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Introduction

Two different algebraic approaches have been introduced in order to deal
with highest weight categories arising in representation theory (for semi-
simple complex Lie algebras [BGG] or semisimple algebraic groups) and
with the categories of perverse sheaves over suitable spaces [BBD]. One
approach starts with the axiomatization of highest weight categories in
papers by Cline, Parshall and Scott [S], [CPS], [PS], where it is shown that
the highest weight categories with a finite number of weights are just
the module categories over finite dimensional algebras which are quasi-
hereditary. The other approach is based on descriptions of the categories of
perverse sheaves by Mebkhout [Me] and MacPherson and Vilonen [MV];
recently, Mirollo and Vilonen [MiV] have shown that these categories are
again equivalent to module categories over certain finite dimensional alge-
bras. The aim of our paper is to exhibit more explicitly the algebras A(y)
studied by Mirollo and Vilonen, and to formulate the precise relationship
between this construction and the quasi-hereditary algebras introduced by
Cline, Parshall and Scott. In particular, we obtain in this way a construction
for all quasi-hereditary algebras. In contrast to the “not so trivial extension”
method oulined in [PS], one avoids in this way the use of Hochschild
extensions.

Let us outline the construction. Let k£ be a perfect field, let C, D be finite
dimensional k-algebras, assume that C is quasi-hereditary and D is semi-
simple. Let S, and ,7. be bimodules such that .S and T, have good
filtrations with respect to some heredity chain of C. Let y: .S, ® ,T, —
C. be a bimodule map with image in the radical of C. Then an algebra
A(y) is defined, which again is quasi-hereditary. We obtain all quasi-
hereditary algebras by iterating this procedure, starting with C the zero
ring.



156 V. Dlab and C.M. Ringel
1. The rings A(y)

Let C, D be rings (associative, with 1), .S,, T, bimodules, and y: .S, ®
p»Te = ~Cc-abimodule homomorphism. These are the data we will work with.
In particular, starting from these data, we are going to define a ring A(y).

The direct sum of two abelian groups M,, M, will be denoted by
M, + M,, in order to make terms which involve both the direct sum and
the tensor product symbol more readable. We denote by C x D the product
of the rings C and D, and we consider S + Tasa C x D-C x D-bimodule
(the left action of C on T and of D on S being zero, and similar conditions
hold on the right). Denote by 7 (S, T') the tensor algebra of the C x D-
C x D-bimodule S + T, thus as an additive group

TEST) =C+D+S+T+SRT+TRS+S®T®S
D C D C

C D

with multiplication induced by forming tensor products. Let #(y) be the
ideal of 7 (S, T') generated by all elements of the form s ® ¢ — y(s ® 1),
with s € S, t € T. Then, by definition, 4(y) = J (S, T)/%(y). We denote by
e, the image of the unit element of C in 4(y), and by e, the image of the unit
element of D in A(y). Note that e, ¢, are orthogonal idempotents in A(y)
with 1 = e, + ¢p.

We want to investigate properties of A(y). Before we do this, let us insert
a description of the category of A(y)-modules. Let €(y) be the following
category: an object of € (y) is of the form (X, Yy, ¢, ¥), where ¢: X, ®
Sp = Yo, ¥ Y, ®,T, > X such that Y (¢ ® 1;) = 1, ® y; the maps
X, Y, o, ) - (X', Y, ¢, ') are of the form (&, ), where &: X, - X/, n:
Y, - Y/ suchthat ¢'(¢ ® 1) = np and ¥'(n ® 1;) = &Y, and the com-
position of the maps is componentwise. In case both C and D are k-algebras
for some field k, the object (X, Y,, ¢, ¥) in €(y) is said to be finite
dimensional provided both X. and Y}, are finite dimensional over k.

PROPOSITION 1: The category of (right) A(y)-modules is equivalent to €(y). In
case both C and D are k-algebras over some field k, the finite dimensional
A(y)-modules correspond to the finite dimensional objects in €(y), under such
an equivalence.

Proof: This can be easily verified. For the convenience of the reader, we out-
line the construction of the relevant functors. Given an object (X¢, Y, @, ¥)
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in €(y), then X + Y is canonically a right 7 (S, T)-module, and the
condition (¢ ® 1;) = 1, ® yimplies that the 7 (S, T)-module X + Yis
annihilated by #(y), thus it is an A(y)-module. Conversely, given a right
A(y)-module M, then M = Me. + Me,, and Me, may be considered as a
right C-module, Me,, as a right D-module, and the operation of A(y) on M
gives, in addition, maps ¢: Me, ® S, - Me,, ¥: Me, @ T, - Me,,
which satisfy Y(¢ ® 1;) = 1),  ® 7.

REMARK: The objects in %(y) may be exhibited also in an alternative way:
Instead of specifying a map y: Y, ® ,7. - X, one may consider the
adjoint map ¥: Y, - Hom.(,T., X.). Note that y induces a natural
transformation y*: F — G, where F = — ® S, and G = Hom(, T, —)
are considered as functors from the category of C-modules to the category
of D-modules, namely y¥ = 1, ® y, for any C-module X. The condition
Y(p ® 1;) = 1, ® y translates to the condition ¢ = 7%, thus the com-
mutation of the triangle

FOX) -2 G(X)
@ 4
Y

This is the form of the objects considered by Mirollo and Vilonen in
[MiV]. They start with a right exact functor F, a left exact functor G, and
a natural transformation #: F — G. It has been used in [MiV] that under
their assumptions, any right exact functor F'is a tensor product functor, any
left functor G is a Hom functor. But also, any natural transformation #:
F - G, where F = — ® S, and G = Hom.(,7., —), is induced by a
bimodule homomorphism .S, - Hom.(,7,, -C.), namely by 7,, where
X = C. (note that this #, is not only a map of right D-modules, but also
commutes with the left action by C, using the naturality condition). How-
ever, the bimodule homomorphisms .S, - Hom/(,7., -C.) correspond
bijectively to the bimodule homomorphism S, ® ,T. — ~C¢, to the case
considered above is the general case.

PROPOSITION 2: The subgroup

C+D+S+T+TQ®S
c

of 7 (S, T) is a direct complement of X(y).
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Proof Lete/0 =Cx D,and7,,, = F, Qcxp (S + T),forn e N;. Thus
T =95, T)=®,57,. By induction on n, one easily shows that 7, is
contained nC+D+ S+ T+ T®-S + Z(y). On the other hand, let
ue R(y), say u=ZXx(5®¢ y(s®t))yjeC+D+S+T+
T ®. S,withs;e S, 1, e T,and x,, y;€ . Wecan assume x; € 7, , y; €

for some n,, m e N;. For any i, let 1(i) be the set of all j w1th n,+ m = i.
Then v, := Z,E,(,) xX(5, ® 1)y, € Tiyy, and w;:= X ) X, (s ® 1)y €

Note that v, = 0 implies w, = 0, since w, is the image of v, under the lmear
map 1® )y ®1:7 Qcxn S®p T) cup T = T RcyxpZ. Now, if
u = X, (v; + w,) is non-zero, then choose n maximal with v, # 0. Then
u — v, belongs to ®,.,,, Z,, whereas v, is non-zero in 7, ,,. However, we
also assume that u belongs to 7, + 7, + T ®. S. It follows that n = 0
and that v, belongs bothto S ® T'and T ® S. But these additive subgroups
of 7, intersect trivially, thus u = 0.

COROLLARY 1: Let k be a field. If C, D are finite dimensional k-algebras and
S, T are finite dimensional over k, with k operating centrally on them, then
A(y) is a finite dimensional k-algebra.

Note that this corollary is essentially due to Mirollo-Vilonen. In [MiV], they
have shown that under the given assumptions, € (y) is equivalent to the
module category over a finite dimensional k-algebra A. This algebra is not
specified further, but by Morita theory, 4 has to be Morita equivalent to our

A(y).

COROLLARY 2: The canonical projection 7 (S, T) — A(y) induces the follow-
ing identifications:

ecA(y)ec C, epA(y)e, = D + TQC@S, e A()e, = S,

epA()ec = T.

REMARK: The ring structure of D" := e, A(y)e, = D + T ® S is given by
the following multiplication:

@tRs)(d, I @) +d,dl ® +t®sd + tys® 1) ® 5),

ford, d e D;t,t' € T, and s, s' € S. The right e, A(y)ep,-module structure
on e-A(y)e, = S is given by

s d,t®s) = sd + (s ® 1)s,
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fors, s € S;de D and ¢ € T, similarly, the left e, A(y)e,-module structure
on epA(y)e. = T is given by

dt®s) = dt’ + tyis ® t'),

forde D; t,t" € T and s € S. Finally, the multiplication yields a map
epA(ec ® ecAley — epA(ey

which is just the inclusion T ® S - D + T ® S, and a map
ecA@)er ® epA()ec = ecA()ec

which is induced by y: S ®, T — C. Note that these data form ‘pre-
equivalence data” in the sense of [B] p. 61. Of course, one may obtain a
different proof of proposition 2 by defining first the multiplication on
D' =D+ T ®,S, then a right D’-module structure on S and a left
D’-module structure on T as above, and verifying the various associativity
conditions in order to be sure to deal with “preequivalence data”. Then A(y)
may be defined as the matrix ring

c S
T D |
Observe that in the ring e,A(y)e, = D + T ®. S, the subgroup

epA(p)ecA(y)e, = T ® S is an ideal, that this ideal is complemented by
the subring D, and that the multiplication map

epA()ec ® ecA®y)ep, = epA()ecAR)e,

ecAQR)ec

is bijective. These properties in fact yield a characterization of the construc-
tion, as we will show in the next proposition.
In general, given a ring 4 and an idempotent e, the multiplication map

(1 — e)de (? eA(l1 —e) - (1 — e)dedA(l — ¢)

is bijective if and only if the multiplication map

Ae ® eA — AeA

eAe
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is bijective. For, the multiplication map Ade ® ,, eA — AeA is the direct
sum of the four multiplication maps e, de ®,,, ede, - e, Aede,, where
e, e, € {e, 1 — e}, and, for trivial reasons, three of the four are always
bijective, namely those when ¢, or e, is equal to e.

PROPOSITION 3: Let A be a ring, let e be an idempotent of A. Assume that the multi-
plication map Ae ®,,, eA — AeA is bijective and that there is a subring D of
(1 — e)A(1 — e) such that (1 — e)A(1 — e) = (1 — e)AeA(1 — e) + D.
Let C = ede, S = eA(l —e), T = (1 — e)de, and y: S ®, T — C the
multiplication map. Then A is isomorphic to A(y).

Proof: There is an obvious ring surjection J (S, T) — A which maps £(y)
to zero. Thus we obtain a surjective map A(y) > A. The kernel will
be a subset of T ®. S < A(y). However, since the multiplication map
(1 — e)de ®,,, eA(l — e) > (1 — e)AdeA(1 — e) is bijective, the kernel
of A(y) —» A is zero. Thus A is isomorphic to A(y).

2. Morita equivalence

The structure of A(y) strongly depends on the bimodule map y. Assume
that there are given additional bimodules S}, and ,7/ and a bimodule
map y: S, ® pT, = ~C.. Then we denote by y L y° the bimodule
map (S + )y ® p(T + T)e > Cc with y =y LY |S®T, y =
yLyISS®T7T,0=9yLy|S®T,and0 =y Ly |S" ® T.If ;M.isa
bimodule, let .M, = Hom.(, M., C,) and ¢,: M, ® ,M. — .C, the
evaluation map (e(¢ ® m) = @(m)).

PROPOSITION 4: Let , P be a bimodule with P. finitely generated projective.
Then A(y) and A(y L ¢p) are Morita equivalent algebras.

Proof: We show that the categories €(y) and €(y L ¢,) are equivalent. Let ig:
Sp = (S + P), be the inclusion map, n;: ,(T + P). - 7T, the canoni-
cal projection. For any C-module X, we obtain the following commutative
diagram

7
Xe ® Sy — Hom/(,T¢, X¢)
1® 1g Hom (n;,1)

X, ® o(S + Py, 2, Home(p(T + P)e, Xe).
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Note that the bottom map can be written in the form
[y; X ]
0 (ep)¥
—_——

and, since P, is finitely generated projective, (g,)¥ is bijective, for all X,.. It
follows that 1 ® i1y and Hom (%;, 1) induce isomorphisms Ker y§ —
Ker (y L ¢)¥ and Cok y} — Cok (y L &)¥. So we can apply proposition
1.2 of the MacPherson-Vilonen paper [MV].

X, ® Sp + X ® P, Hom(, T, X;) + Hom.(, P, X,),

REMARK: Observe that there exists an idempotent e in A(y L ¢,) such
that e4(y L ep)e is isomorphic to A(y) (so that eA(y L &),,,, withe = ¢,
is a progenerator). Such an idempotent e may be constructed as follows: Let
E = End P.. Since P, is finitely generated projective, there is a bimodule
isomorphism P ® P, — E;, defined by p ® o (p’ — pa(p’)), for
p e Pand a € P, see [B], p. 68. In particular, there is a finite set of elements
p;€ P, a;e P such that p = T, p,a,(p) for all p e P, namely, let f =
T p, ® a; be the element in P ® P which is mapped to 1,. Since ,P.
is a D-C-bimodule, and E = End P., the D-D-submodule of ,P. ®
P, generated by f is isomorphic to ,D,. We consider f as an element of
(T 4+ P) ®.(S + P) = A(y L ¢). Itisanidempotentand e, f = f = fe,,.
Let e=1—f Then e = (e, — f) + e., where e, — f and e. are
orthogonal idempotents. If we identify €(y L ¢,) with the category of
A(y L gp)-modules, and € (y) with the category of 4(y)-modules, then we
obtain an equivalence ¥(y L ¢,) — €(y) by multiplying with the idem-
potent e.

COROLLARY 1: Let ,P. be a bimodule with P. finitely generated projective.
Then A(ep) is Morita equivalent to C x D.

The map y: Sp ® pT. = C. will be said to be non-degenerate provided
y(s ® ) = 0 for all te T implies s = 0, and y(s ® f) = 0 and all s S
implies ¢ = 0.

COROLLARY 2: Let C be semisimple artinian and T, finitely generated and
assume 7 is non-degenerate. Then A(y) is Morita equivalent to C x D.

Proof: Since C is semisimple artinian, T is also projective. Since 7 is
non-degenerate, we can identify .S, with .7, so that y = ¢;. Corollary 1
shows that A(y) is Morita equivalent to C x D.
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3. Semiprimary rings

Recall that a ring 4 is called semiprimary provided there exists a nilpotent
ideal N such that A/N is semisimple artinian. Clearly, if such an ideal N
exists, it is uniquely determined and is called the radical of 4; we will denote
it by N(A). In particular, any finite dimensional algebra over a field k£ is a
semiprimary ring.

We assume that both C and D are semiprimary. As before, there is given
a bimodule map y: S, ® ,T- = C.. We denote by S the set of all
elements s € S satisfying y(s ® ¢) € N(C) for all t € T. Similarly, we denote
by T the set of all elements ¢ € T satisfying y(s ® 1) € N(C) for all s € S.
Note that S’ is a C-D-submodule of S with N(C)S < S’, and T’ is a
C-D-submodule of T with TN(C) < T’. The kernel of the canonical map

T C>C<) S > (T/T") C>C<) (S/8)

will be denoted by U. Let C = C/N(C). Since S/S’ is annihilated by N(C)
from the left, and 7/T’ is annihilated by N(C) from the right, we may
consider S/S” as a left C-module and 7/T’ as a right C-module, and y
induces a bimodule map

72 e(S/S) (? (T/T")e - ¢Ce-

PROPOSITION 5: The subset [ == N(C) + S" + T’ + U of A(y) is a nilpotent
ideal, and A(y)/1 = A(®).

Proof: The canonical maps yield an exact sequence

TRS+T'®S-T® S - (TIT") ® (5/5) - 0,
c c c c

thus U is generated by the image of T ®. S  and 77 ®, Sin T ®, S. It
follows that UT < T’,sincefort e T,s' € S’,andfort’ € T',s € S, we have

RS T<sT NO<cT,®s)*T<cTCcT,

and similarly, SU = S’. As a consequence, I is an ideal of A(y). Also,
A()/T = A(F). It remains to show that 7 is nilpotent. However, any element
of I is a sum of monomials x,x, . . . x,, with x;in N(C), N(D), S", T', TS’
or ST’. Since there exists n with N(C)* = 0 = N(D)", it follows easily that
I" = 0 for large m. This completes the proof.
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COROLLARY 1: Assume (T/T"). is finitely generated. Then A(y) is semi-
primary.

Proof: Clearly, 7 is non-degenerate, thus A(y) is Morita equivalent to
D x C, by corollary 2 to proposition 4. In particular, 4(7) is semiprimary.
Since I is nilpotent, also A(y) is semiprimary.

COROLLARY 2: Assume the image of v is contained in N(C). Then N(A(y)) =
NC)+ ND)+ S+ T+ T®:S, and A@y)/N(A®)) = C/N(C) x
D/N (D).

Proof: Since the image of y is contained in N(C), we have S" = S, T" = T,
thus U =T ®.S. Also, A(j) = C x D, and the radical of A(y) is
0 x N(D).

Recall that a semiprimary ring A is said to be basic provided 4/N(A4) is
a product of division rings. Any semiprimary ring is Morita equivalent to a
uniquely determined basic semiprimary ring.

COROLLARY 3: If C, D are basic and the image of y is contained in N(C), also
A(y) is basic.

REMARK: It is not difficult to see that all the conditions are also necessary in
order to have A4(y) basic.

Now assume that both C and D are finite dimensional k-algebras and that
the bimodules S, and , 7, are finite dimensional over k, with k operating
centrally on them. As we have seen, for any y: .S, ® T = ~Cc, the ring
A(y) is a finite dimensional k-algebra. We consider now the special case
D = k.

PrOPOSITION 6: Let D = k. Then y =y L ¢,, where P, is (finitely
generated) projective, and the image of y’ is contained in N(C). In particular,
A(Y') is the basic algebra Morita equivalent to A(y).

Proof: In case the image y is contained in N(C), lety” = yand P = 0. So
assume the image of y is not contained in N(C). Since the image of y is a
C-C-subbimodule, it has to contain a primitive idempotent e of C. Thus, let
s;€8, t;e T with (£ s5; ® t;) = e. Without loss of generality, we can
assume s; = es;, t; = t;e for all i. For some i, we must have y(s; ® ¢;) ¢
N(C), thus y(s; ® t,) € eCe\N(eCe). But eCe is a local ring, thus there is
some ece with e = y(s; ® 1,)ece = y(s; ® t;ece). This shows that there is
s =eseSand t = tee Tsuch that y(s ® 1) = e.
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Note that the canonical map Ce — Cs, given by ce > ces is bijective:
it is surjective, since s = es, and if xs = 0, then 0 = y(xs ® ¢) =
xy(s ® f) = xe, thus it is also injective. Similarly, the canonical map
eC — tC is bijective. It followgvthat tC is a projective right C-module and
that we may identify Cs with ¢C such that y|Cs ®, tC is equal to &,.

Let S’ be the set of all 5" € S with y(s" ® ¢) = 0, and T” the set set of all
t" € T such that y(s ® ¢') = 0. We claim

S =8 +Cs and T = T + ¢C.
For, if ce C and cs€ §’, then 0 = y(cs ® 1) = ¢y(s ® 1) = ce, thus

¢s =0, and so "~ Cs = 0. On the other hand, given u e S, then
u — y(u ® t))s belongs to S’, since

YU -y ® 1)s) ® 1) u®) — vy ® s ® 1)
= yu®te) - yu® Hyls ® 1)

yu® e — y(u ® t)e = 0.

thus u € " + Cs. The dual arguments give the second assertion.

Let y” be the restriction of y to S” ®, 7”. Since y|S” ®, tCandy|Cs ®, T’
both are zero, we see that y = y” L ¢,. The proof of the proposition can be
completed by using induction: the process of splitting off bimodule maps
must stop since we deal with finite dimensional modules.

Note that A(y’) is basic by corollary 2 to proposition 5, and is Morita
equivalent to A(y) by proposition 4.

4. Quasi-hereditary algebras

We recall the relevant definitions. The rings considered will usually be
assumed to be semiprimary. An ideal J of 4 is said to be a heredity ideal of
A, if J> = J,JN(4)J = 0, and J, considered as right 4-module, is projec-
tive. The (semiprimary) ring A is called quasi-hereditary if there exists a
chain # = (J;); of ideals

0 = JycoJjc---cJ, = 4

m

of A such that, for any 1 < ¢ < m, the ideal J,/J,_, is a heredity ideal of
A/J,_,. Such a chain of ideals is called a heredity chain.
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Let A be quasi-hereditary with heredity chain ¢ = (J;)y<;<,- Given an
A-module X, the chain of submodules

0 = XJj,csXxJjc---<cXJ, = X

will be called the #-filtration of X,. We say that the #-filtration of X, is
good, provided XJ;/XJ, _, is a projective A/J;_,-module, for0 < i < m, and
similarly for left modules.

THEOREM 1: Let A be a semi-primary ring, and e an idempotent of A, let
C = ede. The following conditions are equivalent:

(i) There exists a heredity chain for A containing AeA.

(i) Both rings C and A]/AeA are quasi-hereditary, the multiplication map

Ae ® eA — AeA
C

is bijective, and there exists a heredity chain # of C such that the
SF-filtrations of (Ae). and -(eA) are good.
(iii) Both rings C and A/AeA are quasi-hereditary, the multiplication map

(1 — e)de ® eA(1 — e) > (1 — e)deA(l — ¢)

is bijective, and there exists a heredity chain $ of C such that the
SF-filtrations of (1 — e)Ae). and ~(eA(1 — e)) are good.

The proof of the theorem requires some preparation. Note that an ideal J
of A satisfies J> = J if and only if there exists an idempotent e of 4 with
J = AeA.

PROPOSITION 7: Let e be an idempotent in a quasi-hereditary ring A such that
AeA belongs to a heredity chain. Then the multiplication map Ae ®,,,
eA — AeA is bijective.

Proof: In case AeA is a heredity ideal, the result is known, see the appendix
of [DR]. We proceed by induction on ¢, where

0 = JycJjc---cJ, = AdAeAc---cJ, = 4

m

is a heredity chain of 4.
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Let J = J_,. Let A = A/J, and denote by & the image of e in 4. Let
e = X!_, e; with orthogonal primitive idempotents e¢;. We can assume that
e, ...,e,are ordered in such a way that ¢, e J if and only if i < 5. Let
f=Xf_,e.ThenJ = Af4 and f = ef = fe, thus fAf < ede.

We claim that the following sequence

Af@ AL Ade @ eA 2> Ae ® éA — 0

fAf ede ede

with ¢ induced by inclusion maps, and ¥ induced by the canonical surjec-
tions, is exact. For the proof, we proceed as follows. The canonical exact
sequence

0 > Afde » Ae —» Ae/AfAe — 0

of right ede-modulus is tensored on the right with ,,ed, thus we obtain

Afde ® ed 2 de @ ed s (de/AfAe) ® ed — 0.
eAe

AeA eAe

We tensor the canonical exact sequence
0 > eAfAd — eA — eAjeAfA — 0
of left eAe-modules with AfAe,,, and with (4de/AfAe),,, and obtain

Afde ® eAfd 2 Afde ® eA — Afde @ (edAjeAfA) — 0
ede ede

eAe

and

(Ae/Afde) ® eAfd — (Ae/Afde) ® eA
Y0, (dejAfde) ® (ed/eAfA) - 0.

Since both Afde ®,,, (eA/eAfA) and (Ae/AfAe) ®,, eAfA are zero, we see
that ¢, is surjective, and y, is bijective. Note, that (4de/Afde) ®,,, (eA/eAfA)
may be identified with 4¢ ®,;, €4, so that Y = y,y,. Also, there is a
canonical map

Af ® fA -2 Afde ® eAfA
JAf eAe
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induced by the inclusion maps, and one easily checks that ¢, is surjective.
Since ¢ = @, @,¢;, it follows that ¢ maps onto the kernel of .
There is the following commutative diagram

AR fA4- de®ed s At @ed— 0

JAf eAe eAe

O

0— J., — J, — JJy —0

where the vertical maps are the multiplication maps, and the lower exact
sequence is the canonical one. By definition, J,/J,_, is a heredity ideal of 4,
thus f is bijective. By induction, f is bijective. It follows that ¢ is injective
and that u is bijective. This completes the proof.

LEMMA 1: Let A be a semiprimary ring, J a heredity ideal of A, and e € A an
idempotent with J = AeA. Then elJe is a heredity ideal in eAe and the right
eAe-module Je,,, and the left e Ae-module ,,,eJ both are projective.

Proof: Since J*> = J and J < AeA, there is an idempotent f in A4 with
J = AfA and f = efe. Therefore (eJe)’ = eAfAeAfde = eAfAe = eJe. Of
course, N(ede) = eN(A)e, thus, eJeN(ede)eJe = JN(A)J = 0. As a right
A-module, J = AfA is an epimorphic image of some direct sum @ f4, and,
since J, is projective, it follows that J, is isomorphic to a direct summand
of @ fA. Thus Je,,, is isomorphic to a direct summand of @ fAe, and since
fis an idempotent in Aed, we know that fde,,,, and therefore Je,,, is
projective. Similarly, since ,J is projective (see [PS] or also [DR]), we also
have ,,eJ projective.

LEMMA 2: Let C be any ring, f an idempotent in C, and M a right C-module.
Assume that (MfC). is projective. Then the multiplication map p. Mf ®
fC — MSC is bijective.

Proof: Since p is a surjective map of right C-modules, it splits. Thus, there
is a C-submodule U of Mf ® ., fC such that the restriction of u to U is
bijective. Multiply U, Mf ® ., fC and MfC from the right by f. Since the
map Mf ® fCf - MfCf = Mfinduced by u is bijective, the same is true
for the inclusion map Uf = Mf ® fCf. Thus Uf = Mf ® ., fCf. But the
C-module Mf ® ., fC is generated by Mf ®c, fCf, thus Mf @, fC = U.

PROPOSITION 8: Let A be a semiprimary ring. Let e be an idempotent of A, let
.C = eAe, and assume that the multiplication map Ae @, eA — AeAd is
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bijective. Let J be an ideal with J < AeA. The following conditions are
equivalent:
(i) J is a heredity ideal of A.
(ii) eJe is a heredity ideal of C, the C-modules (Je). and -(eJ) are
projective, and the multiplication map Je ® . eJ — J is bijective.
(iii) eJe is a heredity ideal of C, the C-modules (1 — e)Je). and
c(eJ(1 — e)) are projective, and the multiplication map (1 — e)Je ®,
eJ(1 —e) - (1 —e)J(1 — e) is bijective.

Proof: If J is a heredity ideal of A, then clearly eJe is a heredity ideal
of C, thus all conditions include the assumption that eJe is a heredity
ideal of C. Let f be an idempotent of C with eJe = CfC. Thus, fe =
ef = e, and J = AfA. Let D = fAf. There is the following commutative
diagram

Af ® fde ® eAf ® fA L2225 Afde @ eAfA
D C D C

l'@m@l l"s

Af ® /4 — AfA

where all the maps y, are multiplication maps. Since we assume that the
multiplication map de ®.ed — AeA is bijective, the map u,: fde @,
eAf — fAf is bijective, thus also 1 ® u, ® 1 is bijective.

(i) = (ii): Assume that J is a heredity ideal. According to lemma 1, we
know that (Je). is projective. Dually, also ~(eJ) is projective. Since the
multiplication map y;: Af ® , fA — AfA is bijective, we see that also y,, u,
are bijective. Thus we conclude that u,: Je ®. eJ — J is bijective.

(ii) = (iii): We only have to observe that (Je). = (eJe). @ (1 — e)Je).,
and c(eJ) = c(eJe) @ c(eJ (1 — e)).

(iii) = (i): Since J = AfA, we have J> = Jand JN(A)J = AfN(A)fA =
AfN(C)fA = 0. It remains to be seen that the multiplication map py; is
bijective. Lemma 2 applied to M = A asserts that the map g, is bijective,
since (Je). is projective. Dually, also p, is bijective. By assumption, y; is
bijective, thus u, is bijective. This completes the proof.

LEMMA 3: Let C be a ring, f an idempotent in C. Let M and - N be C-modules.
Assume (MfC) and -(CfN) are projective C-modules. Then there is an exact
sequence

Tor§ (M/M/C, N|CN) 2> M/C & C/N > M ® N

— (M/MfC) ® (V/CIN) - 0,
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where v is induced by the inclusion maps, and w is induced by the projection
maps.

Proof: Let M. = M/MfC, and .N = N/CfN. The canonical sequence
0 > (MfC)e > Mo - M. - 0
gives the long exact sequence

0 — TorS(M, N) X TorS(M, N) —- MfCQ N— M ® N
C C
M@ N—O,
C

where we use that (MfC),. is projective. Since fN = 0, we see that MfC ®
N = 0. Also, we obtain the sequence

0— MfC® CfN- M ® CfN— M ® CfN — 0,
C C C

which is exact, since ~(CfN) is projective. Here, M ® . CfN = 0, since
Mf = 0. As a consequence, the maps «, B, y all are bijective. The canonical
exact sequence

0= (CfN) > cN—> N0

yields the upper row of the following commutative diagram

Torf’(M,N) —— M® C/N — MQN— MO N — 0
C

| ] |

TorS(M, N) 2 MfC® CIN—> M ® N = M ® N — 0.

Since o, B, y are bijective, and the upper row is exact, also the lower one is
exact.

LEMMA 4: Let J be a heredity ideal in A, let B = A|J. If X3, zY are B-modules,
we may consider them as A-modules, and we have Torf(X, Y) ~ Tor!(X, Y).

Proof: Write X, = A% /X’ for some submodule X’ of 4% and some n. Since
XJ = 0, it follows that J" < X', and X = B"/X”, where X" = J"/X’.
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We have the following commutative diagram with exact rows and columns:

0 0
||
o=

|

00— X, -4 — X,—0

[

0— X — B, — X,—0

|

0 0

Tensoring with ,Y gives the following commutative diagram, with all tensor
products being over A:

JTRY = J"QY

XYL AARY >XRY—O

b2 [ “

XYL BRY—DX®Y—0

with exact rows and columns. Since JY = 0, and J? = J, we see that
J"®, Y = 0, thus y, § are isomorphisms. But the kernel of « is Tor{ (X, Y),
the kernel of B is Torf(X, Y). This completes the proof.

LEMMA 5: Let A be quasi-hereditary, with heredity chain ¢. Assume that the
F-filtrations of X, ,Y are good. Then Tor{ (X, Y) = 0.

Proof: Let ¢ = (J)o<i<m- The proof is by induction on m. Let B =
A/J,. By induction, we have Tor?(X/XJ,, Y/J,Y) = 0, thus Tor{(X/XJ,,
Y/J\Y) = 0 by lemma 4. Since (XJ,), is projective, also Tor{(X/J,,
Y/J,Y) = 0, thus Tor{(X, Y/J,Y) = 0 by the long exact Tor-sequence.
Also, ,(J\Y) is projective, thus Tor{(X,J,Y) = 0 and therefore
Tor{ (X, Y) = 0, again using a long exact Tor-sequence.
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Proof of the theorem: Let # = (J,), be a chain of idempotent ideals of 4,
say

0 = JycJjc--cJ, = A

m

and assume that J, = AeA for some ¢. Note that for 0 < i < ¢, we have

AeJie = AdeAJie = JJe = Je.

(1) = (ii): We assume that ¢ is a heredity chain. Clearly, A/ded = A/J,
is quasi-hereditary. Also, C = AeA is quasi-hereditary, with heredity chain
JF = (eJi€)y<i<,> see [DR]. According to Proposition 7, the multiplica-
tion map Ae ®.ed — AeA is bijective. It remains to be shown that the
S-filtrations of (4e). and -(eA) are good. We deal with (4e)., the other case
follows from dual considerations. Let 1 < i < ¢, we have to show that
AeJ.ef/AeJ;_, e is a projective right C/eJ;_,e-module. We apply Proposition §
to the ring A = A4/J;_,, the idempotent € = e + J,_,, and the ideal
J = J,/J,_,. Since AéA4 belongs to a heredity chain of 4, the assumption
concerning the multiplication map is satisfied. Let C = é4eé. Since J is a
heredity ideal of A, it follows that (Jé). is a projective C-module. However,
C can be identified with C/eJ;_, e, and Jé can be identified with J,e/J,_,e =
AeJ.e/ Ael;_,e. It follows that AeJ,e/AeJ,_,e is a projective CleJ;_,e-
module.

(ii) <> (iii): Let ¢, = e, e, = 1 — e. There are the direct decompositions
of C-modules (4e). = (e,4e)c @ (e;Ae)c and (ed) = (ede)) @ (ede,).
The multiplication map u: de @ e4 — eAe is the direct sum of the four
multiplication maps

W e;Ae ® ede; —» e Aede;,
Z :

1 < i,j < 2. But yy, uy,, 4, are always bijective. Thus pu is bijective if and
only if uy, is bijective. Also, given a heredity chain # of C, the #-filtration
of C.is always good. Thus the #-filtration of (4e). is good if and only if the
SFiltration of ((1 — e)de). is good. A similar argument for .(e4) and
c(eA(1 — e)) completes the proof.

(ii) = (i): Let # = (I,); be a heredity chain for C, say

0 = Lhclhcec ---cl = C

Let J; = AILA, for 0 < i < t, thus J, = ede. Also note that eJ;e = I, for
all0 < i < t. We want to apply Proposition 8 to theideal J = J,. Since the
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S-filtration of Ae is good, we know that (A4el,). is a projective C-module.
However, Adel, = AeJie = J,e, thus (J,e). is a projective C-module.
Similarly, ~(eJ;) is a projective C-module. Since the #-filtrations of (4e/Je)
and .(ed/eJ) are good, we have Tor{ (4e/Je, eA/eJ) = 0 by lemma 5. We
canapplylemma3to M = Aeand N = eA, since AefC = Jeis a projective
right C-module, and Cfed = eJ is a projective left C-module. There is the
following commutative diagram of canonical maps:

00— Je® el Ade ® eA - (Ae/Je) ® (edleJ) — 0
C C C

f

0— J — Aded — AeAlJ — 0

(with v induced by the inclusion maps, = by the projection maps, and all
maps u’, u, i being multiplication maps). Both rows are exact, the first one
according to lemma 3. Now u is bijective by assumption, thus y’ is injective.
But clearly u’ is also surjective, thus u’ is bijective too. Thus all conditions
of (ii) in proposition 8 are satisfied, therefore J is a heredity ideal. It remains
to be shown that A = 4/J and é = e + J again satisfy the conditions (ii)
of the theorem, so that we can use induction. Let C = é4é. Clearly,
A/AeéA ~ A/AeA, and C ~ C/I,, so both rings are quasi-hereditary. The
ring C has the heredity chain .# = (I,/1)), ., and one easily checks that the
J filtrations both of (4é) and of ~(¢4) are good. Finally, the multiplication
map Aé ®.éA — AéA is just the map j in the diagram above, and
therefore bijective. This completes the proof of the theorem.

In the special case when C is semisimple, the conditions (ii) and (iii) of
theorem 1 are easier to formulate.

COROLLARY: Let A be a semisimple ring, e an idempotent of A, and assume
that C = eAe is semisimple. Then the following conditions are equivalent:
(i) There exists a heredity chain containing AeA.
(it) AJAeA is quasi-hereditary, and the multiplication map Ae @ eA —
AecA is bijective.
(iii) A/AeA is quasi-hereditary, and the multiplication map
(1 — e)de ®, eA(l — e) » (1 — e)AeA(1 — e) is bijective.

REMARK: The ‘not so trivial extension’ method outlined by Parshall
and Scott in [PS] can be based on this corollary: if # = (J)o<i<m 1S
a heredity chain for A4, and J, = AeA for some idempotent e of A4, then
C = ede is semisimple. Also, we can assume that e is chosen in such
a way that we have, in addition, eA(1 — ¢) < N(A). In this case, the
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the multiplication map

eA(l —e) ® (1 — e)de —» ede = C
z

is zero, in particular, the ideal U = (1 — e)dedA(l —e) of D =
(1 — e)A(1 — e) satisfies U2 = 0. It follows that A4 is uniquely determined
by C, D := A/AeA, the C-D-bimodule M = eA(1 — e), the D-C-bimodule
N = (1 — e)Ade, and the ‘Hochschild extension’

0>N®M->D->D-0.
C

5. The inductive construction of quasi-hereditary algebras

THEOREM 2: Let C, D be quasi-hereditary rings, let Sy, , T be bimodules, and
y: cSp ® pTe = Cc a bimodule homomorphism. Assume that there exists a
heredity chain . of C such that the #-filtrations both of S and of T, are good.
Then A(y) is quasi-hereditary.

Proof: Let e = e.. Then .S, = eA(l — e), pT. = (1 — e)Ae. The asser-
tion is just the implication (iii) = (i) of theorem 1.

We consider now the converse problem of writing a given quasi-
hereditary ring in the form A(y).

PROPOSITION 9: Let A be a quasi-hereditary ring, let e be an idempotent of A
such that AeA belongs to a hereditary chain of A. Assume that there exists
a subring D of (1 — e)A(1 — e) such that D + (1 — e)deA(l — e) =
(1 — eA(l —e). Let C = Aed, S = eA(1 —e), T = (1 — e)Ae, and y:
S ®p, T — C the multiplication map. Then A = A(y).

Proof: This is a direct consequence of propositions 7 and 3.

As a consequence, we obtain the following result which gives the inductive
procedure for constructing quasi-hereditary rings. Here, given a semipri-
mary ring 4, we denote by s(A4) the number of isomorphism classes of simple
right 4-modules.

THEOREM 3: Let k be a field. Let A be a non-zero quasi-hereditary finite
dimensional k-algebra with a heredity chain § = (J;)o<i<m- Assume D :=
AlJ,,_, is a separable k-algebra. Then there exists a quasi-hereditary k-algebra
C with s(C) < s(A), with a heredity chain # = (I,)o<; <n—1> bimodules S,
pTc, such that the #-filtrations of .S and T, are good, and a bimodule
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homomorphism y: -Sp ® pTc = Cc with image contained in N(C), such that
A = A®).

Proof: Choose an idempotent e of 4 such that J,,_, = AeA and such that,
moreover, eA(1 — e¢) < N(A4). Note that

(1 — A1 — &))(1 — e)ded(l — e) ~ A/AeA,

thus, since 4/A4eA is assumed to be separable, there exists a subring D <
(1 — e)deA(1 — e) such that D + (1 — e)dedA(l — e) = (1 — e)A(1 — e).
Let C = ede, S = eA(1 — e), T = (1 — e)de,andy: S ®, T — C be the
multiplication map. Then 4 = A(y) by proposition 9. The assumption
eA(l — e) = N(A) implies that the image of y is contained in N(C). Of
course, s(4(y)) = s(C) + s(D), thus s(C) < s(4). Let £ = (L )o<ci<cm—1
with I, = eJe, this is a heredity chain by [DR], and the #-filtrations of .S
and T, are good, by (the proof of) the theorem in section 4.

COROLLARY: Let k be a perfect field. Let A be a non-zero quasi-hereditary
finite dimensional k-algebra. Then there exists a semisimple k-algebra D, a
quasi-hereditary k-algebra C, with s(C) < s(D), and a bimodule homorphism
Y: ¢Sp ® pTe > Cc such that A = A(y).

Proof: Let ¢ = (J;)o<i<w b€ a heredity chain of A. Always, A4/J,_, is
semisimple. Since k is perfect, A/J, is even separable. So we apply theorem 3.

6. Examples

Let C, D be quasi-hereditary rings, and y: S, ® ,T. = C. a bimodule
homomorphism. Theorem 2 asserts that A(y) is quasi-hereditary provided
there exists a heredity chain # for C such that the #-filtrations both of .S
and T, are good. We want to give two examples which show what may
happen in general. We consider quasi-hereditary algebras C with s(C) = 2
and D will be a division ring. The simple right C-modules will be denoted
by E(1), E(2). The projective cover of E(i) will be denoted by P(i). The
simple left C-modules will be denoted by E*(i), with E*(i) ® . E(i) # 0.

ExAMPLE 1: Let C be serial, with P(1) of length 3, and P(2) of length 2. Let
T, be the indecomposable right C-module of length 2 with top E£(1), and .S
the indecomposable left C-module of length 2 with top E*(2). The endo-
morphism rings of T, and .S are isomorphic division rings (always,
we assume that endomorphisms act on the opposite side as the scalars), say
D = End (T;) = End (.S). Note that the D-C-bimodule Hom (.Sp,



A construction for quasi-hereditary algebras 175

¢C¢) can be identified with T, let y: .S ®, T, —» -C. be adjoint to the
identity map ,7. - Hom (.S, -C¢). One may check without difficulties
that 4 = A(y) is again serial, with simple right modules E(1), E(2), E(3),
(where E(1), E(2) are the given C-modules). If P,(i) denotes the projective
cover of E(i), then P,(i) has length 4, 3, 4 for i = 1, 2, 3, respectively. It
follows that gl. dim. A = 4, but A4 is not quasi-hereditary.

ExaMPLE 2: Let C again be serial, with P(1) of length 2, and P(2) of
length 1. (Thus, C is Morita equivalent to the ring of upper triangular
2 x 2-matrices over some division ring). Let T, be the simple injective right
C-module, .S the simple injective left C-module (thus, 7, = E(1), and
S = E*(2)),and D = End (T;) = End (.S). Lety: .S ®, T = -C. be
the zero map. Then 4 = A(y) is again serial with all indecomposable
projective A-modules of length 2. Consequently, A is self-injective with
N(A4)* = 0. In particular, gl. dim. A = .
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