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Introduction

Suppose that G is a reductive algebraic group over a field F of characteristic
0. In the text we shall usually take F to be a general local field, but for
purposes of illustration let us assume in the introduction that F is isomorphic
to R. In the paper [1(e)] we introduced the weighted characters

These objects are like ordinary induced characters

except that one first composes JP(03C003BB, f ) with another operator on the space
of ..Fp(n)., f ). This new operator is the logarithmic derivative of the standard
intertwining operator in the case of real rank one, and in general has poles
in A. One of the aims of [1(e)] was to investigate the iterated residues

* Supported in part by NSERC Operating Grant A3483.
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(We refer the reader to the introduction of [1(e)] for a general discussion as
well as a description of the notation used here and below.) If the number of
iterated residues is at least equal to dim(aM/aG), the expression (1) is an
invariant distribution in f. What is its connection with other natural invariant
distributions on Jf(G(F))?

In [1(f)] we studied two families

and

of invariant distributions on Yf(G(F)). These arise naturally as the local
terms of the spectral and geometric sides of the invariant trace formula. It
is important to be able to compare the two kinds of terms. In [1(f), §4-5]
we gave a rather abstract procedure for doing this, which seems to be
sufficient for the applications of the trace formula. Still, it would be interesting
to find a more direct connection between the distributions (2) and (3).

In this paper we shall show that the three families of invariant distri-
butions (1), (2) and (3) are all closely related. The distributions (2) were
constructed by a formal procedure from the contour integrals

Deformations of contours inevitably produce residues, so it is not surprising
that (2) and (1) should be related. The distributions (3) were constructed by
the same formal procedure from the weighted orbital integrals.

discussed in [1(d)]. If y is restricted to lie in a Cartan subgroup T(F) of
M(F), then JM(03B3,f) is compactly supported in y. However, it happens that
IM(y, f) is not compactly supported in y. The residues (1) turn out to be the
reason. In the end, it turns out that the distributions (1), the distributions
(2) and the asymptotic behaviour of the distributions (3) can all be system-
atically computed from each other. We shall in fact see that everything may
be computed from sufficient information about any one of the three families
in the special case of rank 1.

In §1 we shall recall briefly how the three families of distributions are
defined. The residues (1) are distinguished by the fact that they are supported
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on a finite set of representations induced from n. We shall call such distri-
butions n-discrete. In §2 and §3 we shall establish some general properties of
n-discrete distributions. Chief among these is Proposition 2.2, which
pertains to the normalizing factors for representations induced from Levi
subgroups L =3 M. The proposition asserts that the normalizing factors
have nice properties when they act on a n-discrete distribution on L. This is
a generalization of [1(e), Proposition 5.2].

In §4 we shall study the residues in earnest. Recall that

is meromorphic, with poles across finitely many hyperplanes. If the residues
did not exist, the function

would be independent of 03BC ~ a*M. As it is, JM,03BC(03C0, X, f) is locally constant on
the complement of a finite set of affine hyperplanes. A similar assertion
applies to the associated invariant distribution

The problem is to compute the jumps of these functions as one moves
between different affine chambers. Our main result is Theorem 4.1, which
provides an expansion for IM,03BC(03C0, X, f ) in terms of the residues (1), the
normalizing factors for intertwining operators, and the functions

Here, VL is an arbitrary point in general position in ai. In particular, v = vM
is an arbitrary point in a*M. Restated as Corollary 4.2, the theorem gives a
recursion formula for the différence

Theorem 4.1 can be regarded as a dual version of the various expansions for
weighted orbital integrals and their associated invariant distributions.

It is necessary to show that the invariant distributions (1) defined by
residues depend only on the characters of f. We will be able to establish this
from Theorem 4.1, and the analogous property for the distributions (2),
which was proved in [1(f)] and [1(g)]. The proof is actually inductive, the
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initial induction assumption appearing in §1. Having established Theorem
4.1, we will then be able to complete the argument in §5.

In §6 we shall look at Theorem 4.1 in the special case that f is cuspidal.
The formula simplifies considerably. If additional constraints are imposed
on 03C0 and {03BDL}, the expansion for Im,,(n, X, f ) reduces to just one term
(Corollary 6.2). The distribution becomes simply a finite sum of residues (1).
This has implications for the asymptotic structure of IM(03B3, f) (Lemma 6.6).
On the other hand, if.f is a pseudo-coefficient for a discrete series represen-
tation, we shall show that IM(03B3, f) equals the value at y of the discrete series
character (Theorem 6.4). (This formula is a variant of the main result of
[1(a)], and will be used in another paper on the traces of Hecke operators.)
We shall combine the two formulas in Theorem 6.5. The result is a curious

identity between the characters of discrete series and residues of intertwining
operators. The formula is reminiscent of Osborne’s conjecture. However, it
attaches to every character exponent induced representations which contain
the given discrete series as a composition factor.

§1. Residues

Let G be a reductive algebraic group over a field F, of characteristic 0. In this
article we shall impose two conditions which were not in the preceding paper
[1(e)]. We shall assume that G is connected, and that F is a local field. For
we want to study invariant distributions that rely on the trace Paley-Wiener
theorem, and this has been established in general only for connected groups.
The second condition, that on F, is essentially for convenience. We write v
for the (normalized) valuation on F.
We shall adopt the notations and conventions of [1(e)], often without

further comment. In particular,

is a closed subgroup of

The two groups are equal if v is Archimedean, but if v is discrete, G,03C5 is a
lattice in aG. The unitary dual of aG,03C5 is isomorphic to
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where

We are interested in the Hecke algebra Yf(G(F)) of functions on G(F)
which are left and right finite with respect to a suitable fixed maximal
compact subgroup K of G(F). We also have the larger space Hac(G(F)),
introduced in [1(e), §11], as well as corresponding spaces (G(F)) and
,fac(G(F» of functions on 1-Itemp(G(F» x aG,03C5. These are related by a con-
tinuous surjective map f ~ fG from Hac(G(F)) onto ac(G(F)), which maps
Yf(G(F)) onto .Y(G(F)). As in [1(e)], we will sometimes regard an element
0 in the smaller space (G(F)) as a function of just one variable in
03A0temp(G(F)). The two interpretations are related by a Fourier transform

Thus, if f belongs to H(G(F)), we can either write

or

where fx stands for the restriction of f to

Suppose that I is a continuous linear functional or "distribution" on

Hac(G(F)), which is invariant. We say that I is supported on characters if
I(f ) = 0 for every function f such that fG vanishes. If this is so, there is a
unique "distribution" Î on ac(G(F)) such that

The symbol M always stands for a Levi component of some parabolic
subgroup of G over F which is in good relative position with respect to K.
That is, K must be admissible relative to M, in the sense of §1 of [1(b)]. As
always Y(M) denotes the finite set of Levi subgroups which contain M. In
the paper [1(f)] we introduced two families
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and

of invariant distributions on Hac(G(F)) which were eventually shown to be
supported on characters ([1(f), Theorem 6.1], [1(g), Theorem 5.1]). They are
characterized by formulas

and

in which JM(03B3, f) is a weighted orbital integral [1(d), §6], JM(03C0, X, f) is a
weighted character [1(e), §7], and

is the map defined in §12 of [1(e)]. The two families are closely related.
Roughly speaking, {IM(03C0, X)l measures the obstruction to {IM(03B3)} being
compactly supported in y. In fact, there is an asymptotic expansion for
IM(03B3, f) in terms of certain maps

and these maps are completely determined by the distributions {IL (n, X, f)}.
(See [1(f), (4.11), Lemma 4.1, and (4.9)].) Thus, the second family of distri-
butions determines the asymptotic behaviour of the first.
For the second family of distributions, it is sometimes appropriate to take

a standard representation Q E Y-(M(F» instead of the irreducible n. (See
[1(e), §5]. Recall that a standard representation is induced from a represen-
tation which is tempered modulo the center, and may be reducible.) One
defines distributions JM(, X, f ) and IM(, X, f ) in a similar manner. The
two cases are related by a formula

where
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equals

(See [1(f), (3.2)].) The notation here follows [1(e)] and [1(f)]. In particular,
Ep stands for a small point in general position in the chamber (a*P)+,
and

where B is a ball in a,, centered at the origin. The function rt(n;., 03BB) is

obtained from the ratios of the normalizing factors for 03C003BB and Q;..
Our ultimate goal is to show how to compute IM(03C0, X, f) in terms of

residues. Fix an element L E (M). A residue datum Q for (L, M ) is a pair
(03A9, 03A9), where

is an orthogonal basis of (at)* and An is a point in (a’ )* - It is required that
there be an embedded sequence

of elements in 2(M) such that

(See [1 (e), §8].) Given such an Q, as well as a meromorphic function 03C8(A) on
a*M,C and a point Ao e 03A9 + a*L,C in general position, define

As in [1(e), §8], 03931, ... , rr are small positively oriented circles about the
origin in the complex plane such that for each i, the radius of Fi is much
smaller than that of ri+l. It is this condition on the radii which allows us to
express an iterated residue as an iterated contour integral in r complex
variables.
We are interested in the case that
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where a039B is an analytic function. Recall that

where R0(03C0039B) is the representation induced from a parabolic subgroup Ra,
and RLM(03C0039B, Ra) is an operator on the underlying space VR0(03C0) which is
obtained from normalized intertwining operators ([1(e), §6]). It is the Fourier
transform (in A) of JLM(03C0039B, g) which equals Jm(n, X, g). According to
Lemma 8.1 of [1(e)], the distribution

is invariant. We would like to know that it is supported on characters.
Instead of trying to show this directly, we shall make an induction hypothesis.
We assume that for any L ~ G, and for any n and a039B, the distribution (1.4)
is supported on characters. In §5 we shall complete the induction argument
by showing that the same thing is true if L = G.

§2. x-discrete distributions

For the next several sections, the Levi subgroup M and the representation
03C0 E 03A0(M(F)) will be fixed. We would like to relate IM(03C0, X, f) with the
residues (1.4) of the distributions JLM(03C003BB). However, we shall not actually
discuss the residues in detail until §4. The purpose of this section is to

introduce a general family of distributions of which the residues are typical
examples.

It is best to take functions in e(G(F» which also depend analytically on
a parameter A E a) c . Let H(aM, G(F)) denote the space of functions

such that 

is a smooth, compactly supported function on a,,, with values in »(G(F».
In other words, 

is a Paley-Wiener function of A with values in H(G(F))0393, for some finite
subset r of II(K). (The reader is asked to tolerate notation in which F stands
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for both a function and a field.) Similarly, we can define (aM, G(F)) to be
the space of functions

such that for some finite r c H(K),

is a Paley-Wiener function of A with values in (G(F))0393. As always, any
such function is analytic in n ; as a function in the various continuous

co-ordinates of 03A0temp(G(F)), 03A6 extends analytically to the entire complex
domain. It can therefore be defined for each standard representation
o E 03A3(G(F)). Both of these new spaces are algebras, and the elementary
notions from invariant harmonic analysis [1(f), §1] extend formally to this
setting. In particular,

is a continuous surjective map from H(aM, G(F)) onto (aM, G(F)).
Now, suppose that n is a general representation in II(M(F)). Let

be a distribution (i.e., continuous linear functional) on H(aM, G(F)) which
is supported on characters. Then there is a unique distribution  = (03C0) on
(aM, G(F)) such that

We shall say that D is n-discrete if, as well as being supported on characters,
D(n, F) factors to a distribution on the space

which is supported at finitely many points A1, ... , At . Of course, a distri-
bution on a space of analytic functions does not in general have support.
However, if a039B is a function which is analytic in a neighbourhood of Ao in

a*M,C, we shall write
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for the Taylor polynomial of a039B at A = Ao of total degree n. Then the
condition on D is that D(n, F) depends only on

for some fixed integer n.
For a simple example, take a differential operator A = 0394039B on a* c and a

fixed point Ao E a* c. Then

is a n-discrete distribution. More interesting examples are provided by the
residues. Suppose for a moment that G is replaced by a group L E (M),
with L ~ G, and that Q is a residue datum for (L, M). Then the residue

is supported on characters. This follows from the induction hypothesis of §1.
The distribution is obviously supported at a finite set of points. It is therefore
a n-discrete distribution on H(aM, L(F)).

LEMMA 2.1: Suppose that D is a n-discrete distribution on H(aM, G(F)). Then
there is an n such that the value

depends only on an expression

for fixed points Ai E at,c, Levi subgroups Mj of G and standard represen-
tations 03C1j E 03A3(Mj(F)).

Proof: The finite support property of D concerns the operators fp(nA’ F(A)),
not their traces. But we are also given that D(n, F) depends only on FG. We
must convert this abstract assertion into a finite support property in the
function
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If F is Archimedean, let e(G) be the center of the universal enveloping
algebra. If F is non-Archimedean, we take (G) to be the Bernstein center
[2]. In either case, (G) acts on Yf(G(F)), so it also acts on (aM, G(F))
through the second factor. From the definition of n-discrete we see that D
is annihilated by an ideal of finite codimension in (G). The lemma will
then follow from a straightforward infinitesimal character argument. We
leave the details to the reader. D

For any invariant distribution on (aM, G(F)) which is supported on a finite
set of points, the space of test functions can be enlarged. Let us write
f+ (aM, G(F)) for the space of functions 03A6, defined almost everywhere on

which satisfy the following condition. For any Levi subgroup MI of G, and
any e E 03A3(M1 (F)),

is a meromorphic function whose poles lie along hyperplanes of the form

if F is Archimedean, and

if F is non-Archimedean with residual order q. Here (X, Xl) is a vector in
QQ aM1,03C5) which we assume has nonzero projection onto the diagonally
embedded subgroup aG,03C5. If 03A6 E +(aM, G(F)) and E ag c , the function

also belongs to + (aM, G(F)). Notice that for almost all A, the singularities
of 03A603BB will not meet a given finite set of points (A, Q). This is a consequence
of the condition on (X, Xl ) above.
Suppose that D = D(03C0) is a n-discrete distribution on (aM, G(F)) and

that (D belongs to f+ (aM, G(F)). The last lemma implies that D(n, 03A603BB) is
defined whenever A E a6,c is in general position. Moreover, (03C0, 03A603BB) is a

meromorphic function of A. Set



62

for Â in general position. Then i - 4)v is another distribution on (aM, G(F)).
We shall write

for the space of distributions obtained in this way from all such choices of
D and 03A6. Observe that if D is fixed, and 03A6 and Â vary, then {· (DY 1 is a
finite dimensional subspace of D(03C0). Any distribution b = ben) in D(03C0) is
supportçd at a finite set of points, and if 03A6 belongs to f 1 (aM, G(F)),

is defined as a meromorphic function. Obviously, 03A603BB can be made to act on
any distribution in -9(n). Therefore

may be interpreted as a homomorphism from the algebra .f+ (aM, G(F)) to
the algebra of meromorphic functions of Â with values in the space of
endomorphisms of -q(n).
The main purpose of this discussion is to accommodate the normalizing

factors for induced representations discussed in [1(e)]. Assume that we have
fixed normalizing factors

(for all possible choices of M and n) which satisfy the conditions of [1(e),
Theorem 2.1]. Suppose that L is an element in 2(M). If Q, Q’ belong to
P(L), the normalizing factors rQ’|Q(03C0L039B) are defined. We also have normalizing
factors rQ’|Q(03C103BB) for each o E 03A3(L(F)). If A E a*L,C, set

where

as in [1(e)]. The earlier definitions are of course valid if G is replaced by L,
and we see easily that Q’|Q,03BB is a function in f + (aM , L(F)). At this point, we
have imposed no condition of block equivalence on nf and Q; the usual
transitivity property [1(e), Proposition 5.2] consequently fails for Q’|Q,03BB.
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However, let us set

so that rQ’|Q,03BB is an endomorphism of DL(03C0). The next proposition, which is
our justification of the constructions above, asserts that rQ’|Q,03BB does have the
transitivity property.
For any root a of (G, AM), set q03C5,03B1(03BB) = À ((X v ) if F is Archimedean, and

put qv,r1(A) = q-03BB(03B1)03C5 if F is non-Archimedean of residual order qv .

PROPOSITION 2.2: We have

Moreover, rQ’|Q,03BB is as rational function of the variables with values
in the space of endomorphisms of DL(n).

REMARK: Consider the special case in which L = M and D(03C0) equals the
character of n. That is,

Then D(03C0) is a n-discrete distribution on H(aM, M(F)) whose Fourier
transform equals

the formal decomposition into standard characters. (See §5 of [1(e)].) It is
obvious that

The proposition in this case is essentially equivalent to Proposition 5.2 of
[ 1 (e)].
We shall reduce the proof of Proposition 2.2 to a second assertion.

If a is a representation which belongs to either 03A0(L(F)) or 03A3(L(F)),
set
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Since the normalized intertwining operators

satisfy

the operator

is equal to the product of 03BCL(03C303BB)-1 with the identity operator. Thus, ilL (03C303BB)
is just the usual 03BC-function. It is independent of Q E 9(L). Corollary 5.3 of
[1(e)] asserts that if 03C1 E Y-(L(F» contains 03C3 as a composition factor, then
03BCL(03C303BB) equals 03BCL(03C103BB).

LEMMA 2.3: Suppose that D = D(n) is a n-discrete distribution on H(aM, L(F)),
and that (D belongs to +(aM, L(F)). Set

and

Then

This lemma is the main step in the proof of Proposition 2.2. It will be a
consequence of some general properties of (unnormalized) intertwining
operators which we shall review in the next section. We shall postpone the

proof of the lemma until then.
Assuming Lemma 2.3, let us establish the proposition. For A E a*L,C in

general position, the function

belongs tof + (aM, L(F)). Choose an arbitrary function’F inf + (aM, L(F)),
and set
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Then

in the notation of Lemma 2.3. It then follows from the lemma that

Consequently, L,03BB equals 1. But

We have therefore established that

Given (2.2), we can now prove Proposition 2.2 in exactly the same way as
the relevant portion of Theorem 2.1 of [1(e)]. For example, to establish (2.1),
we make use of the decomposition

which is the analogue of [1(e), (2.1)]. The formula (2.2), with G replaced by
a group L03B2 of which L is a maximal Levi subgroup, implies that

The relation (2.1) then follows. The rationality assertion of Proposition 2.2
is trivial if F is non-Archimedean, for the normalizing factors are themselves
rational in this case. If F is Archimedean, the normalizing factors are
constructed from gamma functions. The functions rP’|P,03BB therefore satisfy an
analogue of the estimate (3.8) in [1(e)]. As in §3 of [1(e)], the rationality
assertion then follows from the multiplicative property (2.1 ). This completes
the proof of Proposition 2.2. D

Fix Qa E P(L). Then

is a (G, L) family. As usual [1(b), §6], we can define



66

It follows from Proposition 2.2 that rGL,03BB is a rational function of the variables
{q03C5,03B1(03BB)} with values in End(DL(03C0)). It is independent of Qo. Suppose that
LI E 2(L), and that QI belongs to 9(Ll). Then

depends only on L, and not on Q1. In fact, rQ1L,03BB equals the function rL1L,03BB
defined by (2.4), but with G replaced by L1.

Suppose that D = D(03C0) is a n-discrete distribution on H(aM, L(F)) and
that LI E 2(L), as above. In practice, we shall want to consider (f) rL1L,03BB) as
a distribution on f (LI (F)) which also depends on a point X E aM,v . As a
matter of fact, (L1 (F)) has in the past been regarded as a space of functions
on 03A3(L1(F)) x aL1,03C5, so this should be reflected in the notation. If

0 E J(LI (F» and X E aM,03C5, and if VL E ai is a point in general position,
define

where

The convergence of this integral follows from the second assertion of
Proposition 2.2. More generally, we can take any 0 that behaves well on the
support of the given distribution. By Lemma 2.1, we can assume that

depends only on a function

Then the definition of (2.5) makes sense if 0 is any function on

03A3(L1(F)) x all,v such that the restricted function
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is the same as that derived from some function in 5(Ll (F)). For example,
if f ~ Yf(G(F)), we could take 0 to be the function

This function has the required behaviour if vL e a*L is in general position, and
the associated function in (2.5) is

In the special case that L = M and D(03C0) is the character of n, we shall
usually write

This is equal to

(By definition [1(e)], rL1M(03C003BB, Q)J is the number obtained in the usual way
from the (G, M)-family

If v E a* is in general position,

The notation is compatible with that of (1.3).

§3. Admissible families of operators

The purpose of this section is to prove Lemma 2.3 and a related result

(Lemma 3.1) which will be needed in §4. We shall recapitulate some formal
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notions, introduced in §8 of [1(e)], of which the lemmas will be easy
consequences.

Let L be a fixed Levi subgroup of G. Suppose that for each integer j,
1  j  s, we are given a Levi subgroup y of L, a parabolic subgroup
Rj E PL(Mj), and a standard representation 03C1j E 03A3(Mj(F)). If n  0 and
g E H(L(F)), set

Then 6 is a representation of H(L(F)). It acts on a direct sum of spaces of
polynomials with values in VRj(03C1j). The induced representation

can be identified with

(Recall that Pj = Q(R, ) is the group in P(Mj) such that P; c Q and
Pi n L = Rj.)

Fix groups Q, Q’ E P(L). Suppose that

is a family of linear operators which depends meromorphically on 03C1. In other
words, any K-finite matrix coefficient of A(03C1) is meromorphic in the natural
complex coordinates of Y-(L(F». We assume that the singularities of A(03C1)
are such that the function

is analytic at any predetermined finite set of points Q whenever 03BB is a point
in ai,c in general position. Then if a is as in (3.1) and 03BB is in general position,
the operator

from VQ(03C3) to VQ’(03C3) is defined. Recall that VQ(03C3) can be identified with a
space of functions from K to the space on which 6 acts. We shall say that
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the family is admissible if for every such a, A03BB(03C3) is represented by a K-finite
kernel with values in the algebra

This is a definite restriction on the family A. It implies that for every self
intertwining operator of a representation a as in (3.1), there will be a
corresponding relation among the operators {A(03C1)}.
The most obvious admissible families comes from functions in :if(G(F)).

Choose f ~ Yf(G(F)). Then the operator

is represented by a kernel

where fQ,k1,k2 dénotes the function

in Yf(L(F)). Therefore

is an admissible family. If D is any invariant distribution on Yt(L(F)), we
can define the induced distribution D’ on Yt(G(F)) by

There is a formal reciprocity identity

Now, suppose that D = D(03C0) is a n-discrete distribution on H(aM, L(F)).
As in §2, n denotes a representation in 03A0(M(F)), for a fixed Levi subgroup
M of L. We shall show how to define the induced distribution D’ = DG(03C0)
on any admissible family. Actually, the domain of D consists of functions
which also depend on A, so we take
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to be an admissible family of operators that depend meromorphically on a
parameter A in a*M,C/iaM,C as well as Q. Again we want the function

to be analytic at any predetermined finite set of points (A, Q) whenever
03BB E a*L,C is in general position. To take care of this, let us assume that the
singularities of A03BB (A, Q) have constraints like those we imposed in §2 on the
singularities of a function in +(aM, L(F)). Choose an integer n  0 and
points Ai, ... , A, in a) c such that the value

depends only on the operator

We can regard 03C4 as a representation of Yf (a,, L(F)). Now 03C0 can be

represented as a subquotient of a standard representation. Therefore, 03C4 is a
subquotient of a representation like (3.1), but with the appropriate depen-
dence on A. (See (3.4) below.) It follows from the admissibility of A that for
fixed Â in general position,

is uniquely defined as an operator from VQ(03C4) to VQ’(03C4). Indeed, A03BB(03C4) is
represented by a kernel

where Fkl,k2 is a function in H(aM, L(F)), which is K-finite in (kl, k2), and
such that

The induced distribution is then defined by

It depends only on A03BB(03C4).
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In analogy with the map fL’ let us define

for a given admissible family {A(A, Q)I. Then AL is a function in

+ (aM, L(F)). Clearly, we have

LEM MA 3.1. DG(03C0, A03BB) = (03C0, AL,;,).

Proof.- We have agreed that

depends only on the operator 7:(F) defined by (3.2). Moreover, by Lemma 2.1,
we can choose {(Mj, Ri, 03C1j)} as in (3.1) such that

depends only on the vector

Here a stands for the representation

of the algebra H(aM, L(F)). Notice also that the map 03A6 ~ 03A6(03C3) can be
regarded as a finite dimensional representation of the algebra (aM, L(F)).
The admissibility of A means that A(A, 03C1) can be represented locally (i.e.,

infinitesimally) by a good kernel. Having chosen r and a, we can always find
another representation of the general form (3.4) which contains both s and
a as subquotients. We can therefore find a K-finite function

from K x K to the algebra H(aM, L(F)) which represents the kernel of the
operator A03BB at both Land u. Here A is a fixed point in aL,c which is in general



72

position (relative to 1: and a). Then

where

If Fkl,k2 represented the kernel of A03BB everywhere, we would have

for all (A, Q). This need not be so, of course, but Fkl,k2 does represent the
kernel at u. Therefore

Since the value of Ô(n) at 03A6’ depends only on 03A6’(03C3), we have

The lemma follows. 1:1

The next lemma is the main reason for the definitions of this section. Its

proof is an immediate consequence of the discussion of §8 of [1(e)].

LEMMA 3.2: Suppose that r is a finite subset of II(K). Then the unnormalized
intertwining operators

form an admissible family. u

We can now prove Lemma 2.3. Let r be a finite subset of II(K) and let

EQ(g)r be the projection of VQ(03C1) onto 11-Q (Q),-. The first step is to prove that

is an admissible family of operators. This is not a trivial assertion, for it
implies a linear relation among (the derivatives of) Plancherel densities for
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every self intertwining operator of a representation of Yf(L(F)) of the form
(3.1). However,

equals the restriction of the operator

to VQ(03C1)0393. Since admissibility is preserved under composition, Lemma 3.2
tells us that (3.5) is indeed an admissible family.

In Lemma 2.3, we are provided with a n-discrete distribution D = D(n).
Choose a representation r of H(aM, L(F)) as in (3.2) such that

depends only on the operator 7:(F). Similarly, choose 03C3 as in (3.4) such that

depends only on 03A6(03C3). It will be good enough to prove Lemma 2.3 with 03A603BB
replaced by an arbitrary function (D E (aM, L(F)). Fix such a 03A6, and
choose a function F ~ H(aM, L(F)) with FG = 0. Fix Â E a*L,C in general
position, and define

and

Then FJ equals 03A61. The admissibility of the family (3.5) means that the
inverse of the y-function is an infinitesimal multiplier at r and 6. In other
words, there is a function F E H(aM, L(F)) such that

and
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It follows from our conditions on r and 6 that

and

We have thus established

the required formula of Lemma 2.3. 0

§4. The main formula

As in the last two sections, 03C0 is a fixed representation in 03A0(M(F)). Suppose
that y E a) is a point in general position. Our goal is to evaluate the
distribution

in terms of residues and the functions rL1L,03BB obtained from the normalizing
factors. 

Suppose that we are given a set

where each vL is a point in general position in af . For example, if v E ait- is
any point in general position, let X = X(v) be the collection in which vL
is the projection of v onto af. For any given X, we shall try to express
IM,03BC(03C0, X, f) in terms of the distributions

We begin by working with the noninvariant distribution

By definition,
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We shall use the residue scheme of §10 of [1(e)] to change the contour.
According to Proposition 10.1 of [ 1 (e)], there is associated to each L E £f(M )
a finite collection

of residue data for (L, M) such that JM,p(n, X, f ) equals

As the notation suggests, the collection RL depends only on the set

Recall that if F ~ Yf(aM, L(F)), we can regard

as a function ofA with values in H(L(F)). We define

In the special case that X = %(v) as above, we will usually write

and

In general, D£;:::(n) is a distribution on £(aM, L(F)) which supported at a
finite set of points (in the sense of §2).

If L ~ G, our induction hypothesis implies that the distribution DL,NLM,03BC is
supported on characters. It is therefore n-discrete. The constructions of §2
provide additional distributions

on (aM, L(F)). We shall employ the notation (2.5), by which we can write
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where 0 is the function

If L = G, we do not yet know that the distribution

is supported on characters. This will be established in §5. In the meantime,
we shall indulge in a harmless abuse of notation for the sake of a uniform
formula. We shall write

when we really mean

If f ~ H(G(F)), this equals

The next theorem gives the main reduction formula.

THEOREM 4.1: For any function f E Hac(G(F)), we have

Proof: The main step is to prove an analogous formula for JM,03BC (n, X, f ),
with f ~ H(G(F)). We have already noted that this distribution equals the
sum over L E Y(M) and the integral over Â e VL + iai,v of the expression

By Proposition 9.1 of [1(e)], the expression (4.2) equals
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Here, 039303A9(03C0039B, Po ) is the meromorphic function A with values in the space of
operators on VP0(03C0) which was defined at the beginning of §9 of [1(e)], and
Po is any element in P(M). We can assume that Po = Qo (R), for fixed
elements Qo E Y(L) and R E PL(M). Now RL(03C0, Po ) is the operator

obtained from the (G, L)-family

It is analytic for A near any of the points A. + Â, as long as Â E aL,c is in
general position. We can therefore take the limit in 03B6 outside the residue
operator. Consequently, (4.2) equals the limit at ( = 0 of the sum over
Q E P(L) of the product of 03B8Q(03B6)-1 with

Assume that L ~ G. We are going to apply Lemma 3.1, with

Let

be as in Lemma 3.1, an admissible family of operators that depend mero-
morphically on A. If Â E ai,c is in general position, the operator

on YPo(rc) is uniquely defined and analytic for A in a neighbourhood of each
of the points A. in aiI,c. Consider the expression

The operator 039303A9(03C0039B, Po ) acts on the space
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entirely through the fibre, by means of the operator

But Proposition 9.1 of [1(e)] implies that

for any F ~ H(aM, L(F)). Choose a function Fk1,k2 ~ H(aM, L(F)) to

represent the kernel of A at (A, 5R(nA)) (up to sufficiently high infinitesimal
order). Then (4.4) equals

according to the definition (3.3). From Lemma 3.1 we then obtain the
equality of (4.4) with

where

We shall apply this last formula to (4.3). Since

the operator RQ(03B6, 03C0039B, Po ) equals

Define
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where

and

By Lemma 3.2, {A(03C1)} is an admissible family of operators. Moreover, by
the transitivity of induction,

It follows that the expression (4.3) equals (4.4). Thus, (4.3) is equal to

where

Observe that

Therefore,

where

To obtain (4.2), we must multiply the formula we have just obtained for
(4.3) by 03B8Q(03B6)-1, sum over Q E P(L), and then take the limit as ( approaches
0. However, let us first write
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where 1 stands for the constant function of (A, o). Note that

in the notation of §2. This is a product of (G, L)-families, and we may apply
Corollary 6.5 of [1(b)]. Consequently,

is equal to

As with rf:À we have suppressed Qo in the notation 03A8L1,03BB. Indeed,

and by formula (7.8) of [1(b)], this equals

In particular, 03A8L1,03BB is independent of Qo. Since

we can therefore rewrite (4.2) as an expression

in which
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We have shown that the original expression (4.2) equals (4.5) for any
L ~ G. According to our convention above, the same equality is trivially
true when L = G. Therefore, the original distribution JM,03BC(03C0, X, f ) is equal
to the sum over L E Y(M) and the integral over in (vL + ia*L,03C5) of (4.5).
Take the integral inside the sum over LI which appears in (4.5). Then for a
given L1, replace A by

and integrate first over q. Note that

Also

where

It follows that

is equal to

in the notation of (2.5). Putting these facts together, we see at last that
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We have established the analogue for JM,,, (n, X, f) of the required formula.
At this point, f is just a function in Jf(G(F)). However, both sides of the
formula depend only on the restriction of f’to G(F)hG(X). Since the restriction
of any function in Hac(G(F)) to this set coincides with that of a function in
Jf(G(F)), the formula remains valid if f belongs to Hac(G(F)).
We assume inductively that the required formula for IM,03BC(03C0, X, f) holds

if G is replaced by a proper Levi subgroup L’ E 2(M). The case of G will
be a consequence of the formula for JM,p(n, X, f ) we have just proved. For
it follows from the definition that

The special case that y = 0 (and M = L, ) also implies that

After substituting these two identities into the formula above, we apply the
induction assumption to the terms with L’ ~ G. We are left only with the
terms corresponding to L’ - G, which give

Since

and

we obtain the required formula. D

COROLLARY 4.2. Set v = vM. Then the difference

equals
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Proof.- The theorem gives an expansion for IM,p(n, X, f ) into a sum over LI
and L. Consider those terms in which L = M. It follows from the definitions
that

In particular, this distribution is independent of p and X. Therefore, the
terms with L = M depend only on the point v = vM . Suppose for a moment
that y = v and N = X(v). Then

Applying the theorem in this case, we see that IM,03BD(03C0, X, f ) equals the sum
of those terms in the general expansion in which L = M. Therefore, the
difference (4.6) equals the sum of those terms with L p M. D

REMARKS: 1. Look again at the special case that y = v and / = N(03BD). The
expansion for IM,p(n, X, f ) contains only those terms with L = M. We have

in the notation described at the end of §2, so the expansion is just

The theorem in this case is equivalent to (1.3).
2. Suppose that n is tempered. Then IM,03BD(03C0, X, f ) vanishes if v is near 0.

Corollary 4.2 may therefore be interpreted as an inductive procedure for
computing the distributions I,(n,, X, f ) in terms of residues. We shall
discuss this in more detail in §7.

§5. Completion of the induction argument

Given Theorem 4.1, it is easy for us to show that the invariant distributions
defined by residues are supported on characters. Fix a residue datum

for (G, M), and a representation n E n(M(F)).
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LEMMA 5.1: The data Il E a*M ancl AI = {03BDL} of i4 may be chosen so that
RG(03BC, AI) consists only of Q.

Proof : This will follow easily from the definition. Recall that

is orthogonal basis of (aGM)*, and that

is a sequence of Levi subgroups such that

Let e be a small positive number, and define a sequence

in which each ei is much smaller than 03B5i+1. We then define

Let 03BCMl be the projection of p onto a*Ml, and set

This defines the points vL E JV when L = Mi . For the other elements
L E 2(M) we can take VL = 0. Then

equals

Here
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while 039Bk03A9 is the projection of 039B03A9 onto (aMkM)*C and Fi, ... , 0393r are small circles
about the origin in C such that the radius of each r¡ is much smaller than
that of 0393i+1. We may therefore take RL(03BC, NL) to be empty unless L equals
some Mk , in which case it consists of a single residue datum

In particular,

as required. n

THEOREM 5.2: Suppose that aA is an analytic function in a neighbourhood of
A. in a*,c. Then the distribution

is supported on characters.

Proof: We shall apply the formula of Theorem 4. l, with Il and JV as in the
last lemma. The term with L = LI = G in the formula equals

This equals the difference between

and

Since L ~ G, li is well defined, by our induction assumption. Suppose
that f is such that fc = 0. It follows from [1(f), Theorem 6.1] and [ 1 (g),
Theorem S.1] that IM,03BC(03C0, X, f ) and IL(f) both vanish. Consequently, the
expression (5.1) vanishes. But the point X E QM,v in (S.1) is arbitrary. Taking
a finite linear combination of such expressions, over different values of X,
we can match Taylor series of a039B at A. up to any given degree. It follows that

The given distribution is therefore supported on characters. 0
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With Theorem 5.1 we have completed the induction argument begun in §1.
In particular, the distributions G,NGM,03BC of §4 are well defined, and Theorem 4.1
and Corollary 4.2 make sense as stated.

§6. Cuspidal functions

Suppose that f belongs to Jf(G(F)). If L is a Levi subgroup of G, the
function

belongs to (L(F)). We shall say that f is cuspidal if fL vanishes whenever
L ~ G. Assume that this is the case. Then, as we shall see, there is a
considerable simplification in Theorem 4.1.

Suppose that M, 03C0, Il and X are as in Theorem 4.1. Consider a term in
the expansion for Im, (n, X, f ) corresponding to L c LI. Suppose first that
L  L, . We claim that the function

vanishes identically. By the descent formula [1(f), Corollary 8.5], we can
express the Fourier transform

as

Since L g L1, the constant dGL(L1, L2) will vanish unless L2  G. Our claim
then follows from the fact that f is cuspidal. It follows from this that

In other words, we can discard the terms in Theorem 4.1 with L  LI. The
term corresponding to L = LI is just
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where

We obtain the following corollary of Theorem 4.1.

COROLLARY 6.1: If f is cuspidal,

For the rest of this section, e will be a small point in a* in general position.
We now consider the special case that X equals %(B). In this case, the
associated residue scheme is essentially that of the real Paley-Wiener theorem.
The summand

corresponding to L = G is the leading term in the expansion of Corollary
6.1. It equals

and consists entirely of residues. We shall show that if 03C0 is unitary, this is
the only term in the expansion.

COROLLARY 6.2: Assume that f is cuspidal, that n has unitary central character,
and that e E ait is a small point in general position. Then

Proof.- Consider the expansion given by Corollary 6.1. Since f is cuspidal,
the argument preceding Corollary 6.1 tells us that the function

vanishes if 03C1 ~ Y-(L(F» is properly induced. Now N,NLM,03BC(03C0) is supported at
those,Q E Y-(L(F» with unitary central character. Any such Q which is not
properly induced must be tempered. However, if Q is tempered, and £L is
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sufficiently small, we have

by [1(f), Lemmas 3.3 and 4.5]. It follows that the terms in the expansion with
L =1= G must vanish. D

The last formula allows us to express the map

introduced in [1(f), §4], in terms of residues. For each P E 9(M), let vp be
a point in the associated chamber (a*)’ in aM whose distance from the walls
is very large. We shall then write

where cvp(X) is the ratio defined as in [1(f), §4]. That is,

with BX a small ball in aM centered at X. In particular, suppose that X is a
regular point in aM,v . Then X belongs to a unique chamber at , and

Combining Corollary 6.2 with [1(f), Lemma 4.7], we obtain

COROLLARY 6.3: Assume that f is cuspidal, that 1t E 03A0temp(M(F)) and that
X E aM, v . Then

For the rest of this paragraph we assume that F = R. We shall also assume
that M contains a maximal torus T over R which is R-anisotropic modulo
AM . Let 03A0disc(G(R)) denote the set of représentations 7r in 03A0temp(G(R)) which
are square integrable modulo AG(R). The vector space ia* acts on

03A0disc(G(R)) in the usual way, and the set of orbits can be identified with the
discrete series, 03A0disc(G(R)1), of
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For 03C0 E 03A0disc(G(R)) and y E Treg(R), the set of G-regular points in T(R), we set

where On is the character of x and DG(03B3) is the usual discriminant. This func-
tion is not constant on the ia*-orbit of x. However, its product with the
function

is constant on the orbit, and depends only on the image of 03C0 in 03A0disc(G(R)1 ).
Hère, A denotes the contragredi of the representation 03C0.

We shall now bring in the distributions lM (y,f). Suppose that L E 2(M).
According to the descent formula [1(f), Corollary 8.2],

If L ~ M, the constant dZ(L, L’) will vanish unless L’  G. It follows that

whenever f is cuspidal.
We are going to establish the following variant of the main result of [1(a)].

It will be used in another paper on the traces of Hecke operators.

THEOREM 6.4: Suppose that f E H(G(R)) is such that the function fG is supported
on 03A0disc(G(R)). Then IM(03B3, f) equals

for any point y E Treg(R).

Combining this theorem with our results on residues, we will also prove

THEOREM 6.5: Suppose that f E H(G(R)) is such that the function fG is

supported on 03A0disc(G(R)). Then
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We shall first establish a direct connection of IM (y, f ) with the residues.

LEMMA 6.6: Suppose that f and y are given as in the two theorems. Then

Proof’: Notice that our condition on f implies that the function is cuspidal.
According to [1(f), (2.6)], Im (y, f ) satisfies a differential equation

for every element z in the center of the universal enveloping algebra. We
know that ~MM(03B3, z) equals ~(hT(z)), the invariant differential operator on
T(R) obtained from the Harish-Chandra map. (See for example Lemma 12.4
of [1(d)].) Therefore, by (6.3), the differential equations simplify to

Since the distribution Im (y, f ) is supported on characters, it depends only on
fc. But fc is a finite sum of eigenfunctions of the center of the universal
enveloping algebra, each having regular infinitesimal character. As is well
known, this severely limits the solutions of the equations (6.4). For y lying
in a given connected component of Treg(R), we can write IM(03B3, f) as a sum

where 03BE ranges over the regular quasi-characters of T(R) n G(R)1, and
c03BE = 0 for almost all 03BE.
According to the expansion [1(f), (4.11)], we can also write

We would like to show that cIM(03B3, f) vanishes if M ~ G. Assume inductively
that this is so whenever G is replaced by L, with M  L  G. We make a
second induction assumption that if L p M and Y E aL , the function
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is supported on 03A0disc(L(R)). Then OL (f ) is the image in ac(L(R)) of a
function in ac(L(R)) which satisfies the same conditions at f. The first
induction hypothesis then implies that

if M g L g G. We can therefore write

The function f is cuspidal. Combining [1(f), Lemma 4.7] with the descent
property [1(f), Corollary 8.5], we see that 03B8M(f) is the image in î.C(M(R»
of a cuspidal function in ac(M(R)). This function is certainly K-finite, so the
orbital integral MM(03B3, 03B8M(f)) can be expanded in terms of characters. From
the standard orthogonality properties of characters, we obtain an expression

in which the sum is over a finite set of représentations 7r E 03A0temp(M(R))
whose characters do not vanish on the elliptic set. By Corollary 6.3, this in
turn equals

We have shown that the difference between (6.5) and (6.6) equals cIM(03B3, f).
Suppose that HM(y) lies in the chamber at , P E 9(M). Identifying the Lie

algebra of AM(R) with aM, we replace y by a translate

where X lies in

The resulting functions of X given by (6.5) and (6.6) are both analytic. In
fact, they are both (a’)+ -finite, in the sense that their translates by (a’)+
span a finite dimensional space. On the other hand, [1(f), Lemma 4.4] tells
us that cIM(03B3 exp X, f) is a compactly supported function of X. An analytic
function and a compactly supported function can only be equal if they are
both zero. Therefore, (6.5) equals (6.6), and cIM(03B3, f) vanishes. This completes
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the first induction argument. Since the quasi-characters in (6.5) are all

regular, the sum in (6.6) can be taken over E 03A0disc(M(R)1 ). But (6.6) equals
MM(03B3, 03B8M(f)), and we have seen that 03B8M(f) is cuspidal. It follows that for
any y E aM, the function

is supported on 03A0disc(M(R)). Therefore, the second induction argument is
also complete.
We have actually established the lemma in the course of the two induction

arguments. To recapitulate, we note that the expansion [1(f), (4.11)] reduces
to

The orbital integral on the right then has an expansion

into characters of discrete series on M(R)1. The required formula of
Lemma 6.6 is then a consequence of Corollary 6.3. D

Proof of Theorem 6.4 : This theorem is an invariant version of Theorem 9.1
of [ 1 (a)]. It is established by showing that as functions of y, both sides satisfy
the same differential equations, boundary conditions, and growth con-
ditions. This was done in full detail in [1(a)], so we shall be quite brief.
The differential equations for IM(03B3, f) are given by the formula (6.4),

established in the proof of the last lemma. There is a boundary condition for
each real root fi of (G(R), T(R)). It follows from (6.3) that the function
I03B2M(03B3, f), referred to in [1(f), §2], is just equal to IM(03B3, f). If 8(u) is any
invariant differential operator on T(R), the boundary condition becomes

in the notation of [1(f), (2.7)]. A similar argument shows that IM(y, f) is
smooth across the hypersurface defined by an imaginary root of (G(R), T(R)).
The growth condition we would expect is for IM(y, f) to be rapidly decreasing
on Treg(R). However, the uniqueness argument works equally well if we only
establish that I, (y, f) is bounded. We shall apply Lemma 6.6.
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Suppose that HM (y) lies in the chamber at , P e P(M). Then the distri-
bution

equals

But RG(03BDP, 03B5) is the residue scheme of the real Paley-Wiener theorem. In
particular, the points

all lie in the closure of the dual chamber for P. That is,

It follows from Lemma 6.6 that IM(03B3, f) is bounded for y E Treg(R).
Now consider the other side of the formula we are trying to prove. From

the character theory of discrete series, the function

satisfies the same differential equations, boundary conditions and growth
conditions as IM (y, f ). The theorem is to be proved by induction on dim AM . 
If M = G, the required formula follows directly from the orthogonality
properties of characters of discrete series. (In the more difficult case of
Schwartz functions, it is a standard result of Harish-Chandra.) In general,
we can assume inductively that

for Mi and bs as in (6.7). Consequently, the difference

is smooth across the hypersurface defined by a real root. Theorem 6.4 then
follows from a standard uniqueness argument. (See §9 of [1(a)].) D
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Proof of Theorem 6.5: This follows immediately from Theorem 6.4 and
Lemma 6.6. D

1 do not know quite what to make of Theorem 6.5. It expresses the character
values of discrete series on noncompact tori as sums of residues of intertwining
operators. The formula is reminiscent of Osborne’s conjecture, which has
been proved by Hecht and Schmid [3, Theorem 3.6]. However, it provides
somewhat différent information. Suppose for simplicity that AG = {1}, and
that f is a pseudo-coefhcient. That is, fG(icl) = 1 for a fixed representation
03C0’ in Ildisc (G(R)), and fG vanishes at all the other points in Iltemp (G(R)). Then
the left side of the formula in Theorem 6.5 equals

The invariant distribution

on the other side is obtained by combining residues of intertwining operators
according to the scheme of the real Paley-Wiener theorem. It follows that
the right hand side of the formula can be regarded as a sum of pairs

in which A belongs to the chamber + a*P in a*M which is dual to a; , and 7r’
occurs as a composition factor of the representation

In particular, Theorem 6.5 implies that 03C0’ occurs as a composition factor of
an induced representation for every character exponent of 03C0’.

§7. Conclusions

In the introduction, we claimed that the residues of {JM(03C0039B,f)}, the distri-
butions {IM(03C0, X, f )1, and the asymptotic behaviour of {IM(03B3, f)} could all
be computed from each other. Let us summarize how this can be done.
The main point is to compute the distributions
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from the residues. Formula (1.3) gives the values of (7.1) in terms oi

distributions

We shall assume inductively that we can compute these latter distributions
if G is replaced by a proper subgroup or if M is replaced by a strictly larger
group. (The case that M = G is trivial.) Now, a given standard representation
o E E(M(F)) is of the form

Suppose that M1  M. Then the descent formula [1(f), Corollary 8.5]
allows us to write the Fourier transform

as a linear combination of similar distributions on proper Levi subgroups of
G. In other words, IM (o, X, f ) is the inverse Fourier transform of a finite
sum of functions we can compute inductively. This leaves undecided only
the case that M, = M. It follows that the general distributions (7.1 ) can be
computed from distributions of the form

Recall that ¡M,p (n, X, f ) is a rather straightforward function of Il. It is

locally constant on the complement of a finite set of affine hyperplanes
which are defined by coroots. Moreover, the mean value property [1(f),
Lemma 3.2] gives the value at any y in terms of the values at nearby points,
so we can take Il E a* to be in general position. We may as well also assume
that M ~ G. Then by [1(f), Lemma 3 .1 ],

for e near 0. It therefore suffices to compute the difference

for any points 03BC, 03BD E a*M in general position. We apply Corollary 4.2. The
différence becomes a sum over L1 ~ L  M of the distributions
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Suppose that the residues of JLM(03C0, f ) are known. What does this mean?
According to Lemma 2.1 and Theorem 5.2,

can be regarded as a distribution of finite support in the function

for any residue datum Q for (L, M). We assume that we can calculate it
explicitly. This presupposes a knowledge of the poles of JLM(03C0, F (A)), which
in turn determines RL(Il, %L) and L,NLM,03BC(03C0). We will then be able to write

for Levi subgroups f c L, standard representations 03C1j E 03A3(Mj(F)), points
A; E a*M,C, and differential operators 0394ij(03C0) on a) c x a*Mj,C, all of which we
can determine explicitly. Now the integrand 

above comes from the (L1, L) family given by (7.2), in which

That is

The functions Q|Q0 come from normalizing factors, which we regard as
known. Moreover, we can calculate IL1(03C1L103BB, hL1(X), f) inductively, since
L1  M. Therefore, we can evaluate (7.2) for the given 03A6. This allows us to
calculate the integrand, and the expansion given by Corollary 4.2. Thus,
Corollary 4.2 gives an inductive procedure for computing the distributions
(7.1 ) in terms of residues.

In fact, all we need to compute are the one-dimensional residues. For we
can cross the singular hyperplanes one at a time. Suppose that y and v lie
on opposite sides of a singular hyperplane
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and that these two points differ by a small multiple of a. Define

as above, by taking VL to be the projection of v onto ai. Then the distri-
butions

all vanish except when L is the Levi subset defined by

For this exceptional L,

for any F E H(aM, L(F)). This is just an old fashioned residue, in which C
is a small positively oriented circle in the complex plane. The center of C is
of course the point zo such that y + zo a lies on the given singular hyper-
plane. thugs, the distributions (7.1 ) can ultimately be understood in terms of
the one-dimensional residues.

Conversely, it is easy to compute residues from the distributions. Suppose
that Q is an arbitrary residue datum for (G, M). According to Lemma 5.1,
we can choose M and X so that RG(03BC, X) consists only of the residue datum
Q. Then

Since X is an arbitrary point in aM,v, the expression on the right is sufficient
to determine the residue

for any function F E H(aM, G(F)). But the expression on the left equals
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Thus, the residues can be computed inductively from the distributions
¡M,p (n, X). Observe that it sufhces to know all the distributions in the special
case of a maximal Levi subgroup. For these will determine the one dimen-
sional residues, and as we have seen, these in turn determine the distributions
in the case of general rank.
The distributions (7.1) can be used to construct maps

which determine the asymptotic behaviour of IM(y, f ). This is treated in
[1 (f), §4-5], so we shall not discuss it further. Let us consider instead the
converse question. How can everything be determined from the asymptotic
behaviour of IM(y, f)? Again, we need only assume such knowledge in the
case of a maximal Levi subgroup.

Suppose that dim (AM/AG) = 1. From the formula [1(f), (4.11)], we know
that

If X belongs to a chamber at , with P E P(M), we have

by [1 (f), Lemma 4.7]. Assume that 03C0 E 03A0temp(M(F)). Then IM,03B5(03C0, X, f)
vanishes for any small point e in a*M, and by Corollary 4.2,

This is just the distribution associated to the one dimensional residue
scheme, with y = vp and v = e. It equals a finite sum of residues

where ce is the reduced root of (P, AM ) and k indexes the finite set of points
Zk in the right half plane at which the function
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has a pole. For each k, Ck is a small positively oriented circle about zk . Now,
consider

as a function of a(HM(y)). If this variable is positive, the function equals a
finite sum of terms

where each Pk is a polynomial. These terms are characterized by their
exponents, and are uniquely determined from the asymptotic values of
ÎM (y, 03B8M(f)). But (7.4) is just the orbital integral of the function of 03C0 defined
by the residue (7.3). Moreover, MM(03B3, 03B8M(f)) equals IM(03B3, f) for HM(03B3)
outside a compact set. It follows that all the one dimensional residues can
be obtained from the asymptotic behaviour of IM(y, f), in the case of

maximal Levi subsets. We have observed that these in turn determine the
distributions {IM(03C0, X, f)}, the asymptotic behaviour of {IM(03B3, f)}, and the
residues of {JM(03C0039B, f)}, all for general M.
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