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Introduction

In this article 1 study a class of schemes of finite type over a field, which 1
call Alexander schemes, introduced by Kleiman and Thorup under the name
of C,, -orthocyclic schemes (see [Kleiman-Thorup], 2). 1 claim that the class
of Alexander schemes is a reasonable answer to the question of what is the
most natural general class of schemes that behave like smooth schemes from
the point of view of intersection theory with rational coefficients.

There is now a well developed theory of Chow groups of possibly singular
schemes of finite type over a field, extending the classical intersection theory
on smooth quasiprojective varieties (see [Fulton]).

However, Chow groups of smooth schemes have many distinctive proper-
ties. For example, they have a natural commutative ring structure and they
are contravariant for general morphisms (see [Fulton], Chapter 8).

It is a natural question to ask whether there are singular schemes whose
Chow groups behave like Chow groups of smooth schemes. Unfortunately,
there do not seem to be any interesting examples.

But if we consider instead Chow groups with rational coefficient, it has
been known for a long time that on the quotient of a smooth quasiprojective

* This research was supported by an Alfred P. Sloan Doctoral Dissertation Fellowship.
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scheme by a finite group there is an intersection product (see [Briney]).
Recently Mumford and Gillet constructed an intersection product on Chow
groups with rational coefficients of certain moduli spaces that locally
in the étale topology are quotients of smooth schemes by finite groups
(see [Mumford 2] and [Gillet]).

If X is an oriented n-dimensional topological manifold and Y is a closed
subset of X, one form of Alexander duality says that the homomorphism
from the local cohomology group HkY(X, Z) to the Borel-Moore homology
group Hn-k(y, Z) obtained by taking cap products with the fundamental
class of X in Hn(X, Z) is an isomorphism.

In intersection theory, Chow groups are usually thought of as homology
groups, and they have some properties in common with Borel-Moore
homology groups. Let us indicate by A*(X) the Chow group of a scheme of
finite type over a field. Then if Y is a subscheme of X, or, more generally,
if Y ~ X is a morphism of finite type, Fulton and MacPherson introduced
an analog of local cohomology, the bivariant group A*( Y - X) ([Fulton],
Chapter 17). If X is an n-dimensional smooth scheme and Y ~ X is a
morphism of finite type then the homorphism from Ak(Y ~ X) to An-k(Y)
defined by the cap product with the fundamental class of X in An(X) is an
isomorphism (see [Fulton], Propositions 17.4.2 and 17.3.1).
From now on, let us consider only Chow groups and bivariant groups

with rational coefficients. Then, following Kleiman and Thorup, 1 define an
Alexander scheme as an equidimensional scheme X such that for any
morphism Y - X of finite type this form of Alexander duality is satisfied,
and a certain commutativity condition holds (Definition 2.1). It turns out
that Alexander schemes have most of the formal intersection-theoretical

properties of smooth schemes (Note 2.4). For example, if X is an Alexander
scheme and X - X is the identity morphism, then A *(X - X) has a natural
commutative ring structure, and so the isomorphism of A*(X ~ X) with
A*(X) defines an intersection product on A*(X).
Although the definition of Alexander scheme is very abstract, it seems to

have some geometric content. For example, Alexander schemes are geometri-
cally unibranch (Proposition 2.5), and one can characterize Alexander schemes
of dimension 1 and 2 over perfect fields geometrically. Precisely, a curve is
an Alexander scheme if and only if it is geometrically unibranch (Corollary
2.10), and a surface over a perfect field is an Alexander scheme if and only
if it is geometrically unibranch and all the components of the exceptional
divisors on a resolution of its singularities are rational (Theorem 4.1).

Also, the formal properties of the bivariant theory are so strong that
calculations are often possible (see Example 4.2 for some calculations on
surfaces).
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Many examples of singular Alexander schemes are obtained as a con-
sequence of the following result: if Y is a normal scheme, X is an Alexander
scheme and there exists a finite subjective morphism from X to Y, then Y is
an Alexander scheme (Proposition 2.11). So, for example, the quotient of a
smooth scheme by a finite group is an Alexander scheme.
A remarkable feature of the property of being an Alexander scheme is that

in dimension 1 and 2 it is local in the étale topology. In Section 5 of this
article 1 pose the problem of whether this is true in any dimension, and
discuss the following result in this direction, proved in (Vistoli 2]. Say that
a scheme has quotient singularities if locally in the étale topology it is the
quotient of a smooth scheme by a finite group. Then in characteristic 0 a
scheme with quotient singularities is an Alexander scheme.
, The contents of this article form a part of my doctoral thesis. Thanks are

due to my advisor M. Artin and to S. Kleiman for many very useful
discussions.

1. Preliminaries

Fix a field k. In this section by a scheme we will always mean a scheme of
finite type over k. If X is a scheme, we define

This group A*(X) is the Chow group of X with rational coefficients. In
other words, if Z*(X) is the group of cycles on X with rational coefficients,
graded by dimension, then

The theory of the Chow group is developed in [Fulton]. The formal
properties of the Chow group with integer coefficients are inherited by A*.
Let f : X ~ Y be a morphism of schemes. If f is proper we have the proper
pushforward f*: A*(X) ~ A*(Y) (see [Fulton], 1.4), if f is flat of constant
fiber dimension we have the flat pullback f: A*(Y) ~ A*(X) ([Fulton], 1.7)
and if f is a regular embedding we have the refined Gysin homomorphism
f’: A*(Y’) ~ A(X x Y Y’) for all morphism of schemes Y’ ~ Y ([Fulton],
Chapter 6).
For each morphism of schemes f: X ~ Y we can define a group, denoted

by A*(f) or A*(X ~ Y), called the bivariant group of f, as in [Fulton],
Chapter 17, using Chow groups with rational coefficients. An element a of
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AP(X ~ Y) associated to each morphism of schemes g: Y’ ~ Y and each
class of cycles y’ in Ak(Y’) a class in Ak-p(X x y Y’), denoted ag n y’ or
simply 03B1 n y’. This operation is required to commute with proper

pushforward, flat pullback and Gysin homomorphism (see [Fulton], 17.1 ).
If f: X ~ X is the identity, we write A*(X) for A*(f).
Again, the formal properties of the bivariant group in the integral case

extend to A*. If f: X ~ Y and g: Y - Z are two morphisms of schemes for
any two classes a E A*(X ~ Y) and 03B2 E A*(Y ~ Z) we have a product
af3 E A*(X fg Z) defined by composition. If f is proper there is also the
pushforward f*: A*(X ~ Z) ~ A*(Y ~ Z). Finally, if f : X ~ Y and g:
Y’ ~ Y are two morphisms there is the pullback f *: A*(X ~ Y) -
A*(X x y Y’ ~ Y’). The properties given in [Fulton], 17.2 are satisfied. In
particular, we have the projection formula: if f : X ~ Y and g: Y’ ~ Y are
two morphisms with g proper, and h: X x y Y’ ~ X is the projection, then

for any a in A*(X - Y) and y’ in A*(Y’).
Also A * becomes a functor from schemes to graded associative Q-algebras.
Inside A*(X ~ Y) we can define a subgroup C*(X ~ Y) as follows (see

[Kleiman-Thorup, p. 337).

(1.1) DEFINITION: Take a in A*(X ~ Y). We say that a is in C*(X ~ Y) if,
for every pair of morphisms Y’ ~ Y and Y" ~ Y’, every class of cycles y’
in A*(Y’), and every f3 in A*(Y" ~ Y’), we have

This subgroup C* of A* is closed under product, proper pushforward and
pullback. If f: X ~ Y is a flat or locally complete intersection morphism, the
orientation class [1] of f (see [Fulton], 17.4) lies in C*(f).

If Y has a smooth resolution of singularities, then C*(X ~ Y) =
A*(X ~ Y). More generally, this identity holds if there exists a proper
surjective morphism Y’ ~ Y with Y’ smooth (see Lemma 2.6 and

Proposition 2.2).
Next we prove some technical lemmas.

(1.2) LEMMA: Let f: X ~ Y be a proper and surjective morphism of schemes.
Then

(i) The pushforward
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is surjective, and
(ii) if U - Y is a morphism, the pullback

is injective.

Proof: The surjectivity of f*: A*(X) ~ A*(Y) follows from the surjectivity
of f*: Z*(X) ~ Z*(Y), which is clear. Now take f3 in A*(U - Y) and
suppose that f*f3 = 0. To prove that fl = 0 it is enough to prove that
for any y in A*(Y) we have 03B2 n y = 0, by a base change argument.
There exists x in A*(X) such that f*x = y. But then f3 n y = f3 n f*x =
g*(f*03B2~) x) = 0, and so 03B2 = 0.

(1.3) LEMMA: Let f: X ~ Y be proper and surjective. Let x be in A*(X) such
that f*x = 0 in A*(Y). Then x is represented by a cycle 03BE in Z*(X) with
f*03BE = 0 in Z*(Y).

Proof. First we prove this fact. If v is in Z*(Y) and is rationally equivalent
to 0, then there is a cycle u in Z*(X), u rationally equivalent to 0, such that
f*u = v. We may assume that v = [div(r)], where r is a non-zero rational
function on a subvariety W of Y. Let V be a subvariety of X contained in
f-1(W), such that the induced morphism V - W is surjective and
generically finite, say of degree n. Lift r to a rational function s on V. Then
f*[div (s)] = [div (rn)] = n[div (r)], because of [Fulton], Proposition 1.4. We
can take u = (1/n) [div (s)].
Now, let x be in A*(X) with f*x = 0. Take a cycle w on X representing

x. The cycle f*w on Y is rationally equivalent to 0, and so there is a cycle
w’ in Z*(X) rationally equivalent to 0, such that f*w’ = f*w. Then
03BE = w - w’ represents x, and f*03BE = 0.

(1.4) LEMMA: Let f: X ~ Y be proper and surjective. Let U - Y be a
morphism. If

then
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Proof Let q: Y’ ~ Y be a morphism. Form the fibre diagram

Take 03B2 in A*(U ~ Y), y in A*(Y’ ~ Y) and y in A*(Y). Choose x
in A*(X) such that f*x = y. Then y n (03B2 n y) = y n (fi n f*x) =
y n g*(f*03B2 n x) = g’*(f*03B3 n (f*03B2 n x)). Similarly 03B2 ~ (y n y) =
g’*(f*03B2 ~ (!*y n x)). But f*03B2 is in C*(T- X), and therefore

y n (03B2 ~ y) = 03B2 n (y n y). By base change we conclude that 03B2 commutes
with all bivariant classes, and therefore that 03B2 E C*(U ~ Y).

(1.6) LEMMA: Let f : X ~ Y be proper and surjective, U ~ Y a morphism,
T = U x y X. Let a be in A*(T ~ X). Then a - f*03B2 for some f3 in
A*(U ~ Y) if and only if the following condition holds. For any morphism
Y’ ~ Y construct the fiber diagram 1.5. If x’ in A*(X’) is such that f’*x’ = 0,
then g’*(03B1 n x’) = 0 in A*(U’).

Proof.- If oc = f*03B2, then g’*(03B1 n x’) = fi n f’*x’ = 0. Conversely, assume
that the condition holds. We define 03B2 in A*(U ~ Y) as follows. If q:
Y’ - Y is a morphism, y’ E A*( Y’), choose x’ in A*(X’) such that

f’*x’ = y’. Set fi n y’ - g’*(03B1 n x’). The condition insures that fi n y’ does
not depend on x’. Let q’: Y" ~ Y’ be a proper morphism. Consider the fiber
diagram
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The proof that fi commutes with flat pullback and Gysin homomorphisms
is analogous, using [Fulton], Proposition 1.7 and Theorem 6.2(a).

It is easy to check that f*03B2 = oc.

(1.7) LEMMA: Let f X - Y be an universal homeomorphism of schemes.
(i) The pushforward

is an isomorphism.

is an isomorphism.

is an isomorphism.

Pro of. By Lemma 1.2 (i), f,: A*(X) ~ A*(Y) is surjective. The push-
forward of cycles f*: Z*(X ) ~ Z*( Y) is bijective. If x in A*(X) is such
that f*x = 0, Lemma 1.3 implies that x = 0. So f* is also injective. This
proves (i).

Let us prove (ii). The injectivity of f * holds by Lemma 1.2 (ii). Its

surjectivity is immediate from Lemma 1.7 and part (i).
To prove (iii), take a morphism Z’ ~ Z, and form the fiber diagram

If 03B1 ~ A*(X ~ Z ) is such that f*03B1 = 0 in A*( Y ~ Z ), then

f§(a n z’) - 0 for any z’ in A*(Z’), and so f*a = 0 by part (i). If fi is in
A*(Y ~ Z), we define a n z’ = x’, where z’ is in A*(Z’) and x’ E A*(X’)
is such that f’*x’ = 03B2 n z’. It is easy to check that a belongs to A *(X - Z),
and f*03B1 = 03B2 by definition.
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Let G be a finite group operating on the left on a scheme X, with quotient
Y = X/G. The action of G on X induces a right action of G on A*(X), by
the formula

where gx: X ~ X indicates the morphism induced by g E G. Also, if T is
another G-scheme and T ~ X an equivariant morphism, G operates on the
right on A*(T - X) by the same formula. Let us denote by A*(X)G and
A*(T ~ X)G the groups of invariants.

(1.8) LEMMA: In the situation above
(i) The pushfoward

is an isomorphism.
(ii) If U ~ Y is a morphism, T = U x y X the pullback, then

is an isomorphism.

Pro of. (see [Fulton], Example 1.7.6., and [Vistoli 1], Lemma 8): There
is a bijective correspondence between close invariant subsets of X and
closed subsets of Y..Hence the pushforward of cycles f*: Z*(X)G ~
Z*( Y) is bijective. Therefore f*: A*(X)G ~ A*(Y) is surjective. Let x be
a class of cycles in A*(X)G such that f*x = 0. By Lemma 1.4 there is

03BE E Z*(X) representing x such that f*03BE = 0 in Z*( Y). By averaging
over G we can assume that 03BE is in Z*(X)G. But then 03BE = 0, and x = 0. This
proves (i). 
To prove (ii), notice that if Y’ - Y is a morphism, X’ = Y’ x y X, there

is an induced action of G on X’, but in positive characteristic it is false
in general that X’/G = Y’. However, a quotient X’IG exists, and the
induced morphism X’/G - Y’ is a universal homeomorphism, so that
the pushforward A*(X’)G ~ A*(Y’) is still an isomorphism, by Lemma
1.8 (i).
We only have to prove that f*: A*(Y ~ Y) ~ A*(T ~ X)G is surjective,

because injectivity follows from Lemma 1.2 (i). Take a in A*(T ~ X)G and
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g in G. Let q’: Y’ ~ Y be a morphism. We have the fiber diagram

For any x’ in A*(X’) we have ap n g*X’ x’ = g*T’(03B1p gX n x’) =
g*T’(03B1g p ~ x’) = g*T’((g*X03B1)p ~ x’) = g*T’((03B1 . g)p nx") = g*T’(03B1p ~ x’). In other
words, we have just checked that a n: A*(X’) ~ A*(T’) is a G-equivariant
homomorphism.
Now assume that x’ in A*(X’) is such that f§x’ = 0. Then f’*(x’ . g) = 0

for all g in G, so that f’*(1/n 03A3gx’ . g) = 0, where n is the order of G. It

follows that 1/n 03A3gx’ . g = 0, because of part (i). Hence 0 = h£(a n
1 /n 03A3gx’ . g) = h’*(1/n Lg(a n x’) .g) = h’*(03B1 n x’). From Lemma 1.7 we
conclude that a is in the image of A*(U ~ Y).

2. Alexander schemes

By a scheme we still mean a scheme of finite type over a fixed field k.
If X is a purely n-dimensional scheme we denote by [X] the class in Zn (X )

or in An(X) associated with X, namely, the class of the cycle that contains
every irreducible component of X with multiplicity equal to the length of the
local ring of X at its generic point. (see [Fulton], 1.5).

For each morphism of schemes T - X, with X equidimensional, we
define the evaluation homomorphism

by
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The following definition is due to Kleiman and Thorup (see [Kleiman-
Thorup], p. 21).

(2.1) DEFINITION: We say that a scheme X satisfies commutativity if

for all morphisms T - X.
We say that a scheme X satisfies Alexander duality, or that it is an

Alexander scheme, if it satisfies commutativity, is equidimensional and if

is an isomorphism for all T ~ X.

In the terminology of Kleiman and Thorup, an Alexander scheme is called
Ca -orthocyclic.

(2.2) PROPOSITION: Let f: X ~ Y be a smooth morphism of constant fiber
dimension. If Y is an Alexander scheme, so is X.

Proof.- First note that if Y is equidimensional so is X. Consider the orien-
tation class [ f ] ~ C*(X ~ Y). For each T - X, composition with [f] yields
homomorphisms A*(T ~ X) ~ A*(T ~ Y) and C*(T ~ X) ~
C*(T ~ Y). The first one is an isomorphism, by [Fulton], Proposition
17.4.2. This result is proved by explicitly constructing an inverse homo-
morphism from A*(T ~ Y) to A*(T ~ X), which is immediately seen to
carry C*(T ~ Y) to C*(T - X). Hence C*(T ~ X) ~ C*(T ~ Y) is an
isomorphism too, and if Y satisfies commutativity so does X. The proof is
concluded by observing that the diagram

commutes.

(2.3) PROPOSITION: A regular equidimensional scheme satisfies Alexander
duality.
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Pro of. This is [Kleiman-Thorup], Proposition 3.9. We offer another proof
for the case of a smooth scheme. By Proposition 2.2, it is enough to prove
that S = Spec(k) is an Alexander scheme. That

is an isomorphism is proved in [Fulton], Proposition 17.3.1. The inverse u:
A*(T) ~ A*(T ~ X) is constructed as follows. Let Y - S be a morphism,
t E A*(T) and y E A*(Y). Then u(t) n y is the exterior product t x y in

A*(T x Y). We need to prove that u(t) is in C*(T ~ S). It is enough to
assume that t = [V] ] for some subvariety V of T. Let j: V - T be the
inclusion. Then u(t) = j*,u, where y E C*(V ~ S) is the orientation class
determined by flat pullback. Therefore u(t) belongs to C*(T - S).

(2.4) Note: Intersection theory with rational coefficient on Alexander
schemes is very similar to intersection theory on smooth schemes. Let Y be
an Alexander scheme, f : X ~ Y and Y’ ~ Y two morphisms. If y is in
A*( Y’) and x in A*(X), we can define x f y in A*(X x y Y’) by

where a e A*(X ~ Y) is such that a n [Y] = x. This is not quite as refined
as the operation defined in [Fulton], 8.1, for smooth schemes, but it sufficies
for any purpose 1 can think of. The formal properties of [Fulton], Prop-
osition 8.1, are all satisfied. In particular A*(Y) is in a natural way a

commutative ring, and if X ~ Y is a morphism A*(X) becomes an A*(Y)-
module, in such a way that the projection formula is satisfied, as in [Fulton],
Proposition 8.3.

(2.5) PROPOSITION: An Alexander scheme is geometrically unibranch.

Proof.- Suppose X is not geometrically unibranch. Then there exists an étale
morphism Y - X with Y connected, but not irreducible. Let n be the
dimension of Y. If we show that A0(Y) is Q, then evy: A0(Y) ~ An(Y)
cannot be an isomorphism, because An(Y) is generated by the irreducible
components of Y, and so Y can not be an Alexander scheme. Therefore X
is not an Alexander scheme, because of Proposition 2.2.

Let a be in A0(Y). If V - Y is a morphism with V integral, then
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for some rational number r(V). We want to prove that r(V) is independent
of V - Y. If g: V ~ W is a flat morphism of integral schemes over Y,
then r(V)[V] = a n [V] = a n g*[W] = g*(a n [W]) = r(W)[W], and
therefore r(V) = r(W). By generic flatness, this also holds if we simply
assume V ~ W dominant. In particular, by considering the closure of the
image of V ~ Y, we can restrict ourselves to proving that r(W) is constant
for all subvarieties W of Y. Let V and W be two subvarieties of Y with V

properly contained in W. Let W be the blow up of W along V, and call Û
the exceptional divisor. Then the embedding j:  ~ W is regular, and
therefore a n [V] = a ~ j*[] = j*(03B1 n [W]) = r(W)[V] = r(W)[].
If V’ is a component of V dominating V, it follows that r(V) = r(V’) =
r(W). Since Y is connected we conclude that r(V) must be constant.

(2.6) LEMMA: If there is a proper and surjective morphism from X to Y and X
satisfies commutativity, so does Y.

Proof.- This is a consequence of Lemma 1.4.

(2.7) PROPOSITION: Let f: X - Y be an universal homeomorphism. Then X
satisfies Alexander duality if and only if Y does.

(2.8) COROLLARY: A scheme X satisfies Alexander duality if and only if Xred
does.

(2.9) COROLLARY: Let X be a scheme, X its normalization (i.e., the normal-
ization of Xred). Then X is an Alexander scheme if and only if X is an Alexander
scheme and X is geometrically unibranch.

Proof.- The scheme X is geometrically unibranch if and only if the normal-
ization morphism X ~ X is a universal homeomorphism (see EGA IV,
6.15.5 and 6.15.6). Therefore the result follows from Propositions 2.5

and 2.7.

(2.10) COROLLARY: A scheme of dimension 1 is an Alexander scheme if and
only if it is geometrically unibranch.

Proof of 2.7 : The scheme X is equidimensional if and only if Y is. We may
assume that X and Y are connected. Proposition 2.5 implies that if we
assume that either X or Y is an Alexander scheme, then X and Y are
irreducible. Hence f*[X] = d[Y] for some nonzero rational number d. If
U ~ Y is a morphism, T = U x y X and g: T - U is the projection, then
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for any 03B2 in A*(X ~ Y) we have g*(f*03B2 n [X]) = d (fi n [Y]), that is, the
diagram

commutes up to a nonzero rational number. But f * and g* are isomor-
phisms, by Lemma 1.7, and therefore evX is an isomorphism if and only if
evY is an isomorphism.
We conclude the proof by showing the X satisfies commutativity if and

only if Y does. If X satisfies commutativity, so does Y, by Lemma 2.6.
Conversely, assume that Y satisfies commutativity. We want to prove
that C*(T ~ X) = A*(T ~ X) for every T ~ X. First assume that T =
U x y X some U - Y. Then the pullback/* : A*(U ~ Y) ~ A*(T ~ X)
is an isomorphism and carries C*(U ~ Y) = A*(U ~ Y) into C*(T - X).
Hence C*(T ~ X) = A*(T ~ X). In general, set T’ = T x Y X, and call
h: T’ ~ T the projection. Then h is an universal homeomorphism, and
therefore h*: A*(T’ ~ X) - A*(T ~ X) is an isomorphism, by Lemma
1.7 (iii). Since h* carries C*(T’ - X) into C*(T ~ X) and C*(T’ ~ X ) =
A*(T’ - X), this concludes the proof.

The next proposition gives us our first examples of Alexander schemes that
are normal but not regular.

(2.11) PROPOSITION (cf. [Fulton], Example 17.4.10):
(i) Let X be an Alexander scheme, G a finite group operating on X, in such

a way that a geometric quotient XIG exists. Then XIG is an Alexander scheme.
(ii) Let f. X ~ Y be a finite surjective morphism. If X is an Alexander

scheme and Y is geometrically unibranch, then Y is an Alexander scheme.

Proof.- Let us prove (i). Set Y = XIG. We can assume that Y is connected.
But Y is unibranch, because X is unibranch, and so Y is irreducible. By
Lemma 2.6, Y satisfies commutativity.

Let U ~ Y be a morphism, T = U x y X, g: T - U the projection. Since
Y is irreducible,f*[X] is a rational multiple of Y, and therefore the diagram
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commutes up to a rational number. But f * and g* are isomorphisms,
because of Lemma 1.8, and therefore evY is an isomorphism.
Now we prove (ii). Corollary (2.9) implies that we can take X and Y to

be normal. We can also assume that X and Y are irreducible. Let E be the

separable closure of k( Y) in k(X), and let X’ be the normalization of Y in
E. Then f: X ~ Y factors as X ~ X’ ~ Y, and X ~ X’ is a universal
homeomorphism. By proposition 2.7, X’ is an Alexander scheme, and so we
can assume that k(X) is separable over k(Y). Let K be a Galois closure of
k(X) over k( Y), and let Xo be the normalization of Y in K. Let G be the
Galois group of K over k( Y), H the Galois group of K over k(X). Then
Xo /G - Y and XolH = X. If U ~ Y is a morphism, T = U x y X and
To = U x Y X0, we know that evX: A*(T ~ X) - A*(T) is an isomor-

phism, and therefore evX0 : A*(To - X0)H ~ A*(To)H is an isomorphism.
We want to prove that evy: A*(U ~ Y) ~ A*(U) is an isomorphism, or,
equivalently, that evX0: A*(To - X0)G ~ A*(To)G is an isomorphism. This
follows from the following easy lemma, applied to evX0.

(2.12) LEMMA: Let G be a finite group, H a subgroup of G. Let V and W be
two 0-vector spaces on which G acts, p: V ~ W an equivariant linear trans-
formation. If the restriction p: VH ~ WH is an isomorphism, then p:
VG ~ WG is an isomorphism.

Proof : Let Vo and Wo be the kernel and the cokernel of p: V ~ W. If r is
a finite group, the functor that sends a Q-vector space Z with an action of

r to Zr is an exact functor. Hence V: and WH (resp. VoG and W0G) are the
kernel and the cokernel of p: VH ~ WH (resp. p: VG ~ WG). But if

VH = WH = 0, then VG = WG = 0.

(2.13) PROPOSITION: Let f. X - Y be a proper and surjective morphism of
equidimensional schemes. Suppose that there exists [f] ] in Cd(X ~ Y),
d = dim (X) - dim ( Y), such that

If X satisfies Alexander duality, so does Y.
In particular this holds if f is flat or a locally complete intersection

morphism.

Proof.- Let U - Y be a morphism, T = U x y X. We can define a homo-
morphism f*: A*(T - X) ~ A*(U ~ Y) as follows (cf. [Fulton], p. 328).
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Let Y’ ~ Y be a morphism, and form the fiber diagram 1.3. If a is in

A*(T ~ X) and y’ in A*(Y’), define

One checks easily thatfot is in A*(U ~ Y).
Assume that X is an Alexander scheme. The scheme Y satisfies com-

mutativity by Lemma 2.6.
Now take 03B2 in A*(U ~ Y) and assume that 03B2 n [Y] = 0. Then

f*03B2 n [X ] = fi n ([f] n [Y))) = [ f n (03B2 n [Y])) = 0. Hence f*03B2 = 0,
and by Lemma 1.2, 03B2 = 0. Therefore evy : A*(U ~ Y) - A*(U) is

injective.
To prove surjectivity, let u be in A*(U). Choose t in A*(T) with g*t = u.

Since X is an Alexander scheme, t = a n [X] for some a in A*(T ~ X).
Hence u = g*t = g*(a n [X]) = g*(a n ([f] n [Y])) = f*a n [Y].

3. Change of base field

The purpose of this section is to prove the following theorem. Let k c K be
a field extension. If X is a scheme over k, write Xx for X X k Spec (K). Recall
that K is called separable over k if every subfield of K containing k and
finitely generated over k is separably generated over k. If k is perfect, every
extension of k is separable.

(3.1) THEOREM: Let X be a scheme of finite type over k.
(i) If K is algebraic over k and XK is an Alexander scheme, then X is an

Alexander scheme.

(ii) If K is separable over k, XK satisfies commutativity and X is an
Alexander scheme, then XK is an Alexander scheme.

Note that if K is finite over k part (i) is a consequence of Proposition 2.11 (ii).
We will use the following notation. If R and S are k-subalgebras of K, R

contained in S, we let IF’ denote the canonical morphism from Spec(S) to
Spec(R). If XR is a scheme over R, we set

Let R be a finitely generated k-algebra contained in K, and let XR be a
scheme of finite type over R. We want to define a homomorphism
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of degree equal to - dim(R). If VR is a closed integral subscheme of XR, set

This defines

If r is a rational function of VR, call D the pullback of the divisor of r to
VR. So D is a principal Cartier divisor on VK, and 03A8KR*[div (r)] = D.[VR],
where the last term is defined as in [Fulton], 2.3 From [Fulton], Proposition
2.3(e), it follows that 03A8KR* [div (r)] is rationally equivalent to 0, and therefore
03A8KR* passes to rational equivalence. If R ~ S ~ K, S finitely generated and
flat over R, p: Xs - XR is the canonical morphism, then p is flat, and

(3.2) LEMMA: Let fR: XR ~ YR be a morphism of schemes of finite type over
R, fK: XK ~ YK obtained by base change.
(i) If fR is proper,

(ii) If fR is flat,

(iii) If fR is a regular embedding, Y’R ~ YR a morphism of finite type,
X’R = XR  YR Y’R, then

Pro of. (i) and (ii) are straightforward, and they even hold at the level of
cycles.

In view of (i), to prove (iii) it is enough to prove that, if YR is integral,
f!k(03A8KR*[Y’R]) = 03A8KR*f!R[Y’R]. · Let NR be the pullback to X’R of the normal
bundle to XR in YR , SR: X’R ~ N’R the zero section, C’R the normal bundle to
X’R in Y’R. Then f!R[Y’R] = S*R[C’R]. Since the Gysin homomorphism S*R is the
inverse of the flat pullback from A*(X’R) to A*(N’R) and we know that 03A8KR*
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commutes with flat pullback, we have 03A8KR*f!R[Y’R] = 03A8KR*S*R[C’R] =
S*K03A8KR*[C’R] = sK [CK]. But K is flat over R and the formation of normal
cones commutes with base change along flat morphisms, and so C’K is the
normal cone to 4 in Y’K. By [Fulton], Example 6.2.1, we have

We can also define

for any morphism XR ~ YR of finite type over R. Let Y’K ~ YK a morphism
of schemes of finite type over K, and let yK be in A*( YK). Then there exists
a finitely generated R-algebra S contained in K, a scheme Ys of finite type
over S such that Y’S x s Spec(K) = Y’K, and a class of cycles ys in A*(Y’S)
such that 03A8KS*y’S = y’K. For any a in A*(XR ~ YR ) define

This makes sense, because Y’S is of finite type over Y’R. If S’ is another
finitely generated R-subalgebra of K, Y;, an S’-scheme of finite type with
y;,  S’ Spec(K) = Y’K’ and y’S’ ~ A*(Y’S’) is such that 03A8KS’*y’S’ = y’K’, then we
can find finitely generated R-subalgebra T of K containing S and S’, flat over
S and S’, such that:

(i) Ys  S Spec(T) is isomorphic to y;, x s’ Spec(T), and, using this

isomorphism to identify them,
(ii) If q: Y’S  S Spec(T) ~ Y’S and q’: Y’S’ x s’ Spec(T) ~ y;, denote the

projections, then q*y’S = q’*y’S’.
Then, if we set YT - Ys  S Spec(T) - Ys. x s’ Spec (T ), X’T =

X’R x YR y’T, and call p: X’T ~ X’S and p’: X’T ~ X’S’ the projections, we have
03A8KS*(03B1 ~ y’S) = 03A8KT*p*(03B1 ~ yS) = 03A8KT*(03B1 n q*y’s) = WKT*(03B1 n q’*y’S’) =
03A8KS’*(03B1 n y’S’). Hence WKR*03B1 is well defined.
The fact that 03A8KR*03B1 belong to A*(XK ~ YK) is a consequence of Lemma

3.2 and of the following.

(3.3) LEMMA: Let XK ~ YK be a morphism of schemes of finite type over K
which is proper, or flat, or a regular embedding of codimension d. Then there
exists a finitely generated k-subalgebra R of K and a morphism XR ~ YR of
schemes of finite type over R with the same property which yields XK ~ YK by
change.

Pro of. Choose a finitely generated k-subalgebra T of K and a morphism
XT ~ YT of schemes of finite type over T which gives XK ~ YK when pulled
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back to Spec(K). Then it is clearly enough to prove that there is an open
subset V of Spec(T) such that XT ~ YT restricted to V has the desired
property.
For properness this follows from EGA IV, 9.6.1 (iv). For flatness it

follows from EGA IV, 12.2.6 (ii) applied to the projective system of a fine
open subschemes of Spec(T).
Suppose that XK ~ Yx is a regular embedding of codimension d. We can

assume that YK is affine and the ideal of Xx in YK is generated by d functions
f1,...,fd on Yx . It follows from EGA IV, 9.6.2.1 (i) that by localizing T we
can assume YT afhne. By localizing further, we can assume that fl , ... , fd
extend to functions f, , ..., fd on YT, and the ideal of XT in YT is generated
by fl , ..., Id. Consider the Koszul complex of f1, ...,fd. Its cohomology
groups are coherent sheaves on YT, whose supports do not intersect Yx .
Hence the union in Spec(T) of the images of the supports is a constructible
set that does not contain the generic point. Therefore its complement
contains an open subset of Spec (T), and in the inverse image of this open
subset XT is regularly embedded in YT.

If K is algebraic over k, we can also define

for any scheme X of finite type over k.
If K is finite over k, the morphism p: XK ~ X is finite. Given XK in A*(XK)

we set

It is clear that if k c k’ c K is an intermediate field, then

and that

is the identity.
In general, if xx is in A*(XK) there exists an intermediate field

k c k’ c K such that k’ is finite over k and a class of cycles Xk, in A*(Xk’)



217

with 03A8Kk’*xk’ = xK . Then we define

To check that this is well defined, fix another finitely generated intermediate
subfield k" and a class Xk" in A*(Xk") with 03A8Kk"*k" = XK. There will be a
subfield ko of K finite over k such that k’ c ko, k" ~ ko and 03A8k0k’*xk’ =
03A8k0k"*xk" in A*(Xk0). Then 03A8k’k*xk’ =
03A8k0k*03A8k0k"*xk" = 03A8k"k*xk".

(3.4) LEMMA: Let f X ~ Y be a morphism of schemes of finite type over k,
and let fK: XK ~ YK be obtained by base change.

(i) If f is proper and XK e A*(XK), then

then

The proof is straighforward from the definitions.
We also define

for a morphism X ~ Y of finite type over k, still with the hypothesis that
K is algebraic over k.

If aK is an A*(XK ~ YK), Y’ ~ Y is a morphism of finite type and y’ is
in A*(Y’), we set

(3.5) LEMMA: (i) 03A8Kk*03B1K is in A*(X ~ Y).
(ii) If CXK e C*(XK ~ YK) then 03A8Kk*03B1K e C*(X ~ Y).

The proof is straightforward, using Lemma 3.4.
The following is a weak version of a criterion due to Kleiman and Thorup

(see [Kleiman-Thorup], Proposition 3.3).

(3.6) LEMMA: Let X be an equidimensional scheme of finite type over a field.
Suppose that for all integral schemes V and all morphisms of finite type
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V - X there exists av in Cd(V ~ X), d = dim(X) - dim(V), such that

Then X is an Alexander scheme.

Proof of 3.1: To prove (i), let V - X be a morphism of finite type with V
integral. Since XK is an Alexander scheme, there is ax in Cd(V ~ X),
d = dim(XK ) - dim(VK) = dim(X) - dim(V), such that ax n [Xx ] =

[VK]. But then (03A8Kk*03B1K) n [X] = 03A8Kk*(03B1 n 03A8Kk*[X]) = 03A8Kk*(03B1 n [XK]) =
03A8Kk*[VK] = [V], and 03A8Kk*03B1 belongs to Cd(V ~ X) because of Lemma 3.5.
The conclusion follows from Lemma 3.6

Let us prove (ii). Let VK be an integral scheme over K, ~VK XK a
morphism of finite type. There is a finitely generated k-algebra R contained
in K such that VK ~ XK is obtained by base change from a morphism of
finite type VR ~ XR . By localizing, we can assume that VR is integral and
flat over R, and, since K is separable over k, that R is smooth. Then XR
is an Alexander scheme, by Proposition 2.2. Therefore there exists

aR in Cd(VR ~ XR ), d = dim(XR ) - dim(VR) = dim(XK) - dim(VK),
with CXR n [XR ] = [VR]. Then (03A8KR*03B1R) n [Xx ] = (03A8KR*03B1R) n 03A8KR*[XR] =
03A8KR*(03B1R n [XR]) = 03A8KR*[VR] = [VK]. We have that 03A8KR*03B1 belongs to

Ad(VK ~ XK), and, because XK satisfies commutativity, Cd(VK ~ XK) =
Ad(VK ~ XK). Therefore, by Lemma 3.6, XK is an Alexander scheme.

4. Surfaces

We already know how to characterize geometrically Alexander schemes of
dimension 1. We shall do the same for schemes of dimension 2 over a perfect
field. Corollary 2.9 allows us to restrict our attention to normal surfaces.

(4.1) THEOREM: A normal surface over a perfect , field satisfies Alexander
duality if and only if all the components of the exceptional divisors on some
resolution of its singularities are rational curves.

Here by a rational curve we mean an integral complete scheme C of
dimension 1 with H1(C, OC) = 0, where C is the normalization of C.

Pro of. Suppose that the normal surface Y is an Alexander scheme, and let
f: X ~ Y be a resolution of singularities. If k is the base field, let K be
obtained by adding uncountable many indeterminates to k and taking the
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algebraic closure. Then by Theorem 3.1 (ii) YK is still an Alexander scheme,
and since k is perfect, XK ~ YK is still a resolution of singularities. If one of
the exceptional divisors on Xx has a component which is not rational, the
same is true of X. So we can assume that the base field is uncountable and

algebraically closed.
Let Q be a singular point on Y, E = E1 ~ ... v En the exceptional

divisor of Q with irreducible components El, ... , En . We want to prove
that Ej’s are rational. By blowing up we can assume that the El’s are smooth.
Let

_ Let j: E ~ E the embedding, which is a homeomorphism, because
Erea - E.
We will show that the pullback

is bijective.
It is injective by Lemma 1.2. Fix a in A2 (E ~ X). Take a morphism

Y’ - Y, and form the fiber diagram

Choose x’ in A*(X’) such that f§x’ = 0 in A*( Y’). Then by Lemma 1.4
x’ is represented by a cycle on X’ with image 0 in Z*( Y’). This means that
the components of this cycle must map to the inverse image Y’Q of Q in Y’,
beccause elsewhere f ’ is an isomorphism. Let V be such a component. The
morphism V ~ X obtained from f ’ factors through É, and hence through
some El. Let h: V ~ Ei be the induced morphism. Since Ei is smooth, h is
the composite of a flat morphism and a regular embedding, and therefore
a n [V] ] = a n h*[Ei] = h*(03B1 n [Ei]). But a n [Ei] = 0, because a is in
A2(E ~ X) and the dimension of Ei is 1. Hence a ~ x’ = 0, and a fortiori
g£(a n x’) = 0. By Lemma 1.6 a is in the image of f*, and therefore f* is
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bijective. Now have a diagram

which commutes, because g*(f*03B2 n [X]) = 03B2 n f*[X] = fi n [Y] for any
03B2 in A2(Q ~ Y). We know that f*, evX and ev y are isomorphisms. Hence
g*: A0(E) ~ A0(Q) = Q is an isomorphism. Also j*: A0(E) ~ Ao(E) is an
ismorphism. But then Ao(E) = Q, and this is impossible if E contains a
nonrational curve. In fact the kernel of the pushforward

is finite dimensional, generated by elements of the form [eu] J - [ej], where
el c- Ei and g c- E. i are points that are identified in E (this follows, for

example, from Lemma 1.4). On the other hand, if Ei has positive genus
Ao(E¡) must be uncountable. Let J be the group of rational points on the
Jacobian of Ei. Then

But J is uncountable, because the base field is uncountable and algebraic-
ally closed, and its torsion subgroup is countable.
Now we prove the converse. Let f: X ~ Y be a resolution such that all

the components of the exceptional divisors are rational. By Theorem 3.1 (i),
we can assume that the base field is algebraically closed. We suppose for
simplicity of notation that there is only one singular point Q on Y (the proof
in the general case is completely analogous). Let E = E1 ~ ... U En be the
exceptional divisor. By blowing up, we can assume that the El’s are smooth
and intersect transversally.
From Lemma 2.6 we know that Y satisfies commutativity. By Proposition

2.13, to prove that Y is an Alexander scheme it is enough to show that there
exists 03B2 in A0(X ~ Y ) with

Let X = X x y X with second projection p: i --+ X. The homomorphism
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is an isomorphism, and X has n2 + 1 2-dimensional components: the image
of the diagonal 03B4: X ~ X, which we call X0, and Ei x Ej for i,
j = 1, ... , n. Let ao and ocij, i,j = 1, ... , n, in A0(X p X) be such that

Set E = f-1(Q). Then X  X Ek = X  Y Ek -   Ek. Construct the
fiber diagram

We want to calculate ao n [Ek and au n [Ek ] in A (E x Ek ). If 03B4: X ~ X
is the diagonal, 03B10 = 03B4*(1), where 1 is the identity in A*(X) and 03B4*:
A*(X) ~ A*(X p X) is the pushforward. Therefore

in A1(E x Ek). Since Ek is a rational curve, if e is any point on Ek we have

in A1(Ek x Ek), and hence also in A1(E x Ek).
The morphism Ei  Ej ~ X obtained from the diagram above is the

composite Ei  Ej ~ Ej ~ X of the second projection and the embedding.
Hence if Yij in A’(Ei  Ej ~ X) is such that yij n [X] = [Ei x Ej], then
yij n [Ek ] = [Ei] x [Ej.Ek], where [Ej.Ek] is the cycle intersection of [Ej]
and [Ek], supported on El n Ek. Since ~*03B3ij = 03B1ij and all points of Ek are
rationally equivalent, we see that

where e is a point of Ek and (Ej. Ek ) denotes the intersection number of Ej
and Ek.

Set



222

for certain rational numbers rij, i, j = 1, ... , n; Then

in A, (É x Ek). Choose the rij’s in such a way that

This is possible because of the nondegeneracy of the intersection matrix.
In this case a n [Ek] = [e x Ek]. We will prove that a = f*03B2 for some 03B2
in A0(X ~ Y) by using Lemma 1.7. Given a morphism Y’ - Y let X’ be
X x y Y’, and let f’: X’ ~ Y’ be the projection. Suppose that x’ in A*(X’)
is such that f§x’ = 0. By Lemma 1.3 x’ has a representative 03BE’ in Z*(X’)
with f’*03BE’ = 0 in Z*(Y’). This means that the components of 03BE’ must map
to the inverse image of Q in Y’. To check that the condition of Lemma 1.6
is satisfied we are therefore allowed to assume that Y’ maps to Q in Y. Then
X’ = Y’ = E, and the fiber diagram becomes

Let V be a component of 03BE’ E Z*(Y’ x É). Then V will be contained in
Y’ x Ek for some k. Let h: V ~ Ek and H : E x V ~ E x Ek be the
projections. Since Ek is smooth, h factors as a flat morphism followed by a
regular embedding, and so a n [V] = a n h*[Ek] = H*(a n [Ek]) =
H*[e x Ek] = [e x V]. Hence a n x’ = [e] x x’, and g£(a n x’) =

g’*([e] x x’) = [e] x f’*x’ = 0. Theréfore a = f*03B2 for some 03B2 in A0(X ~ Y),
and fl n [Y] = 03B2 n f*[X] = g*(03B1 n [X]) = g*([Xo] + Lij r,,[E, x Ej) =
[X].

Despite the very abstract character of the notion of Alexander scheme, the
formal properties of the bivariant theory are so strong that it is often

possible to compute pullbacks and products with ease. Here we give an
example.
We call a normal surface over a perfect field satisfying the condition of

Theorem 4.1 an Alexander surface.
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Let Y be an Alexander surface, f: X ~ Y a resolution of singularities. We
shall compute

and, in case Y is complete, the intersection pairing

obtained by composing the product A, (Y) Qx A1(Y) ~ Ao(Y) with the
degree map A0(Y) ~ Q. Let E,, ... , En be the components of the various
exceptional divisors. The intersection matrix (Ei . Ej) is nonsingular.

Let C be an integral curve on Y, C the proper transform of C in X. We
identify A*(X) and A*(Y) with A*(X) and A*(Y) via the evaluation maps.
Then f*[C] = [C] n [X] in A1(X). We have f*f*[C] = f*([C] n [X]) =
[C] n [Y] = [C]. By Lemma 1.4 we see that

in A1(X) for some rational numbers 03BB1,..., 03BBn. Therefore [C] n

[Ej] = [C] n [Ej] + Yi 03BB1 [Ei]. [Ej] in Ao(Ej). Call Qj the image of Ej in Y.
The pushforward of [Ej] to AI (Qj) is 0, and so the pushforward of [C] n [Ej]
to A0(Qj) must be 0. If we indicated by (A . B) the intersection number of the
divisors A and B on X, defined when A or B is proper, we conclude that

This uniquely determines the 03BBi’s because the intersection matrix is

nondegenerate. 
Now if Y is complete,-C and D are integral curves on Y, C and D the

proper transforms in X, and the rational numbers À1, ... , Àn, 03BC1, ... , 1 Pl,
are determined by the equations

we have
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This is exactly the pairing A1(Y) ~ A1(Y) ~ Q defined in [Mumfordl].
IIb.

5. An open problem

There are a number of open questions concerning Alexander schemes. Here
is what 1 think is by far the most interesting one: is the Alexander property
local in the étale topology or in the Zariski topology?
A Zariski or étale open subset of an Alexander scheme is an Alexander

scheme, by Proposition 2.2. So the problem for the étale topology becomes:
if U is an Alexander scheme and U - X is an étale surjective morphism, is
X an Alexander scheme?

We have seen that this is the case for curves and for surfaces over a perfect
field (Corollary 2.10 and Theorem 4.1).
The problem in proving results in this direction is that at present there is

no homological machinery to relate local and global intersection-theoretical
properties of a scheme, so that to prove that a scheme satisfies Alexander
duality one needs some sort of global construction. Perhaps one can give a
local geometric characterization of Alexander schemes using a resolution of
singularities, extending the characterization of Alexander surfaces. The first
step would be to look at the case of threefolds.
The following result, contained in [Vistoli 2], has been mentioned in the

introduction. We say that a scheme of finite type over a field has quotient
singularities when locally in the étale topology it is the quotient of a smooth
scheme by a finite group.

(5.1) THEOREM: In characteristic 0, a scheme with quotient singularities
satisfies Alexander duality.

This is considerably more difficult to prove than any of the results of this
article. Given a scheme X with quotient singularities, one constructs a
smooth stack (in the sense of [Deligne-Mumford]) having X as a moduli
space, proves a form of Alexander duality for Chow groups of smooth
stacks and then relates the intersection theory on the stack with the inter-
section theory on X.

Added in proof

With the techniques of this paper one can easily prove that the problem above has a positive
solution when X has a resolution of singularities, and isolated singularities.
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