis {;...,1%, &;,..., 8} of U,,mod{—{,,>. Let
6= +{mntt .. miel .. e e Un.
Then since 6° = § for any g€ G,

(m)
6™ = N, O(gmn>/ﬂ<;")6 € Un'

Hence

s t
(i Cfn ")¢(M) 1‘[ m}nﬁ(M) l"[ S?Jd’(rn)

i=1 j=1
= 0t nn
Therefore, b, = b, = 0 and
0= +Lnt ... N5
Since 6,19'...n% e US,, + {5, € US,. Thus

6= +Unt...n¥eU,. Q.ED.
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Section 3. Basis of U, when p|n

In this section we will show U$, = U,, where G = Gal(Q({,,,)/Q((,)) by extending
a basis of U, to that of U ,,. When p|n, Corollary 1 in Section 2 proves it. So we
assume p|n and let n = p1 ... pfp° be the usual prime factorization of n with
e > 0. Asbeforeweletg;bea ﬁxed generator of Gal(Q({,e:/Q)) fori = 1,...,r and
let o be a fixed generator of Gal(Q({,.+:)/Q). If p; is even then we dcﬁne o“ asin
Section 1. For each d | n such that (d, (n/d)) = 1 and (d, p) = 1, say, d = p{i: ... p§*,
let T/ be the subgroup of (42)* generated by

goit-oher " do(p?) <j < 3o(p°*h) — 1,
1<j,<o@f" — 1

if p#£2,and 1 <j<2°" 21fp 2
for 1 <I<

and let

T

d

Then it is easy to check that T is generated at most (actually, exactly by the
following theorem) by rank, U, — rank, U, elements.

THEOREM 3. U,,, = o(T, x T\, x Tp) x {={,p>-

Proof. We prove this only when p is odd. The proof for the even case is almost
the same. We will show Ugpers = @(Tspe X Tipe x Tipe) for each d with
(d,p) = 1(d, n/d) = 1 by induction on w(d) = number of distinct prime factors of d.

Let w(d) = 0(d = 1). By Theorem 2, it is enough to show

. ~
g]:g pT;T ETPe X T”e

for1 < j<ie@e*') — 1, hencefor 1 < j < 1¢(p°) — 1 be definition of T".. First
we need a Lemma.

LEMMA 5. For any j, 1 < j < 4o(p®) — 1,
r-1 . . o’ p—1
Z Ji+kewe) = g(—e) + Z Gro(pe)-
k=0 14 k=0

Proof. Immediate from the relation (B,) since

") = Imodpefor0<k<p—1.
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In the left side of Lemma 5, every term except for §;(k = 0) belongs to T;. since
for1<k<(p—1)2,

Gj+kotre € Tpe
by the definition of T’., and for (p+1)/2 < k < p — 1 we have

Gj+ ko) = Ji+kow)—1ope*) € Tpe
Similarly,

Z glw(p‘) € TZ"

p—1
k=1

Since §, = 1 and since §(o’/p°)e T,.,

o’ p—1 rp—1 - N
4;i=49 <_e) + Y iy = 2 Fi+kor € Tpe X The.
4 k=0 k=1
This settles the case d = 1.
Now we assume Uypes = @(Type x Type x Tipe) for each d with o(d) < r, and
we will show that it is also true for d = n/p®. By Theorem 2, it is enough to show
that for each d = pfit ... pfe

3}

~ a A 2 ll
gjin-jtjEpoe X poe X poe

for (jisjas- -+ Jps J)€ Iipe+s, but actually we will show this for all (j,, ..., j, j)e
I4,.+1 case by case.

@) §j,..; i€ Tape X Tiape x Tipe for 3o(p°) <j < 4e(p°**) — 1 and j arbitrary

Proof. If none of j;, 1 <1< t,is 0, there is nothing to prove. Suppose exactly
one of them, say j,, is 0. Then

opfin—1
~ 7 Fr A
Y Gujaii € Tammgivns X Tlamgiope % Tapgiwe
k=0

by Lemma 1 (with a slight modification), and the induction hypothesis. But since

opfip)— 1

Y i€ Tipe

k=1
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by the definition of T;’pa,gojz___ i€ po., x Type x Tie. Then we can proceed as
we did in step (i) of the proof of Theorem 1.

() doj,... € Tupe ¥ Tipe x Tipe for 1 < j <4¢(p') — 1 and j, arbitrary.
Proof. From the relation (B, ), we have

p—1

. ~ o
Z Gojy...jvj+kowe) € Tape X Tape.
k=0

We considertwocases 1 < k < (p — 1)/2and (p + 1)/2 < k < p — 1separately to
show

p—1

~ F 7 "
> Gir...jei+koe) € Tape X Tdr x Tdr
k=1

as in the proof of the case w(d) = 0. Thus we get the result.
(iii) §;,..;,;€ Tape X Tipe X Tipe for j = 0 and j, arbitrary.
Proof. Quite similar to the proof of (ii) by considering

p—1
> 9ji...jcko(p?)
k=0

This finishes the proof. Q.ED.
COROLLARY 2. Let p|n for n # 2(mod 4). Then

US,=U

n’

where G = Gal(Q((,,)/Q((,)).
Proof. Similar to Corollary 1.

COROLLARY 3. For any integers m and n, m, n # 2(mod 4), such that njm, the
natural map

E,/U,-E,/U,

is an injection.

Proof. By Corollary 1 and 2.

Remark. As an application of Corollary 3 consider Q({,), Q((,,) as two layers in
the cyclotomic Z ,-extension of some Q(,). Greenberg’s conjecture asserts that
the p-primary part of E,/U, has bounded order as nfoo. Assuming that
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Greenberg’s conjecture is true, Corollary 3 implies that the map (E,/U,), —»
(E,,/U,,),is anisomorphism for m > n > 0.1t follows that the map in the opposite
direction induced by the norm is the zero map for m » n > 0. Therefore the
projective limit of (E,/U,), is trivial. It follows that (lim E,/lim U,), = 0 or, in
other words, p/[E;: U,] for any n where E;, = (\m>n Nmn(Ey).
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