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Introduction

Two différent algebraic approaches have been introduced in order to deal
with highest weight categories arising in representation theory (for semi-
simple complex Lie algebras [BGG] or semisimple algebraic groups) and
with the categories of perverse sheaves over suitable spaces [BBD]. One
approach starts with the axiomatization of highest weight categories in
papers by Cline, Parshall and Scott [S], [CPS], [PS], where it is shown that
the highest weight categories with a finite number of weights are just
the module categories over finite dimensional algebras which are quasi-
hereditary. The other approach is based on descriptions of the categories of
perverse sheaves by Mebkhout [Me] and MacPherson and Vilonen [MV];
recently, Mirollo and Vilonen [MiV] have shown that these categories are
again equivalent to module categories over certain finite dimensional alge-
bras. The aim of our paper is to exhibit more explicitly the algebras A(y)
studied by Mirollo and Vilonen, and to formulate the precise relationship
between this construction and the quasi-hereditary algebras introduced by
Cline, Parshall and Scott. In particular, we obtain in this way a construction
for all quasi-hereditary algebras. In contrast to the "not so trivial extension"
method oulined in [PS], one avoids in this way the use of Hochschild

extensions.

Let us outline the construction. Let k be a perfect field, let C, D be finite
dimensional k-algebras, assume that C is quasi-hereditary and D is semi-
simple. Let CSD and DTC be bimodules such that cS and Tc have good
filtrations with respect to some heredity chain of C. Let y: CSD ~ DTC ~
cCc be a bimodule map with image in the radical of C. Then an algebra
A(03B3) is defined, which again is quasi-hereditary. We obtain all quasi-
hereditary algebras by iterating this procedure, starting with C the zero
ring.
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1. The rings A (y)

Let C, D be rings (associative, with 1), cSD , D Tc bimodules, and y: CSD ~
DTC ~ c Cc a bimodule homomorphism. These are the data we will work with.
In particular, starting from these data, we are going to define a ring A (y).
The direct sum of two abelian groups MI, M2 will be denoted by

MI + M2, in order to make terms which involve both the direct sum and
the tensor product symbol more readable. We denote by C x D the product
of the rings C and D, and we consider S + T as a C x D-C x D-bimodule
(the left action of C on T and of D on S being zero, and similar conditions
hold on the right). Denote by î- (S, T ) the tensor algebra of the C x D-
C x D-bimodule S + T, thus as an additive group

with multiplication induced by forming tensor products. Let R(03B3) be the
ideal of 9-(S, T) generated by all elements of the form s Q t - y(s Q t),
with s E S, t E T. Then, by definition, A (y) == J(S, T)/&#x26;l(y). We denote by
ec the image of the unit element of C in A (y), and by eD the image of the unit
element of D in A(y). Note that ec, eD are orthogonal idempotents in A(y)
with 1 = ec + eD .
We want to investigate properties of A (y). Before we do this, let us insert

a description of the category of A(y)-modules. Let W(y) be the following
category: an object of (03B3) is of the form (Xc, YD, ç, 03C8), where ~: Xc 0
CSD - YD, 03C8: YD ~’DTC ~ Xc such that 03C8(~ Q 1T) = 1, Q y; the maps
(X, Y, 9, 03C8) ~ (X’, Y’, ç’, 03C8’) are of the form (03BE, ~), where 03BE: XC ~ X’C, ~:
YD ~ Y’D such that ç’(j Q 1S) = qç and 03C8’(~ Q 1T) = çt/1, and the com-
position of the maps is componentwise. In case both C and D are k-algebras
for some field k, the object (Xc, YD, 9, 03C8) in W(y) is said to be finite

dimensional provided both Xc and YD are finite dimensional over k.

PROPOSITION 1: The category of (right) A(y)-modules is equivalent to (03B3). In
case both C and D are k-algebras over some field k, the finite dimensional
A(y)-modules correspond to the finite dimensional objects in W(y), under such
an equivalence.

Proof: This can be easily verified. For the convenience of the reader, we out-
line the construction of the relevant functors. Given an object (Xc, YD, 9, 03C8)
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in W(y), then X + Y is canonically a right 1(S, T)-module, and the
condition 03C8 (~ 0 1T) = 1X ~ y implies that the J (S, T)-module X + Y is

annihilated by R(03B3), thus it is an A(y)-module. Conversely, given a right
A(03B3)-module M, then M = Mec + MeD , and Mec may be considered as a
right C-module, MeD as a right D-module, and the operation of A (y) on M
gives, in addition, maps 9: Mec 0 CSD ~ MeD, 03C8: MeD ~ DTC ~ Mec,
which satisfy 03C8(~ Q 1T) = 1MeC Q y.

REMARK: The objects in W(y) may be exhibited also in an alternative way:
Instead of specifying a map 03C8: YD Q DTC ~ Xc, one may consider the
adjoint map 03C8: YD -+ HomC(CTC, Xc). Note that y induces a natural

transformation y*: F - G, where F = - Q CSD and G = HomC(DTC, -)
are considered as functors from the category of C-modules to the category
of D-modules, namely yi = 1, Q y, for any C-module X. The condition
03C8(~ ~ 1T) = 1X ~ y translates to the condition 03C8~ = yi, thus the com-
mutation of the triangle

This is the form of the objects considered by Mirollo and Vilonen in
[MiV]. They start with a right exact functor F, a left exact functor G, and
a natural transformation il: F - G. It has been used in [MiV] that under
their assumptions, any right exact functor Fis a tensor product functor, any
left functor G is a Hom functor. But also, any natural transformation 1:
F ~ G, where F = - Qx CSD and G = HomC(DTC, 2013), is induced by a
bimodule homomorphism CSD ~ HomC(DTC, CCC), namely by qx, where
X = Cc (note that this qx is not only a map of right D-modules, but also
commutes with the left action by C, using the naturality condition). How-
ever, the bimodule homomorphisms CSD ~ HomC(DTC, CCC) correspond
bijectively to the bimodule homomorphism c SD ~ DTC ~ CCC, to the case
considered above is the general case.

PROPOSITION 2: The subgroup

of g- (S, T) is a direct complement of R(03B3).
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Proof.- Letî-0 = C x D, and Jn+1 1 = Jn ~C D (S + T), for n E N0. Thus
9- = .r (S, T) = ~n0 Jn. By induction on n, one easily shows that 9- nis
contained in C + D + S + T + T Oc S + f1ae(y). On the other hand, let
u~R(03B3), say u = 03A3 xj(sj ~ tj - 03B3(s1 ~ tj))yj~C + D + S + T +
T Oc S, with si E S, tj E T, and xj, Yi E î-. We can assume Xj E 9-n,, Yj E Jmj
for some n, , m, E N0. For any i, let I(i) be the set of all j with nj + mj = i.

Then vi := 03A3j~I(i) xj (SI 0 tl )YI E Ji +2, and wi := 03A3j~I(i) XI Y(sj O tj)yj E 5i
Note that VI = 0 implies WI = 0, since wi is the image of VI under the linear
map 1 0 Y ~ 1:.r 0(’xD (S 0, T) ~C D J ~ J ~C D J. Now, if

u = 03A3i (vi + wi) is non-zero, then choose n maximal with Vn =1= 0. Then

u - Vn belongs to ~in+1 Jl, whereas Vn is non-zero in Jn+2. However, we
also assume that u belongs to J0 + J1 + T O c S. It follows that n = 0

and that Vn belongs both to S 0 T and T 0 S. But these additive subgroups
of 9-2 intersect trivially, thus u = 0.

COROLLARY 1: Let k be a field. If C, D are finite dimensional k-algebras and
S, T are finite dimensional over k, with k operating centrally on them, then
A(y) is a finite dimensional k-algebra.

Note that this corollary is essentially due to Mirollo-Vilonen. In [MiV], they
have shown that under the given assumptions, (03B3) is equivalent to the
module category over a finite dimensional k-algebra A. This algebra is not
specified further, but by Morita theory, A has to be Morita equivalent to our
A (y).

COROLLARY 2: The canonical projection J (S, T) ~ A(y) induces the follow-
ing identifications:

REMARK: The ring structure of D’ := eDA(03B3)eD = D + T ~C S is given by
the following multiplication:

for d, d’ E D ; t, t’ E T, and s, s’ E S. The right eDA(03B3)eD-module structure
on eCA(03B3)eD = S is given by
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for s, s’ E S; d E D and t E T; similarly, the left eD A (y)eD -module structure
on eDA(y)ec = T is given by

for d E D ; t, t’ E T and s E S. Finally, the multiplication yields a map

which is just the inclusion T Oc S - D + T ~C S, and a map

which is induced by y : S ~D T ~ C. Note that these data form "pre-
equivalence data" in the sense of [B] p. 61. Of course, one may obtain a
différent proof of proposition 2 by defining first the multiplication on
D’ = D + T Oc S, then a right D’-module structure on S and a left

D’-module structure on T as above, and verifying the various associativity
conditions in order to be sure to deal with "preequivalence data". Then A(y)
may be defined as the matrix ring

Observe that in the ring eDA(03B3)eD = D + T Oc S, the subgroup
eDA(03B3)eCA(03B3)eD = T ~C S is an ideal, that this ideal is complemented by
the subring D, and that the multiplication map

is bijective. These properties in fact yield a characterization of the construc-
tion, as we will show in the next proposition.

In general, given a ring A and an idempotent e, the multiplication map

is bijective if and only if the multiplication map
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is bijective. For, the multiplication map Ae ~AeA eA ~ AeA is the direct

sum of the four multiplication maps el Ae (DeAe eAe2 el AeAe2 , where
e, , e2 E {e, 1 - el, and, for trivial reasons, three of the four are always
bijective, namely those when el or e2 is equal to e.

PROPOSITION 3: Let A be a ring, let e be an idempotent of A. Assume that the multi-
plication map Ae (DeAe eA ~ AeA is bijective and that there is a subring D of
(1 - e)A(1 - e) such that (1 - e)A(1 - e) = (1 - e)AeA(1 - e) + D.
Let C = eAe, S - eA(1 - e), T = (1 - e)Ae, and y: S ~D T - C the
multiplication map. Then A is isomorphic to A(y).

Proof.- There is an obvious ring surjection J(S, T) - A which maps R(03B3)
to zero. Thus we obtain a surjective map A(03B3) ~ A. The kernel will

be a subset of T Oc S ~ A (y). However, since the multiplication map
(1 - e)Ae ~eAe eA(1 - e) ~ (1 - e)AeA(1 - e) is bijective, the kernel
of A(03B3) ~ A is zero. Thus A is isomorphic to A(y).

2. Morita equivalence

The structure of A (y) strongly depends on the bimodule map y. Assume
that there are given additional bimodules CS’D and DT’C and a bimodule
map y’: CS’D Q DT’C ~ CCC. Then we denote by y 1 y’ the bimodule

map c(S + S’)D 0 D (T’ + T’)C ~ CCC with y = y 1 y" 1 S Q T, y’ =

y 1 y’! S’ Q T’, 0 = y 1 03B3’| S 0 T’, and 0 = y 1 y’ ! S’ 0 T. If DMC is a
bimodule, let CD = Homc(,Mc, CCC) and t;M: CD Q DMc -+ CCC the
evaluation map (03B5(~ (D m) - ~(m)).

PROPOSITION 4: Let DPC be a bimodule with Pc finitely generated projective.
Then A (y) and A (y 1 03B5P) are Morita equivalent algebras.

Proof.- We show that the categories W(y) and W(y 1 ep) are equivalent. Let is :
CSD ~ c(S + Ê)D be the inclusion map, 03C0T:D(T + P)C ~ DTC the canoni-
cal projection. For any C-module Xc, we obtain the following commutative
diagram
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Note that the bottom map can be written in the form

and, since Pc is finitely generated projective, (03B5P)*X is bijective, for all Xc. It
follows that 1 Q ’s and Hom (03C0T, 1) induce isomorphisms Ker 03B3*X ~
Ker (y 1 03B5)*X and Cok yj - Cok (y 1 03B5P)*X. So we can apply proposition
1.2 of the MacPherson-Vilonen paper [MV].

REMARK: Observe that there exists an idempotent e in A(03B3 ~ 03B5P) such

that eA (y 1 03B5P)e is isomorphic to A (y) (so that eA(03B3 1 03B5)A(03B3~03B5) with s = 8p
is a progenerator). Such an idempotent e may be constructed as follows: Let
E = End Pc. Since Pc is finitely generated projective, there is a bimodule
isomorphism EPC O CE ~ EEE, defined by p (8) a H ( p’ H p03B1(p’)), for
p E P and rx e P, see [B], p. 68. In particular, there is a finite set of elements
pi e P, rxi e P such that p - 03A3ipi03B1i(p) for all p e P, namely, let f =

03A3 pi Q ai be the element in P 0 P which is mapped to 1E. Since D Pc
is a D-C-bimodule, and E = End Pc, the D-D-submodule of DPc (8)
cPD generated by f is isomorphic to DDD. We consider , f as an element of
(T + P) (8)c (S + ) ~ A(03B3 1 s). It is an idempotent and eD f = f = feD .
Let e = 1 - f Then e = (eD - f ) + eC, where eD - f and ec are

orthogonal idempotents. If we identify (03B3 1 ëp) with the category of
A (y 1 8p)-modules, and (03B3) with the category of A(03B3)-modules, then we
obtain an equivalence (03B3 1 ëp) ~ (03B3) by multiplying with the idem-
potent e.

COROLLARY 1: Let DPC be a bimodule with Pc finitely generated projective.
Then A(03B5P) is Morita equivalent to C x D.

The map y: CSD ~ DTC ~ CCC will be said to be non-degenerate provided
y(s 0 t) = 0 for all t e T implies s = 0, and y(s 0 t) = 0 and all SES
implies t = 0.

COROLLARY 2: Let C be semisimple artinian and Tc finitely generated and
assume y is non-degenerate. Then A(y) is Morita equivalent to C x D.

Pro of. Since C is semisimple artinian, Tc is also projective. Since y is

non-degenerate, we can identify CSD with CD so that y - ET . Corollary 1

shows that A(y) is Morita equivalent to C x D.
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3. Semiprimary rings

Recall that a ring A is called semiprimary provided there exists a nilpotent
ideal N such that A/N is semisimple artinian. Clearly, if such an ideal N
exists, it is uniquely determined and is called the radical of A ; we will denote
it by N(A). In particular, any finite dimensional algebra over a field k is a
semiprimary ring.
We assume that both C and D are semiprimary. As before, there is given

a bimodule map y: CSD ~ DTC ~ CCC. We denote by S’ the set of all
elements s e S satisfying y(s (D t) e N(C) for all t e T. Similarly, we denote
by T’ the set of all elements t E T satisfying y(s Q t) E N(C) for all s e S.
Note that S’ is a C-D-submodule of S with N(C)S ~ S’, and T’ is a

C-D-submodule of T with TN(C) z T’. The kernel of the canonical map

will be denoted by U. Let C = C/N(C). Since S/S’ is annihilated by N(C)
from thé left, and T/T’ is annihilated by N(C) from the right, we may
consider S/S’ as a left C-module and T/T’ as a right C-module, and y
induces a bimodule map

PROPOSITION 5: The subset I := N(C) + S’ + T’ + U of A(y) is a nilpotent
ideal, and A (y)II = A (7) -

Proof.- The canonical maps yield an exact sequence

thus U is generated by the image of T ~C S’ and T’ Oc S in T ~C S. It
follows that UT z T’, since for t E T, s’ E S’, and for t’ E T’, s E S, we have

and similarly, SU z S’. As a consequence, I is an ideal of A (y). Also,
A(03B3)/I = A (7). It remains to show that I is nilpotent. However, any element
of I’ is a sum of monomials XI X2 ... Xm with xi in N(C), N(D), S", T’, TS’
or ST’. Since there exists n with N(C)’ = 0 = N(D)n, it follows easily that
Im = 0 for large m. This completes the proof.
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COROLLARY 1: Assume (T/T’)c is finitely generated. Then A(y) is semi-

primary.

Pro of. Clearly, y is non-degenerate, thus A(03B3) is Morita equivalent to
D x C, by corollary 2 to proposition 4. In particular, A(ÿ) is semiprimary.
Since I is nilpotent, also A(y) is semiprimary.

COROLLARY 2: Assume the image of y is contained in N(C). Then N(A(03B3)) =
N(C) + N(D) + S + T + T Oc S, and A(y)/N(A(y)) = C/N(C) x
D/N(D).

Proof.- Since the image of y is contained in N(C), we have S’ = S, T’ = T,
thus U = T Oc S. Also, A(y) = C x D, and the radical of A(y) is

0 x N(D).
Recall that a semiprimary ring A is said to be basic provided AIN(A) is

a product of division rings. Any semiprimary ring is Morita equivalent to a
uniquely determined basic semiprimary ring.

COROLLARY 3: If C, D are basic and the image of y is contained in N(C), also
A(y) is basic. 

1

REMARK: It is not difficult to see that all the conditions are also necessary in

order to have A (y) basic.

Now assume that both C and D are finite dimensional k-algebras and that
the bimodules CSD and DTC are finite dimensional over k, with k operating
centrally on them. As we have seen, for any y: CSD ~ DTC ~ c Cc, the ring
A(y) is a finite dimensional k-algebra. We consider now the special case
D = k.

PROPOSITION 6: Let D = k. Then y = y’ 1 Sp, where Pc is (finitely
generated) projective, and the image of y’ is contained in N(C). In particular,
A(y’) is the basic algebra Morita equivalent to A(y).

Proof.- In case the image y is contained in N(C), let y’ = y and P = 0. So
assume the image of y is not contained in N(C). Since the image of y is a
C-C-subbimodule, it has to contain a primitive idempotent e of C. Thus, let
s; E S, ti E T with 03B3(03A3 si @ ti) = e. Without loss of generality, we can
assume s; = esi, ti = tie for all i. For some i, we must have y(si Ox ti) ~
N(C), thus y(si (x) ti) E eCeBN(eCe). But eCe is a local ring, thus there is
some ece with e = y(si Qx ti)ece = y(s; 0 tiece). This shows that there is
s = es E S and t = te E T such that y(s ~ t) = e.
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Note that the canonical map Ce - Cs, given by ce H ces is bijective:
it is surjective, since s = es, and if xs = 0, then 0 = y(xs 0 t) =

x03B3(s Q t) = xe, thus it is also injective. Similarly, the canonical map
eC ~ tC is bijective. It follows that tC is a projective right C-module and
that we may identify Cs with tC such that Cs Qk tC is equal to e,c.

Let S’ be the set of all s’ E S with y (s’ 0 t) = 0, and T’ the set set of all
t’ E T such that 03B3(s 0 t’) = 0. We claim

For, if c E C and cs E S’, then 0 = 03B3(cs (D t) = c03B3(s (8) t) = ce, thus

cs = 0, and so S’ n Cs = 0. On the other hand, given u E S, then
u - y (u (8) t))s belongs to S’, since

thus u E S’ + Cs. The dual arguments give the second assertion.
Let y’ be the restriction of y to S’ (8) kT’. Since 03B3|S’ (8) k tC and 03B3|Cs (8) k T’

both are zero, we see that y = y’ 1 03B5tC. The proof of the proposition can be
completed by using induction: the process of splitting off bimodule maps
must stop since we deal with finite dimensional modules.
Note that A(03B3’) is basic by corollary 2 to proposition 5, and is Morita

equivalent to A (y) by proposition 4.

4. Quasi-hereditary algebras

We recall the relevant definitions. The rings considered will usually be
assumed to be semiprimary. An ideal J of A is said to be a heredity ideal of
A, if J2 = J, JN(A)J = 0, and J, considered as right A-module, is projec-
tive. The (semiprimary) ring A is called quasi-hereditary if there exists a
chain / = (Ji)i of ideals

of A such that, for any 1  t  m, the ideal Jt/Jt-1 is a heredity ideal of
A/Jt-l. Such a chain of ideals is called a heredity chain.
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Let A be quasi-hereditary with heredity chain - (Ji)0im. Given an
A-module XA the chain of submodules

will be called the fi-filtration of XA . We say that the fi-filtration of XA is
good, provided XJi j XJi -1 is a projective A/Ji -1 1-module, for 0  i  m, and

similarly for left modules.

THEOREM 1: Let A be a semi-primary ring, and e an idempotent of A, let

C = eAe. The following conditions are equivalent:
(i) There exists a heredity chain for A containing AeA.
(ii) Both rings C and A/AeA are quasi-hereditary, the multiplication map

is bijective, and there exists a heredity chain f of C such that the
P-filtrations of (Ae)c and c(eA) are good.

(iii) Both rings C and A/AeA are quasi-hereditary, the multiplication map

is bijective, and there exists a heredity chain f of C such that the
P-filtrations of ((1 -  e)Ae)c and C(eA(1 - e)) are good.

The proof of the theorem requires some preparation. Note that an ideal J
of A satisfies J2 = J if and only if there exists an idempotent e of A with
J = AeA.

PROPOSITION 7: Let e be an idempotent in a quasi-hereditary ring A such that
AeA belongs to a heredity chain. Then the multiplication map Ae ~eAe
eA ~ AeA is bijective.

Proof.- In case AeA is a heredity ideal, the result is known, see the appendix
of [DR]. We proceed by induction on t, where

is a heredity chain of A.



166

Let J = Jt-1. Let Ã = A/J, and denote by e the image of e in A. Let
e = 03A3si=1 ei with orthogonal primitive idempotents ei. We can assume that
el , ... , es are ordered in such a way that ei e J if and only if i  s’. Let

f = 03A3s’i=1 ei. Then J = AfA and f = ef = fe, thus fAf ~ eAe.
We claim that the following sequence

with ~ induced by inclusion maps, and 03C8 induced by the canonical surjec-
tions, is exact. For the proof, we proceed as follows. The canonical exact
sequence

of right eAe-modulus is tensored on the right with eAeeA, thus we obtain

We tensor the canonical exact sequence

of left eAe-modules with AfAeeAe and with (Ae/AfAe)eAe and obtain

and

Since both AfAe 0,A, (eAleAfA) and (AelAfAe) QgeAe eAfA are zero, we see
that ~2 is surjective, and 03C80 is bijective. Note, that (Ae/AfAe) O eAe (eA/eAfA)
may be identified with Âé ~eAe éA, so that t/J = 03C8003C81. Also, there is a

canonical map
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induced by the inclusion maps, and one easily checks that qJ3 is surjective.
Since (p = qJI Ç02 qJ3, it follows that qJ maps onto the kernel of t/1.
There is the following commutative diagram

where the vertical maps are the multiplication maps, and the lower exact
sequence is the canonical one. By definition, Jt/Jt-1 is a heredity ideal of À,
thus 03BC is bijective. By induction, 03BC is bijective. It follows that ç is injective
and that y is bijective. This completes the proof.

LEMMA 1: Let A be a semiprimary ring, J a heredity ideal of A, and e E A an
idempotent with J ~ AeA. Then eJe is a heredity ideal in eAe and the right
eAe-module JeeAe and the left eAe-module eAeeJ both are projective.

Proof.- Since J2 = J and J g AeA, there is an idempotent f in A with
J = AfA and f = efe. Therefore (eJe)2 = eAfAeAfAe = eA, f ’Ae - eJe. Of
course, N(eAe) - eN(A)e, thus, eJeN(eAe)eJe 9 JN(A)J = 0. As a right
A-module, J = AfA is an epimorphic image of some direct sum ~fA, and,
since JA is projective, it follows that JA is isomorphic to a direct summand
of Q fA. Thus JeeAe is isomorphic to a direct summand of Q fAe, and since
f is an idempotent in AeA, we know that fAeeAe, and therefore JeeAe is

projective. Similarly, since AJ is projective (see [PS] or also [DR]), we also
have eAeeJ projective.

LEMMA 2: Let C be any ring, f an idempotent in C, and M a right C-module.
Assume that (MfC)c is projective. Then the multiplication map ,u: Mf O fcf
fC ~ MfC is bijective.

Proof.- Since y is a surjective map of right C-modules, it splits. Thus, there
is a C-submodule U of Mf ~fCf fC such that the restriction of p to U is
bijective. Multiply U, Mf ~fCf fC and MfC from the right by f. Since the
map Mf ~fCf fCf ~ MfCf = Mf induced by p is bijective, the same is true
for the inclusion map Uf - Mf ~fCf fCf. Thus Uf = Mf ~fCf fCf. But the
C-module Mf ~fCf fC is generated by Mf ~fCf fCf, thus Mf ofcf fC = U.

PROPOSITION 8: Let A be a semiprimary ring. Let e be an idempotent of A, let
C = eAe, and assume that the multiplication map Ae oc eA ~ AeA is
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bijective. Let J be an ideal with J ~ AeA. The following conditions are
equivalent:

(i) J is a heredity ideal of A.
(ii ) eJe is a heredity ideal of C, the C-modules (Je)c and c(eJ) are

projective, and the multiplication map Je ~C eJ ~ J is bijective.
(iii) eJe is a heredity ideal of C, the C-modules ((1 - e) Je)c and

c(eJ(l - e)) are projective, and the multiplication map (1 - e)Je Oc
eJ(1 - e) -+ (1 - e)J(1 - e) is bijective.

Proof.- If J is a heredity ideal of A, then clearly eJe is a heredity ideal
of C, thus all conditions include the assumption that eJe is a heredity
ideal of C. Let f be an idempotent of C with eJe = CfC. Thus, fe =
ef = e, and J = AfA. Let D = fAf. There is the following commutative
diagram

where all the maps Mi are multiplication maps. Since we assume that the
multiplication map Ae ~CeA ~ AeA is bijective, the map 03BC4: fAe ~C
eAf ~ fAf is bijective, thus also 1 (8) J.l4 OO 1 is bijective.

(i) =&#x3E; (ii): Assume that J is a heredity ideal. According to lemma 1, we
know that (Je)c is projective. Dually, also c(eJ) is projective. Since the
multiplication map 03BC3: Af (8) D fA -+ AfA is bijective, we see that also MI, J.l2
are bijective. Thus we conclude that 03BC5: Je ~C eJ - J is bijective.

(ii) ~ (iii): We only have to observe that (Je)C = (eJe)c EB ((1 - e)Je)c,
and C(eJ) = C(eJe) 0 C(eJ(1 - e)).

(iii) ~ (i): Since J = AfA, we have J2 = J and JN(A)J = AfN(A)fA =

AfN(C)fA = 0. It remains to be seen that the multiplication map M3 is

bijective. Lemma 2 applied to M = A asserts that the map pj is bijective,
since (Je)c is projective. Dually, also M2 is bijective. By assumption, 03BC5 is

bijective, thus 03BC3 is bijective. This completes the proof.

LEMMA 3: Let C be a ring, f an idempotent in C. Let Mc and cN be C-modules.
Assume (MfC)c and c(CfN) are projective C-modules. Then there is an exact
sequence
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where v is induced by the inclusion maps, and n is induced by the projection
maps.

The canonical sequence

gives the long exact sequence

where we use that (MfC)c is projective. Since fN = 0, we see that MfC Oc
N = 0. Also, we obtain the sequence

which is exact, since C(CfN) is projective. Here, M ~C CfN = 0, since
Mf = 0. As a consequence, the maps a, 03B2, y all are bijective. The canonical
exact sequence

yields the upper row of the following commutative diagram

Since oc, fi, y are bijective, and the upper row is exact, also the lower one is
exact.

LEMMA 4: Let J be a heredity ideal in A, let B = A/J. If XB, B Y are B-modules,
we may consider them as A-modules, and we have Torf(X, Y) ~ TorA1(X, Y).

Proof: Write XA = AnA/X’ for some submodule X’ of AÂ and some n. Since
XJ = 0, it follows that Jn ~ X’, and X = Bn/x", where X" = Jn/X’.
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We have the following commutative diagram with exact rows and columns:

Tensoring with , Y gives the following commutative diagram, with all tensor
products being over A:

with exact rows and columns. Since JY = 0, and J2 = J, we see that
Jn ~A Y = 0, thus y, b are isomorphisms. But the kernel of 03B1 is TorA1(X, Y),
the kernel of 03B2 is TorB1(X, Y). This completes the proof.

LEMMA 5: Let A be quasi-hereditary, with heredity chain P. Assume that the
P-filtrations of XA, AY are good. Then TorA1(X, Y) = 0.

Pro of. Let P = (Ji)0im. The proof is by induction on m. Let B =
A/J1. By induction, we have TorB1(X/XJ1, Y/J1Y) = 0, thus TorA1(X/XJ1,
Y/JI Y) = 0 by lemma 4. Since (XJ1)A is projective, also Tor1 (XJI,
Y/J1Y) = 0, thus TorA1(X, Y/J1Y) = 0 by the long exact Tor-sequence.
Also, A(J1Y) is projective, thus TorA1(X, J1Y) = 0 and therefore

Tor1 (X, Y) - 0, again using a long exact Tor-sequence.
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Proof of the theorem: Let f = (Ji)i be a chain of idempotent ideals of A,
say

and assume that Jt = AeA for some t. Note that for 0  i  t, we have

(i) ~ (ii): We assume that f is a heredity chain. Clearly, AlAeA = AjJt
is quasi-hereditary. Also, C = AeA is quasi-hereditary, with heredity chain
J = (eJie)0it, see [DR]. According to Proposition 7, the multiplica-
tion map Ae ~C eA ~ AeA is bijective. It remains to be shown that the
J-filtrations of (Ae)c and c(eA) are good. We deal with (Ae)c, the other case
follows from dual considerations. Let 1  1 5 t, we have to show that

AeJie/AeJi-1e is a projective right CleJi - 1 e-module. We apply Proposition 8
to the ring A = AlJi-1, the idempotent é = e + Ji-1, and the ideal
J = Ji/Ji-1. Since AeA belongs to a heredity chain of A, the assumption
concerning the multiplication map is satisfied. Let C = éÀé. Since J is a
heredity ideal of A, it follows that (Jé)c is a projective C-module. However,
C can be identified with CjeJi-1 l e, and ié can be identified with Jie/Ji-1e =

AeJiej AeJi-1e. It follows that AeJie/AeJi-1e is a projective C/eJi-1e-
module.

(ii) ~ (iii): Let el = e, e2 = 1 - e. There are the direct decompositions
of C-modules (Ae)c = (e1Ae)C Q (e2Ae)c and c(eA) = C(eAe1) ffl c(eAe2).
The multiplication map ,u: Ae ~C eA - eAe is the direct sum of the four
multiplication maps

1  i, j  2. But Pli, Jll2, 03BC21 are always bijective. Thus 03BC is bijective if and
only if Jl22 is bijective. Also, given a heredity chain f of C, the J-filtration
of Cc is always good. Thus the P-filtration of (Ae)C is good if and only if the
J-filtration of ((1 - e)Ae)C is good. A similar argument for c(eA) and
C(eA(1 - e)) completes the proof.

(ii) =&#x3E; (i): Let X = (I )i be a heredity chain for C, say

Let J1 = AIiA, for 0  i  t, thus Jt = eAe. Also note that ejie = I1 for
all 0  i  t. We want to apply Proposition 8 to the ideal J = Jl . Since the
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f-filtration of Ae is good, we know that (Aell)c is a projective C-module.
However, Aeh - AeJI e = J1e, thus (J1e)C is a projective C-module.

Similarly, c(eJI) is a projective C-module. Since the P-filtrations of (Ae/Je)c
and c(eAleJ) are good, we have Torl (Ae/Je, eAleJ) = 0 by lemma 5. We
can apply lemma 3 to M = Ae and N = eA, since AefC = Je is a projective
right C-module, and CfeA = eJ is a projective left C-module. There is the
following commutative diagram of canonical maps:

(with v induced by the inclusion maps, 03C0 by the projection maps, and all
maps J1’, J1, fi being multiplication maps). Both rows are exact, the first one
according to lemma 3. Now y is bijective by assumption, thus J1’ is injective.
But clearly p’ is also surjective, thus J1’ is bijective too. Thus all conditions
of (ii) in proposition 8 are satisfied, therefore J is a heredity ideal. It remains
to be shown that À = A/J and é = e + J again satisfy the conditions (ii)
of the theorem, so that we can use induction. Let C = eAe. Clearly,
A/AeA ~ AlAeA, and C ~ CIII, so both rings are quasi-hereditary. The
ring C has the heredity chain J = (I /I1)1it and one easily checks that the
P-filtrations both of (Ae)C and of c (éÀ) are good. Finally, the multiplication
map Àê Oc ëÃ -+ AeA is just the map fi in the diagram above, and
therefore bijective. This completes the proof of the theorem.

In the special case when C is semisimple, the conditions (ii) and (iii) of
theorem 1 are easier to formulate.

COROLLARY: Let A be a semisimple ring, e an idempotent of A, and assume
that C = eAe is semisimple. Then the following conditions are equivalent:

(i ) There exists a heredity chain containing AeA.
(ii ) A/AeA is quasi-hereditary, and the multiplication map Ae Oc eA ~

AeA is bijective.
(iii) AlAeA is quasi-hereditary, and the multiplication map

(1 - e)Ae Q9c eA(1 - e) - (1 - e)AeA(1 - e) is bijective.

REMARK: The ’not so trivial extension’ method outlined by Parshall
and Scott in [PS] can be based on this corollary: if fi = (Ji)0im is

a heredity chain for A, and JI = AeA for some idempotent e of A, then
C = eAe is semisimple. Also, we can assume that e is chosen in such
a way that we have, in addition, eA(1 - e) z N(A). In this case, the
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the multiplication map

is zero, in particular, the ideal U = (1 - e)AeA(1 - e) of D =

(1 - e)A(1 - e) satisfies U2 = 0. It follows that A is uniquely determined
by C, D := A/AeA, the C-D-bimodule M = eA(l - e), the D-C-bimodule
N = (1 - e)Ae, and the ’Hochschild extension’

5. The inductive construction of quasi-hereditary algebras

THEOREM 2: Let C, D be quasi-hereditary rings, let CSD, DTC be bimodules, and
y: CSD 0 DTC - cCc a bimodule homomorphism. Assume that there exists a
heredity chain J of C such that the P-filtrations both of cS and of Tc are good.
Then A(y) is quasi-hereditary.

Proof.- Let e = ec. Then c SD - eA(1 - e), DTc = ( 1 - e)Ae. The asser-
tion is just the implication (iii) ~ (i) of theorem 1.
We consider now the converse problem of writing a given quasi-

hereditary ring in the form A(03B3).

PROPOSITION 9: Let A be a quasi-hereditary ring, let e be an idempotent of A
such that AeA belongs to a hereditary chain of A. Assume that there exists
a subring D of (1 - e)A(1 - e) such that D + (1 - e)AeA(1 - e) =
(1 - e)A(1 - e). Let C = AeA, S = eA(1 - e), T = (1 - e)Ae, and y:
S QD T ~ C the multiplication map. Then A = A(y).

Proof.- This is a direct consequence of propositions 7 and 3.
As a consequence, we obtain the following result which gives the inductive

procedure for constructing quasi-hereditary rings. Here, given a semipri-
mary ring A, we denote by s(A) the number of isomorphism classes of simple
right A-modules.

THEOREM 3: Let k be a field. Let A be a non-zero quasi-hereditary finite
dimensional k-algebra with a heredity chain f = (Ji)0im. Assume D :=
A/Jm-l is a separable k-algebra. Then there exists a quasi-hereditary k-algebra
C with s(C)  s(A), with a heredity chain P = (Ii)0im-1, bimodules CSD,
DTc, such that the 5-filtrations of cS and Tc are good, and a bimodule
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homomorphism 03B3:CSD Q9 DTc -+ cCc with image contained in N(C), such that

Proof. Choose an idempotent e of A such that Jm-1 = AeA and such that,
moreover, eA(1 - e) g N(A). Note that

thus, since A/AeA is assumed to be separable, there exists a subring D ~
(1 - e)AeA(1 - e) such that D + (1 - e)AeA(1 - e) = (1 - e)A(1 - e).
Let C = eAe, S - eA(1 - e), T = (1 - e)Ae, and y : S ~D T - C be the
multiplication map. Then A = A(03B3) by proposition 9. The assumption
eA(1 - e) z N(A) implies that the image of y is contained in N(C). Of
course, s(A(03B3)) = s(C) + s(D), thus s(C)  s(A). Let X = (Ii)0im-1
with Ii = eJie, this is a heredity chain by [DR], and the P-filtrations of cS
and Tc are good, by (the proof of) the theorem in section 4.

COROLLARY: Let k be a perfect field. Let A be a non-zero quasi-hereditary
finite dimensional k-algebra. Then there exists a semisimple k-algebra D, a
quasi-hereditary k-algebra C, with s(C)  s(D), and a bimodule homorphism
y: cSD 0 Tc CCC such that A - A(y).

Pro of. Let (Ji)0im be a heredity chain of A. Always, Aj Jm-l 1 is

semisimple. Since k is perfect, A/Jm is even separable. So we apply theorem 3.

6. Examples

Let C, D be quasi-hereditary rings, and y: CSD Q DTc -+ cCc a bimodule
homomorphism. Theorem 2 asserts that A (y) is quasi-hereditary provided
there exists a heredity chain X for C such that the --F-filtrations both of cS
and Tc are good. We want to give two examples which show what may
happen in general. We consider quasi-hereditary algebras C with s(C) - 2
and D will be a division ring. The simple right C-modules will be denoted
by E(1), E(2). The projective cover of E(i) will be denoted by P(i). The
simple left C-modules will be denoted by E*(i), with E*(i) 0c E(i) ~ 0.

EXAMPLE 1: Let C be serial, with P(1) of length 3, and P (2) of length 2. Let
Tc be the indecomposable right C-module of length 2 with top E(1), and cS
the indecomposable left C-module of length 2 with top E*(2). The endo-
morphism rings of TC and CS are isomorphic division rings (always,
we assume that endomorphisms act on the opposite side as the scalars), say
D = End (Tc) = End (cS). Note that the D-C-bimodule Hom (c SD ,
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CCC) can be identified with DTC, let y: c S Q9D Tc - c cc be adjoint to the
identity map DTc -+ Hom (CSD, cCc). One may check without difficulties
that A = A(y) is again serial, with simple right modules E(1), E(2), E(3),
(where E(1), E(2) are the given C-modules). If PA(i ) denotes the projective
cover of E(i), then PA (i ) has length 4, 3, 4 for i = 1, 2, 3, respectively. It
follows that gl. dim. A = 4, but A is not quasi-hereditary.

EXAMPLE 2: Let C again be serial, with P(1) of length 2, and P (2) of
length 1. (Thus, C is Morita equivalent to the ring of upper triangular
2 x 2-matrices over some division ring). Let Tc be the simple injective right
C-module, cS the simple injective left C-module (thus, Tc = E(1), and
CS = E * (2)), and D = End (Tc) = End (cS). Let y: CS ~D TC ~ CCC be
the zero map. Then A = A(y) is again serial with all indecomposable
projective A-modules of length 2. Consequently, A is self-injective with
N(A)2 = 0. In particular, gl. dim. A = oo.
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