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A “Hardy-Littlewood” approach to the S-unit equation
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This paper is concerned with the quantitative theory of the S-unit equation.
Suppose K is an algebraic number field, finite dimensional over @, with ring
of algebraic integers denoted o,. We define a prime to be an equivalence
class of non-trivial valuations on K. The infinite primes are those which
contain archimedean valuations and will be denoted by S, . It is usual to
normalise the valuations so that the product formula holds;

[Tlel, = 1 forall x e K*, M

v

where the product extends over all the valuations. Suppose S is a finite set
of valuations of K which contains the archimedean valuations, S > S, .
Write Us for the set of all @ € K* with the property

lal, = 1 forv¢s. )

The set U forms a group under multiplication and the structure of Uy is well
known;

U =T x Z° (3)

Here T denotes a (finite) torsion group, consisting of the roots of unity inside
K, also | S| = s + 1. We are going to assume throughout the paper that if
v € S extends the valuation corresponding to the finite (rational) prime p
then all of the w which extend p are also contained in S.

Let ¢,, . . . , ¢, denote non-zero algebraic numbers. There is a consider-
able amount of interest in the values taken by the expression

CoXo + . - . + ¢, Xy, 4)

where the x; are allowed to run through the group of S-units of K. Several
authors [4-7, 9, 10] have considered the qualitative theory, that is,
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where one sets the expression (4) to zero and considers the number of
possible solutions. It becomes clear that one must forbid scaler multiples of
(4). Thus, it is convenient to work inside the projective space P"(K). This is
the set of all vectors x = (x,, . . . , X,), X; € K, where two such are identified
if one is a non-zero multiple of the other.

In [4], it was proved that the equation

Xy + ... +¢x, = 0, &)

has only a finite number of solutions x = (x,, . . ., x,) € P*(K), where
each x; € U, provided there are no proper, vanishing subsums. That is,

CoXy + -+ o x, #0, ©6)
for all proper subsets {i, . .., i} < {0, ..., n}.
In the quantitative theory a very important role is played by the following

definition. Given x = (x,, . . . , x,) € P"(K), define the projective height of
Xx to be

H(x) = [[max {Ixl,, ..., Ixl} (M

This is well-defined on P"(K) because it is independent of scalar multiples
by the product formula (1). Observe that when each x; € Us, one may rewrite
(7) more simply as

H(x) = []max {{xl, ..., xl} ®)

veS

The aim of the theory is to make a comparison between the expression

N()-C) = l_[ |Cox0 + ...+ cnxnlva (9)

and the height function H(x) in (8). To simplify the presentation of this
paper suppose that ¢, = 1, ;e Z, i = 1, ..., n (thus, the product in (9)
can run over the valuations of K). It follows from Evertse’s Theorem 2
in [4] that, given ¢ > 0, there is a constant c(¢) > 0 such that for all
x =(x,...,x,) e P"(K), x;e Ug, which satisfy condition (6), we have

N(x) > cH(x)'". (10)
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In this paper we will introduce a new approach, which could be seen as a
refinement of the result (10). It contains a technique not dissimilar from the
Hardy-Littlewood method. The technique employs (10), also the theorem of
Baker on linear forms in logarithms. The reader should note that (10)
depends upon Schlickewei’s generalisation of the Subspace Theorem of
W. Schmidt.

The techniques we wish to introduce can perfectly well be exhibited in the
case n = 2. Given the projective nature of the problem let x = (1, x,, x;,),
x; € Us, so that (9) becomes,

N = T+ ex + axl, ceZ 1n

veS

For the complex variable z, define

N@) = Y (log N(x)~7, (12)

X

where the ““click” indicates that those x have been omitted, which give
rise to a vanishing subsum. The result (10) guarantees that only finitely
many x have N(x) = 1 so they also can be omitted without harming
the kind of result we seek. A similar assumption will prevail throughout
the paper.

THEOREM: The function N(z) is analytic in the half-plane Re(z) > 2s, where
|S| = s + 1; it admits meromorphic continuation to Re(z) > 2s — 2 where
it is analytic apart from simple poles at z = 2s and 2s — 1. The pole at
z = 2s has residue

Wg :
¥ <R_K> (13)

where | is a positive rational number (a combinatorial constant, independent
of the c;) and wy, Ry denote (respectively) the number of roots of unity in K
and the regulator of K. The pole at z = 2s — 1 has residue

Wy . g ¢ Wg ’
2 <R—K> + ¥ <R_K> + Y, (R_K> log («;[[s |0162|v>- (14)

This is not the first time that results from Diphantine Approximation have been
used to give information about suitably defined complex series. For example,
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one can guarantee convergence of the Hasse—Weil {-function for an elliptic
curve using the Hasse-Davenport bound for the number of solutions
of equations over finite fields.

Our ideas are being presented in this way for three reasons. The first is that
results such as these translate into results about counting functions via
an appropriate Tauberian theorem. One such is the Delange-lIkahara
Tauberian Theorem (see [8]). One may deduce the following.

COROLLARY: Let N(q) = # {x: condition (6) holds and N(x) < q}. Then the
following asymptotic formula is valid,

N(g) = ;s (log 9)* + o((log a)**), asgq — oo, (15)
where y/, is a constant which is independent of the ¢;.

The second is that, in general application of the method, the “second pole”
(in this case, the pole at z = 2s — 1) usually contains information of an
arithmetic nature. This can be of quite a mysterious kind, see the example
2 in §3. The third reason is; we believe that the function N(z) provides a
suitable context for studying much harder and more general questions about
the values taken by N(x). For example, it is folklore that one does not expect
N(x) to take pure power values very often, up to a suitably defined notion
of degeneracy. Our methods provide a context in which asymptotic results
might be given.

The proof of the theorem depends, in part, upon a comparison made
between N(z) and the series defined by

H(@z) = ) (log Hx)*, zeC,x = (1,x,x), xe/U. (16)

Write H'(z) for the sub-series of those x which do not give rise to a vanishing
sub-sum of (5). Note that the sub-series defined by

H(z) — H'(2), a7

where x runs over those x which do give rise to a vanishing subsum, is
analytic in the half-plane Re(z) > s. Thus they are, in a very precise sense,
negligible. The proof of this will become apparent when we compare the
series (16), (17) with suitable integrals. See the remark after the proof of
Corollary 1.

Note also that we could have introduced the refinement of letting x,, x,
run over fixed subgroups of Us. Indeed, this is much closer to the approach
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in [3]. This too would have created notational difficulties but it does have an
amusing effect upon the residue at z = 2s — 1. The factor |¢,¢,|, becomes
weighted according to the relative ranks of the subgroups of Us.

The layout of the paper is as follows. In §1 a sequence of Lemmas is
provided which express geometric results in terms of complex functions. In
§2, some asymptotic formulae are obtained, based upon the geometric
considerations of §1 and the results from the theory of Diophantine
Approximation, to which reference has already been made. In §3, a short
discussion is presented of how modifications to this general technique can
be applied to some other classes of problems which give rise to an S-unit
equation. The letters 6,, 6,, . . . will be used to denote a sequence of positive
constants.

§1. Suppose L', ..., LY, L', ..., Ly are linear forms on R® with L},
j =1,..., s linearly independent, for fixed i. Define L}**' by

s+1

> Ly = 0. (18)
j=1
Extend LY to V = R* @ R’ by setting,

Li(y)) = Li(yi, »), Li(y1, ) = Li(y), (3, ) eR @ R.

(19)
Define: M;(y) = max {0, LY(y), LY(»)},
M) = L M), yeR O,
Iz) = [, M(»)*dy, zeC, (20)

where the integral is taken over ¥ = R® — B, B denoting an open ball
about the origin.

To justify the introduction of these definitions, first observe that the
function H, in (8), is invariant under the action of T in the following sense;

H(t,xy, ..., t,x,) = H(xy,...,x,) forallt,eT. 21

Thus, in the sequel, we will work modulo 7. Now write ¥} for the integer
points in V. Choose bases for the S-units x,, x,. Then the logarithms of the
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absolute values of the units are linear forms in the exponents of the units.
Identify these forms with the L} as above, (so that equation (18) becomes
a restatement of the product formula (1)). Then log H(x) becomes identified
with M(x), x € V,. We will tend to abuse this fact and switch between the
two; a liberty granted by the decision to work modulo 7.

LEMMA 1: The function 1(2) is analytic for Re(z) > 2s with a meromorphic
continuation to the whole plane. Here it is analytic apart from simple poles at
z=1,2,...,2s. The residue of the pole at z = 2s is Y,/ R%.

Proof: This is trivial, the integral can be evaluated explicitly. The resi-
due arises in the evaluation of the integral, as the Jacobian of a simple
transformation. W

Note that the dependence upon the choice of B is of a very trivial kind. If
Bis altered then the resultant change in /(z) is to add to it an entire function.

COROLLARY 1: The function N(z) is analytic in the half-plane Re(z) > 2s.

Proof: By the result (10) it is sufficient to prove that the function H(z) is
analytic for Re(z) > 2s. But this follows at once from Lemma 1 by the
integral test. In fact, H(z) (and therefore N(z)) forms an absolutely con-
vergent series which is uniformly convergent on compact subsets of the
half-plane Re(z) > 2s. The analyticity follows from the usual theory about
such series. W

Note that the remark in the introduction concerning the half-plane of
convergence for the series (17) is easily verified. A vanishing subsum can
occur only in a “diagonal” way, that is, when x;, = =+ x,. Thus the integral
test gives a comparison between (17) and an integral over R®.

LEMMA 2: The function wg?H(z) — 1(z) is analytic for Re(z) > 25 — 1.

Proof: Write c, for the unit cube with center x. Then

I = ¥ [ M)~ dy

xely

Now apply the mean-value theorem to each of the integrals. Also, observe
the following quasi-linearity property of M:

M(x + 6,) = M) + o(l) uniformly for 6, € c,. (22)



S-unit equation 107

This property (22) follows because the coefficients of the forms, also the
length of §, are all uniformly bounded quantities. Thus, with our earlier
identifications,

wi'H(z) — I(z) = Z {(log H(x))™* — (M(x) + o(1))"}.

Expand the inner bracket by the binomial theorem. The leading terms
cancel and the lower order terms guarantee, together with the known
convergence properties of H(z), that wg?H(z) — I(z) is analytic for
Re(z) >2s — 1. m

COROLLARY 2: H(z) has a meromorphic continuation to Re(z) > 2s — 1 with
only a simple pole at z = 2s, residue ,(wg/Ry)*. 1

Next we will show that there is a massive non-uniformity in the distribution
of the units. As usual, write x = (1, x,, x,) for a (projective) vector, where
x;, X, € Ug. For v € S, write

H,(x) = max {1, [x],, %]} (23)

Also, let H*(x) (respectively H}*(x)) denote the second (third) largest
member of the set in (23). Repetitions are not excluded so we might have
H (x) = HX(x) etc. For each v € S suppose constants 4, > 0, B, > 1 are
given. Define U, = U,(4,, B,) by

U, = {)_c: vwes D 4 e (=B, log log H()_c))}, Q4)
H,(x)
Hy(z) = ) (log H(x))™". (25)

xe Uy

LEMMA 3: H(z) — H,(2) is analytic in the half-plane Re(z) > 2s — 1.

The reader should notice the coincidence between the expression in (24) and
the form of (38) in the statement of Theorem A.

Here, and in the sequel, we will use the following terminology. If /() and
g(o) are two function of the real variable ¢ which take positive, real values
then we will say that g majorises fif f(o6) = O(g(o)), with the usual big O
notation.
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Proof of Lemma 3: Apply the integral test to the sum which defines
H(z) — H,y(z). Use the notation of Lemma 1 and write ¢ = Re (z). Define
M¥* and M** to satisfy

M** < M* < M, for the set {0, LY, LY}, (j=1,...,5 + 1)

If one of the inequalities in (24) is violated then (in “log space”),

s+1

3j, MM S M}<M<<M+0,+0,(logM), M=) M. (26
j=1

J
J

Thus the integral is majorised by a finite sum of integrals over subregions of
V' defined by inequalities (26). There are three cases to consider:

(@ 0<Ly<LV<Ly+0 +06,(ogM), M =1L,
(b) LY <0<Ly<6 +6,(ogM), M =L,

) Ly <Ly <0< LY+ 06, +0,(logM), M =0.

J

For (b), write
0< —Ly< Ly —Ly< — Ly + 0, +0,(logM).
Now make the change of variables;

_L"z’/ = ]Vj*’ L'l’/_L"Z’/ = AIJ
The region becomes larger if we replace M; by 2N,. The (linear) change of
variables maps the open ball about the origin into another open ball about
the origin. We can enlarge the new open ball at the cost of adding an entire
function. Similar remarks hold in case (c). Thus we compare with the
integral of the function (ZN,)™ over the region

0 <0, < N*<N < N*+0,(ogN),
27

i#j, 0<6,<N*<N, N=Y N,.
k=1

(The lower inequalities guarantee that an open ball has been removed about
the origin).
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To facilitate the integration write N* = N* + X,,,N,. Now the region
becomes larger when we write, for some 0;,

0 <0, < N* <N, < N* + 05 (log N*).

J
To see this, replace successively N, by N* + 0, (log N) on the right hand side

of (27). The result converges and we may take 0; = 20,.
Perform the N, integral first to give,

(1 — o) "{(N* + 65log N*)'=° — N*'=7},
Expand the first bracket and cancel the leading terms to obtain
05 (log N*)N*~? + lower order terms.

Replace log N* by §, N**, ¢ > 0. The remaining integrations are straight-
forward and yield a function analytic in the half-plane ¢ > 25 — 1 + .
|

COROLLARY 3: H,(z) admits meromorphic continuation to Re(z) > 2s — 1.
In this half-plane, the only singularity is a simple pole at z = 2s, with residue

¥, (;-) -

LEMMA 4: The function H(x) has meromorphic continuation to
Re(z) > 2s — 2 where it is analytic apart from simple poles at z = 2s,
2s — 1.

Proof: The idea is to reconsider the expression

> [ M) dy. (28)

wilH(z) — I(z) = ) (log H(x))™* —
X xely

As before, we abuse notation and identify x with x € V; and consequently

log H(x) with M (x). (It will be convenient to alternate between the two).

Change the variables in the integral in (28); write ¢ for the unit cube
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with centre origin. Then

WEHE) — 16) = % {(log HE@)™ ~ [ Mx + w dw}

x=xelz

=y + 2. 29

xeUp x¢ Uy

For x ¢ U,, use the mean-value theorem to give,

Y, a(x) (log H(x)) "'

x¢Up

where the a(x) are uniformly bounded quantities. By Lemma 3, this series
converges back to Re(z) > 2s — 2.

For the sum X, , use the fact that for x € U, with log H(x) sufficiently
large, and for all w € ¢,

Mx+y) = M)+ Mw), (30)
(and not just M(x) + O(1) as in (23)). In other words, the same linear form

is being used to define M (x + w), M;(w) and M, (x).
Thus

Y = ¥ {(log H(x)™ = [ (M) + M(w)™ dw}.

xe Uy x=xely

Expand the inner bracket and cancel the leading terms to obtain

Y = Hyz + ). {—ZL M(w) dw}

xely
+ something analytic for Re(z) > 2s — 2. 3D

By Lemma 3, H,(z + 1) has meromorphic continuation to Re(z) > 25 — s
with only a simple poleatz = 2s — 1. ®

COROLLARY 4: The residue of the pole of H(z) at z = 2s — 1 looks like,

e(%) N e(%) (32)
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Proof: This arises by putting together the formulae (29) and (31). The first
term appears in Corollary 2. The second comes from Corollary 2 and the
evaluation of the integral inside the curly bracket in formula (31). =

This non-uniformity of distribution persists. Given, as before, 4, > 0,
B, > 1 for v € S, write U, for the set of all x such that,

Vo e S HY*(x)
H,(x)

v

< A, exp (— B, log log H(x)). (33)

This gives rise to a series

Ayz) = 3 (og Hx)™, zeC. (34)

xe Uy

LEMMA 5: H(z) — H,(2) is analytic for Re(z) > 2s — 2.
Proof: Use the notation of the proof of Lemma 3. Write ¢ = Re(z). If one
of the inequalities in (33) is violated then in “log space” we obtain an
inequality, for some j (which might as well be 1),

M¥* < M¥ < M, < M¥* + 6, + 0,,log M.
As in the proof of Lemma 3, replace M¥ — M¥* by N, M, — M}*by N,.

Then the problem comes down to the study of

j{ Z 1\5} dN,...dN¥. .. dN¥
j=1

over the region:
0 <6, < Nt<N <60,logN, N=)Y N, (35)
k=1

i#1 0<6, <N*<N,.
(The lower inequalities gurantee the removal of an open ball about the
origin).

Suppose, without loss of generality, that N, > ... > N,. Then

N+ ...+ N<N +(6—DN< (6 — DN + N,).
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Then the integral is majorised by
[+ M),
over the region
0 <6, <N<N, <0;logh,, (36)
Ny, ...,N,N¥, ...,N*<N,. 37
Perform the N, integral to give

(1 — o) ' {(6;log N, + N,)'=° — (N} + N,)'~°}.

We may expand both brackets (the second because N < 6, log N,), and
cancel the leading terms to give

(0,5.1og N,)N;° — N¥N;° + lower order terms.
Perform the N} integral to yield
f(e, N,) = (6,;log N> N;° — 6,,(0,5 log N,)~°
— 1(6,,log N, N5° + 165, N;°.

Observe that |f(a, N,)| < 0,,N;°, ¢ > 0. Thus the integral is majorised
by

JN;a+e’

over the region 0,, < N¥,....N* N,,....N,. Perform the N}, ..., N¥,
N, . .., N, integrals to yield,

25—3 —0+e

L’|1<Nz<oo (N, — 6,y) Ny ot
Clearly this is well-defined for ¢ > 2s — 2 + &. This completes the proof.
|

COROLLARY 5: Hy(z) has a meromorphic continuation to the half-plane
Re(z) > 2s — 2 where it is analytic apart from simple poles at z = 2s and
2s — 1. The residues are (respectively) as stated in Corollaries 2 and 4. W
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§2. THEOREM A: Suppose K is a number field and S is a finite set of valuations
of K. Let Ug denote the group of S-units of K and suppose a,, . . . , o, are
non-zero constants from K. Then for each v € S there are positive constants
A, B, with the property

Vxe U |x — a,|, > A, exp (— B, log log H(x)), (38)

‘UI‘Z)

provided x # a,, where H(x) denotes the projective height of (7).

The proof of this theorem can be put together from the results in [1] and [11];
[1] for the archimedean v € S and [11] for the non-archimedean v € S. The
statement of (38) is readily transformed into one about linear forms in
logarithms. The left hand side of (38) is greater than the same expression but
with log |x |, (respectively log |a,|,) replacing x (o,). Also, observe that
log H(x) is commensurate with the absolutely largest exponent of the units
in Us.

Note that for each v € S we have six possibilities for orderings,
H,(x) > H¥X(x) = HX*(x). As we run over v € S, label all possibilities for
all orderings by i € I.

LEMMA 6: Recall the definitions of U, and U, from (24) and (33).
(i) log N(x) = log H(x) + 0, + O(l/log H(x)) foriel, xe U,.
(i) log N(x) = log H(x) + O(log log H(x)) for all x € U,.

(iii) log N(x) > 6,5 log H(x) for all x with (6) (no vanishing subsum).

Proof: (1) Given i € I,

Il

log N(x) = Ylogll + exy + exl,

HYX(x)
;log H,(x) + 6, + ;log [1 + O(%):l,

where 6, can represent one of 0, log |¢,|, or log | ¢,|,, depending upon which
of 1, | x|, or | x,|, is largest. Now (i) follows from the definition of U, and
the fact that B, > 1.
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(ii) Given v € S suppose that |¢, x|, = |c,x,|, = 1, the other cases being
entirely similar. Now we may suppose that

|x,l7" < A, exp (— B, log log H(x)), A4, >0, B, > 1. 39)
Then
X, 1
leyx, + ox, + 1], = Ixl,|a + 6=+ —
Xy X1 |,

a X

x —
— + |c2|v - |x!|v I}
X1y

lelv{
43 1

> I'xll'u {A; €Xp (_B'z; log log H('ZC)) - |xllv_l}’

v

where the last inequality follows from Theorem A. Now choose 4, = 4;/2,
B, = B, in (39) (we may suppose that B, in the statement of Theorem A
satisfies B, > 1). Then

leyx) + ox, + 1], 2 AJH,(x) exp (— B; log log H(x)).

Now taking logs and summing over v € S gives the formula in (ii). (Note
that the constants 4,, B, in the definition (24) are chosen after the application
of Baker’s Theorem in the proof of Lemma 6. Thus, the choice of U, is
determined by the proof of that Lemma).
(iii) This is a direct application of the result of Evertse in [4] (see (10)).
n
Now we come to the proof of the main result. Begin by breaking up the sum
which defines N(z), according to Lemma 6. That is,

N@) = Y (logNx)™ = Y+ Y + 3 = 8+5+S,.

x xely xelUp—Up x¢ Uy

Note that S, requires further refinement according to Lemma 6(i). This
depends upon the possible orderings of |x,|,, |x,|,, 1, © € S. In fact they
occur with equal frequency and we will assume this into the constant 6,.

We will switch freely between the series H(z) and H’(z) (see (17)) having
observed that they differ by a function which is analytic in the half-plane
Re(z) > s.
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Write ¢ = Re(z). For S; use part (iii) of Lemma 6 which gives
(log N(x))™' = O((log H(x))™"). Then

1S, < 657 Y (log H(x))™".

x¢ Up

By Lemma 5 This converges for ¢ > 2s — 2; thus S, defines an analytic
function in this half-plane.
For S, and S, expand the brackets

aix) \
<log H(x) + 0, + l_og I, ()_c))

and (log H(x) + b(x) log log H(x))™*, (where a(x), b(x) = O(1)).
Then

Si+8 = Y (log Hx)™ + Y, 6, 3 (log H(x))*""

xe Uy iel xe Uy

+ Y a(x)(log H(x))™** + UZ (log H(x))™*

xe Uy -Uy

+ Y b(x) log log H(x) (log H(x))~*""

xelUp—Up

By an earlier remark, we can happily remove the “clicks” from each of the
summations; the only cost being the addition of a function which is analytic
in the half-plane Re(z) > s.

The third term is analytic for Re(z) > 2s — 2 by comparison with
H(z + 2). In the fifth term replace log log H(x) by (log H(x))’, ¢ > 0.
Then Lemmas 3 and 5 apply to show that this series is analytic for
Re(z) > 25 — 2 + &.

Put the first and the fourth terms together to give

Y, (log H(x))™.

xeUp

By Corollary 5 this series has a meromorphic continuation to
Re(z) > 2s — 2 with simple poles at z = 2s, 2s — 1. For the second term
apply Corollary 3 to obtain the meromorphic continuation to
Re(z) > 25 — 2, with only a simple pole at z = 25 — 1.
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To obtain the formulae (13) and (14) apply the Corollaries 2, 3, 4 and 5,
regarding also the proof of part (i) of Lemma 6 which gives the form of the
constant Z,_; 6, as a multiple of log (Il,.s | ¢,c,|,). M

§3. This technique is capable of great application. What follows are
examples where modifications of the technique will give the result stated.

1. Suppose K is a finite extension of Q with ring of algebraic integers 0. Let
T:K — Q denote the trace map. One studies

T(z) = ) (logT(x)".

xe0f
T(x)#0

If 0 has torsion free rank r(> 1 say) then 7'(z) is convergent for Re(z) > r
with a meromorphic continuation to Re(z) > r — 2. There are simple poles
at z = r, r — 1 with residues:

2
z=r 016<—Z—K>, z=r—1 0,7<%>+0,8<%>,
K K K

where the 0, are positive rationals (combinatorial constants) and wg, Ry
denote respectively the number of roots of unity and the regulator of K.

More generally, one may study the solutions of a degenerate norm form
equation in this way be examining the non-zero traces of the solutions (see
[2] for details).

2. Given n a positive, square free integer, write L = Q({,) for the nth
cyclotomic field. Suppose Q = K = L with I' = Gal(K|Q). It is known
that the conjugates of a = T ({,) under I" form Z-basis for the ring of
integers of K. The set of all such generators is

TL/K(Cn) < ZT*.
Here, one studies

N(@z) = ) (log|Nyela-x))*, zeC.

xeZI'*

If r- denotes the torsion free rank of ZI'* then N(z) converges for
Re(z) > r- and admits a meromorphic continuation to Re(z) > rr — 2
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with simple poles at z = r, rr — 1. The pole at z = r. depends upon I'
only, while that at z = r- — 1 looks like

I' + I, log b,

where I, T, are (messy) group-ring constants. Here b is a positive integer
which-depends in a rather subtle way upon K. See [3] for more details.

3. Given K|Q and S one can also study N(x) = I1,.5|1 + x|, for x € U;.
Here there are several advantages. Firstly, there is no serious non-vanishing
sub-sum condition. Secondly there is no need to invoke the Subspace
Theorem so the methods are entirely effective.

4. One of the motivations for the study of S-unit equations is the theory of
linear recurrence sequences (see [9]). In the general case these provide a
fertile testing ground for the techniques presented here. Not least because
the coefficients ¢, in (4) are no longer constants. This will be the subject of
another paper.
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