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0. Introduction

Let X c Pi be a smooth surface over k, where k is an algebraically closed
field of characteristic p, and if = O(1) be the sheaf of linear sections of X.
For any subspace h’ c V = H0(X, O(1)), we have the following canonical
homomorphisms

where PsX(1) is the sheaf of the sth principal parts of Y on X. Many authors
treated al for the generic subspaces V’ of dimensions 2 and 3. It resulted in
a restudy for polar loci (see Kleiman [1] and Piene [2]). But it seems that
there are few results about the higher as for the whole space perhaps for
lacking of "genericness". For the space V the relevant questions seem to be
as follows.

(a) How to determine the least s which makes as injective? The existence of
such an s was proved by Mount and Villamayor in [3] for a general case. In
[5] we called such an s a coordinate gap number, denoted by b2(X).

(b) How to describe the scheme I, defined by the Fitting ideal ¡l’b2 -4 (coker
ab2 ), where nb2 is the rank of Pb2X In particular, if dim I = 0, how to get the
0-cycle expression of I, hence the number of its points (with corresponding
multiplicities)? Indeed the points of I are the hyperosculating points in the
sense of Pohl [4], which were called b2 -inflections in [6] so as to correspond
to the curve case.

(c) What X has only a finite number of b2 -inflections? Corresponding to
these questions, our main results are the following.

(a) b2 = 2 or pm for some m  1; and b2 = pm if and only if the defining
polynomial for X can be written as

where pm is the largest number for such a form.
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(b) If X has a finite number of pm-inflections then the 0-cycle expression
of I is

and therefore the number of pm-inflections is

(c) If b2 - pm and deg X = 1 + pm , then X has a finite number of
pm-inflections.

Furthermore, for a generic surface in P3a with b2 = pm and deg X =
1 + kpm, the number of b2(X)-inflections is finite.
Throughout this paper we always assume p =1= 2.

1. Coordinate gap number

First let us set up notations.
Let X be a non-degenerate, smooth surface in P3, and Y = O(1). We

have the canonical homomorphisms

defined by

where p, q : X x X ~ X denote the first and the second projections,
respectively, A is the diagonal in X x X, and (9Ós = OX X/s+10394, fA is the
ideal of definition for A in X x X. For more details we refer to [7].

DEFINITION: The least integer s which makes as injective is said to be coor-
dinate gap number, denoted by b2(X). Obviously, b2  2.

PROPOSITION 1.1: Let X be defined by the homogeneous polynomial G(Xo, Xl ,
X2, X3). The necessary and suficient conditions for b2 &#x3E; 2 are Gij = 0 for
all 0  i, j  3, where Gij = ~2G/~Xi~Xj; in particular, we have deg
G = 1 + kp for some integer k  1.

Proof: See Theorem 3.1 and its corollary in [5].
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Then b2 &#x3E; 2 implies p &#x3E; 0. Therefore, in what follows we always assume
p is odd and positive since the case b2 = 2 has been treated in [6].

LEMMA: There is a coordinate system in P3 such that, if the polynomial for
defining X is G = Y-’ 0 XiFi(X0, ..., X3)pm, then any two of the divisors [F0],
[F1], [F2], [F3] on X have no common component.

Proof.- Since X is smooth, the linear system generated by [Fi] is base-point
free, so it determines a morphism

It is obvious that there are four linear independent planes in 3, such that
any two of their intersections with F(X) have no common component. Then
pulling them back to X, we see that any two of 03A33j =0 aijFj, i = 0, ... , 3, with
det(aij) =1= 0 for some constants aij, have no common component.
Therefore, considering the transformations

bringing G into G’, we have

and the proof is complete.

THEOREM 1.2 : If b2 &#x3E; 2, then b2 = pm for some m; and b2 = pm if and only
if deg X = 1 + kpm for some k  1, and the polynomial for defining X can
be written as

where deg Fi = k and pm is the largest exponential for such an expression.

Proof: Since b2 &#x3E; 2, we have G¡j = 0; so we can write G in the above form,
and the F’s can be assumed to satisfy the assertion of the lemma since b2 (X )
and pm are invariant under a nonsingular linear transform.
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Let us calculate b2(X) as follows. Without loss of generality, we can
assume F3 ~ 0. On U = (X0 ~ 0) n (F3 i= 0) let us take x = X1/X0,
y = X2/X0, z = X3/X0 to be the affine coordinates, and calculate b2(X) near
a point Q = (x0, y0, z0) ~ U. For this purpose consider the completion R of
the regular local ring B = OX,Q with respect to its maximal ideal, which has
a system of uniform parameters {x - x0, y - y0}. Since (OX(1))Q ~ OX,Q
and B ~ its image in R, we can identify VQ with the image of B ~ Bx G)
By ffl Bz in R Q Rx Q Ry Q Rz, PsX(1)Q with its image in PsR, and as,Q
with dsR·~ by definition, where 0: B ~ Bx Q By ~ Bz ~ B + Bx +
By + Bz c R, dsR = idR + TsR : R ~ PsR, and TR is the operator of

s-truncated Taylor series (see [3]).
Now PR is a free R-module with basis 1, dx, dy, ... (dx)S , (dxy-ldy,

..., (dy)s, and as,Q(z) = dsR·~(z) is uniquely expressed as

where Ri, Rj e R, s » 0.

Moreover, on X we have

Setting Fi(1, x, y, z) = f (x, y, z) ~ B ~ R, we get

where dx = 1 (D x - x Q 1. Writing
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we then have

Substituting (*) into (**) and identifying the coefficients of dx, dy, dx2 ,
dxdy, dy2, ... with zero, we obtain

Obviously, R0,pm, Rpm,0 E B = OX,Q.
From ( 1 )-(4), we see that b2(X)  pm. We conclude that b2 = pm. Other-

wise, we would have R0,pm = Rpm,0 = 0 in (9x,Q. Then there is a neighborhood
U’ c U of Q such that R0,pm and Rpm,o vanish on U’. On the other hand, on
U’ we have 

and

where Fji(X0, ..., X3) = ~Fj/~Xi. Therefore it follows from (4) that on U’
we have
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But since X is irreducible, (***)i, (i = 1, 2) is valid on X. Moreover, let us
verify that (***)i is valid for i = 0, 3: (***)3 is an identity; as for (***)0,
multiplying X to (***)i (i = 1, 2, 3), then summing them up, we obtain

Since

we have

so (***)o is valid.
Now we claim that

In fact, from (***) we see that Fpm3 = 0 implies Fp2mi (03A3jXjFpmji) = 0;
therefore, [Fp2m3]  [Fp2mi(03A3j XjFpmji)] as divisors on X. By the lemma, [Fp2m3]
and [Fp2mi ] (i =1 3) have no common components, hence [Fp2m3]  [03A3j XjFpmji].
On the other hand, since deg [F3P2’ ] = (deg X)(kp2m) &#x3E; deg[I:j XjFpmji] =
( pm (k - 1) + 1)deg X, we see that (****) are valid on X, hence our claim
since deg G &#x3E; deg(03A3j XjFpmji).
The difi’erentiating (****) with respect to Xj, we obtain Fji = 0 for all i,

j, and therefore each Fi can be written as Hi(Xp0, ..., Xp3), which contradicts
our choice of pm. The proof is complete.

2. p"‘-inflections

DEFINITION: Let the coordinate gap number of X be b2. The Fitting ideal
Ëb2 -4 (coker ab2 ) defines a subscheme I in X, called b2-inflection locus. And
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a point of I is said to be a b2-inflection; the multiplicity of an inflection is
defined as the multiplicity of the point in I.

In [6] we have treated the 2-inflection locus already, at present we work
only on b2 = pm, where m  1. For this purpose we proceed in several steps
as follows.

Step 1. The fundamental diagrams [ 7]

The following diagrams are fundamental for our purpose:

where ao, al are surjective since X is smooth; -X’ = ker al and lff = ker ao,
hence the rows in (A1) are exact; moreover, the second column from the
right is exact according to the structure of PsX(), and by 5-lemma the
second column from the left also is exact.

Similarly, we have
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where sm denotes the operator of the m-th symmetric product, 03A9X the sheaf
of Kähler differentials.

In (A2), the homomorphism a2 · i factors through (SIÇI,)(Y). More-
over, a2 ·i(K) = 0. Otherwise, by the exactness of the right column,
we would have that a2 is injective, contradicting pm &#x3E; 2. Thus ker a2 ~ K
and im(a2) ~ P1X(). Inductively proceeding up to (Apm-1), we have
ker(apm-1) ~ K and im(apm-1) = P1X(). Finally, in (Apm), we have a com-
mutative diagram with exact rows and columns

SinceA’7 = id.: P1X() ~ Ppm-1X() ~ P1X(), where h = b2·····bpm-1,
the bottom row is splitting, and then (coker j ) is locally free. By the property
of Fitting ideal (see [9]), fp--4 (coker apm) = F(pm+2)-42(coker apm) =
Fpm(coker i). Locally, nx are free in an open set. Taking the open set as
the one in Section 1, we may assume dx, dy to be the basis of 03A9X, z to that
of Therefore,

and Fpm(coker i ) is generated by (Rij)i+j=pm.
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Step 2. Passing to E

Let E = Proj  Si = P(&#x26;’) and Y = P(03A9X()). We have a diagram

where and a are the structure morphism of E and Y, respectively; 03B2 is
defined by the homomorphism: 0 ~  ~ Vx in (Al); , f ’ is a rational map
determined by 6 - 03A9X() in (Al). Indeed, E is the incidence variety of X
in P3, i.e., E = {(x, h) E X x 3|x E H, where h is represented by Hi.
Therefore E is the space of linear sections of X parameterized by 3, and
03B2-1(point) corresponds uniquely to a divisor G 1 [Y] 1. 
On E, consider the composition

where Spm03C0*03A9X() ~ Sp"lQE(n* 2) is determined by the exact sequence

Spm03A9E ~ Spm03A9E/3 is determined by the exact sequence

The left side of (3) is injective at the smooth points of j8. The scheme of
singular locus of fi is exactly that of singular points of the fiber of fi (cf. [],
IIID), so it turns out to be P(), i.e., the subscheme {(Q E X, the tangent
plane section passing Q)} c E, in other words,, the projective conormal
bundle of X in P3. Write W = E - P().
Now we take an open set U ~ X small enough that {1, x, y, z} is a basis

of VX when restricted in U, i.e., VU = {~ + Àx + my + vzl; besides, we can
assume that {x, y, z} is a basis of &#x26; 1 u, and z is a basis of 1 u; it follows that
(x, y) is the local coordinate in U, (17, Â, Il, v) is the coordinate in 03C0-1(U).
QE e3 is locally free in W n U with rank 1. Identifying E with a subscheme

of X  3 = P(X), we have an exact sequence
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OX 3 ( - E ) is the ideal of definition for E in X  3, which can locally be
expressed ars 1 + Âx + My + vz, hence 03C8(~ + Àx + My + vz) = Â dx +
pdy + v dz ; since al (z) - 0 on E, we have QE/P3 = (9Edx + OEdy
mod( dx + Il dy). 

It follows from the discussion above that A(z) = (03A3i+j=pm Rij03BBj03BCi t) and t
is a basis of QE/P3’ hence F0(coker A) is generated by (03A3i+j=pm Rij)! Ili) on
W n U; therefore F0(coker A) defines a scheme J’ with codimWJ’ - 1.

By sequences (1) and (3), and applying Porteous’ formula, we have

Since A4Q£ = the canonical sheaf KE of E and 03B2*03A93 ~ fl*(9(- 4) ~ OE(- 4),
finally we have

Step 3. Passing to Y

Let us consider the diagram (B) and the rational map f once more. The
homomorphism é - 03A9X() can locally be expressed as Âx + My +
vz H Âx + My, hence the map is a correspondence with (x, y; Â, y, v) H
(x, y; 03BB, Il) and defined on W = E - P(K). The closure J of the scheme-
theoretic inverse image of J’ in Y is defined by ideal (03A3i+j=pm RUAi lli), the
same form for defining J’; in other words, the scheme-theoretic image of J
coincides with J’ on W, i.e., f-1(J) = J’.

In virtue of codimEP() = 2 on E and well-known facts (e.g., see [8]),
we have Pic W ~ Pic E ~ n*Pic X + {OE(1)}; moreover, Pic Y =

a*Pic X + {OY(1)} on Y. Therefore, it follows from f*(03B1*Pic X) = n*Pic X
and f*OY(1) = OE(1) that f* is an isomorphism (noting that oc* and 03C0* are
splitting).
On the other side, we have the following exact sequences on E:
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and

Therefore, we get

hence

This shows that the ideal of definition for J is isomorphic to

Step 4. Passing to Z

Let Z = P(Spm03A9X() ). We have an immersion g : Y ~ Z over X, defined
by OY(pm):

Alternatively g is defined by the following composition of homomorphisms

Locally, it turns out to be the Veronese morphism (cf. [10]).
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Let us show that there exists a unique divisor D on Z such that D n Y = J.
In fact, by Step 1, for every point Q E X there is a neighborhood U of Q such

that J is defined by (03A3i+j=pm Rij03BBj03BCi) on 03B1-1(U), so g*:03B1-1(U) ~ 03B3-1(U) can
be expressed as (x, y; 03BB, Il) H (x, y; Apm, 03BBpm-1 03BC, ..., Ir), and therefore
1 Rij 03BBj 03BCi H 1 Rij Tij is an 1-1 correspondence between the set of pm-forms in
03BB, 03BC and the set of 1-forms in Tij. Then, on each 03B1-1(U) there exists such a
D and these forms are invariant under linear transformations, so we can
piece them together to get such an effective divisor D on Z as desired.
Now, the ideal OZ(- D) can be determined as follows. Since g*(y* Pic Z) =

a* Pic Y and g*OZ(1) = OY(pm), we see that g* : Pic Z ~ Pic Y is injective
by the same reasons as shown in Step 1; moreover

Consequently

LEMMA: F"(coker i ) = Fpm-1(03A9D/X).

Proof: Consider the following exact sequence

where OD(-D) is locally generated by 1 Rij Tij. In each {Trs ~ 01 let

tij = Tij/Trs. Then 03B4(03A3 Rijtij) = dz/x(I: Rijtij) = 03A3 Rijdtij. Consequently
Fpm -1 (03A9D/X) is generated by (Rij)i+j=pm which is just y *FI’ (coker i), as shown
in Step 1.

Note that the lemma shows that Fpm-1(03A9D/X) defines the scheme y-1 (I ) by
the properties of Fitting ideals (e.g. see [9]); this is a new starting-point of
our argument.

Step 5. Pulling back to Y

Then we have the exact sequence
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which defines f as the kernel. On the other hand, in the following exact
sequence O(-J)|J  03A9Y/X|J ~ fljlx --+ 0 we have 6 = 0. In fact, from
Section 1, (1)-(4), we have locally O(-J) = (R03BBpm + Se), where R - R0,pm,
s = Rpm,0, so 03C3(R(x, y)ÂP’ + S(x, y)03BCpm = dY/X(R03BBpm + Sllpm) = 0. Conse-

quently 03A9Y/X|J ~ 03A9J/X, thus it is a locally free sheaf of rank 1. Using (6) we
then have

Consider the fundamental diagrams for Z ~ X and OZ(1). In a similar way
to Step 1 we have

and (A2)’, (A3)’, ..., (Apm)’.
Let tij = Tij/T0pm be the affine coordinates on 03B3-1(U) = U x PP’. Then

{tij} is a basis Of Qz/x(1).
In (As)" for any s, the homomorphism

factors through Hs(1), the kernel of the following composition

Twisting a’s·i’ with O(-1), we obtain
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In addition, we have the natural maps

(see [ 11 ]), which can be locally expressed as (dtij)r H Tr(03BBi) for r  s, where
Tr(03BBi) = (03BB + dÂ)’ - Â’ is the r-truncated Taylor series of Âi.

Let Fs be the kernel of

Then we have us : g*Hs ~ Js. Setting ’s = u, - g*vs, we have the following
commutative diagram:

where ( = 03B6pm-1|J, ~ is a self-évident surjective map, and the bottom row is
just (6). Let us show that ( is also surjective. In fact, rank Qz/x = rank
Jpm-1 + 1 = pm , and locally, a basis of g*Qz/x is {tij}, where i + j = pm
and i ~ 0, a basis of f7P"’-1 is {d03BB, (d03BB)2, ... , (d03BB)pm-1}, moreover, ((tij) =
Tpm-1(03BBi) = 03A3n~i(in)03BBnd03BBi-n for i  pm and ((tpm,o) = 0, and therefore the
matrix of ( with respect to these bases is 

Consequently ( is surjective.
Let W be the kernel of 0, N the kernel of g*03A9Z/X|J - and J the

kernel of (. Then we have a homomorphism i:  ~ fi with its kernel  and
cokernel 1. Now, we have the following diagram:
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Moreover from the exact sequence

we known that g*OD(-D) = OJ(-J) ~ N is surjective, hence 03BE is

zero. Indeed, it follows from Step 3 that OJ(-J) is generated locally by
RApm + Se, so ((RApm + Se) = 0, and therefore U =  and A = X.

In the diagram above, let us break up the left column into two parts:

where the sheaf 1 is locally free, and (b) can be replaced by

Then we can prove the following proposition:

PROPOSITION 2.1: 03B1-1(I) is defined by F0(Im 1").

Proof: From the lemma we see that 03B3-1(I) is defined by Fpm-1(03A9D/X), so
a-’ (I ) is defined by g*Fpm-1(03A9D/X) = Fpm-1 (g*03A9D/X). Moreover, applying
Fpm-1 to the bottom row of the diagram above and noting rank ni/x = 1,
we have Fpm-1(g*03A9D/X) = Fpm-2(). Now applying Fp"’ - 2 to (a) and noting
rank 1 = pm - 2, we obtain what we want.
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THEOREM 2.2: If X has only a finite number of p’"-inflections, then, as a

cycle,

where [KX] denotes the divisor associated with KX, etc., [KX]2 is the intersection
of divisors and ci is the operator of i-th Chern class.

Consequently

Proof: By our hypothesis, codimJ03B1-1(I) = 1. Since (b)’ is the resolution of
(Im r), it follows from Proposition 2.1, that I is exactly the degeneracy locus
of (9J( - J) ~  with rank J = 1, hence it has a "correct dimension". Then

applying Porteous’ formula to (b)’ (cf. [8] in the simplest case), we have

Let us calculate cl (). Since

is exact, we have

From

and the splitting principle, we also have
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As for el (Jpm-1), using the séquence for defining Jpm-1 and the fundamental
diagrams of Y/X, we obtain

Moreover, by the last formula in Step 3, we see

hence

Since a is flat we have [a-’(I)] = a*[I]. So from the projection formula
03B1*(c1(O(1)) n a*[I]) = [I] we see

where si is the operator of the i-th Segre class, hence
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The proof is complete.

EXAMPLE: Suppose that X is defined by

We shall prove in the next section that X has only a finite number of
p-inflections. Then Theorem 2.2 tells us

It is interesting that this result can get verified by a direct calculation.
In affine coordinates the equation is

According to the notations in Section 1 we have

Then we have three groups of solutions as follows.

(1) x = 0, y = 0 and z=ei (i== 1, ... , p + 1), where ei are the
(p + 1)th roots of - 1. By the symmetry of the equation, these solutions
amount to 6(p + 1).

(2) x = 0, zp2-1 - yp2-1 = 0. Let y = wiz ( j = 1, ..., p2 - 1), where wy
are the (p2 - 1 )th roots of unity. Then we have whenever ( 1 + wp+1j) ~ 0,
the equation has (p + 1) solutions for z. Since such wy’s amount to
( p2 - p - 2), this group consists of 4(p + 1)(p2 - p - 2) elements by
symmetry again.
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(3) Xp2-l = yp2-1 = zp2-1 = 0. Substituting x = wiz and y = wjz into
the equation where wi and wj are the (p2 - l)th roots of unity, we have

If (1 + Wf+l + wp+1j) ~ 0, then there are ( p + 1) solutions for z. If

1 + wi = 0, then we have (1 + wp+ 1 + wp+1j) ~ 0 for every wj, so the
number of (w. wj) with 1 + wp+1i = 0 and 1 + wp+ 1 + wp+1j 1 ~ 0 is

(p + 1)(p2 - 1). If 1 + Wf+l =1= 0, the number of wi with 1 + wp+1i +
wp+ 1 = 0 is ( p + 1), the number of (wi, wj) with 1 + wp+1i ~ 0 and
1 + wp+1i + Wf+l =1= 0 is (p2 - 1 - (p + 1))2. In sum, all these solutions
amount to ( p + 1)3(p2 - 3p + 3).

Consequently the total number of solutions is the very same number as
given by Theorem 2, 2.

3. Finiteness 

Let us adopt all the notations in Section 1. Let deg X = 1 + kpm and
b2(X) = pm. Then by Theorem 1.2, for some coordinate system, X is defined
by

Suppose that C is irreducible and reduced curve on X, and [F]*
(i = 0, ... , 3) are divisors determined by sections of F, on C. We say that
C possesses the property (GX) if it satisfies the following conditions: (a) No
two of divisors [Fi]* have common component point; (b) C is not contained
in any X = 0 for i = 0, ... , 3.

LEMMA 1 : Suppose C possesses (GX) and is contained in the pm - inflection locus
of X. Then, on C we have

Proof: Since C c I by our hypothesis, we have R0pm 1 c = 0 = Rpmo 1 c, hence
by Section 1, (4), on C
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Then, nothing remains but to imitate the argument in Section 1, nearly
verbatim.

LEMMA 2: For the given C on X there is a ùoordinate system under which C
possesses (GX) where G is the polynomial for defining X.

Proof: The proof is also similar to that of the lemma in Section 1. It is
sufficient to find out four independent planes suçh that the intersection of
any two of them does not meet the image of C in P3. In addition, since such
a choice is generic, pulling them back to P3 we can still choose coordinate
planes, not containing C.

LEMMA 3: If for some coordinate system we have *)i 1 c = 0 for all i, so do
we for any other system.

Proof: Assume in coordinate {xi} we have

on C. Let

where det (aij) ~ 0 and (aij)-1 = (bij).
Then the polynomial G is transformed into

so we have



47

and

Hence the lemma.

THEOREM 3.1 : C c I if and only if (****)i|C = 0 for i = 0, ... , 3.

Proof: A direct consequence of lemma 1, 2, 3.

PROPOSITION 3.2: If deg X = 1 + pm and b2(X) = pm, then X has only a
finite number of pm-inflections.

Proof: By our hypothesis, Fi = 03A33j=0 aijXj, and det (aij) is invertible. Then
(****)i(i = 0, ... , 3) are expressed as

hence the solution of (****) contains no curve.
The following examples show that there are surfaces which take curves as

pm-inflection locus even if p does not divide k = deg Fi.

EXAMPLE: G = X0(Xp0 + X0Xp-11)pm-1 + Xl (XJXf-2 + Xp1)pm-1 + Xpm+12 1 +
Xpm+13. Then F j2 = F j3 = 0 for all j, and the sections of planes Xo = 0 and
XI = 0 on X both are contained in I.

EXAMPLE: G = X0(X20 + 2 . 3p-m X0X1 + 3p-m X21)pm + 2X2pm0X1 + X2(X22 -
2 . 3,P-’X2X3 + 3p-m X23)pm + 2X3 X2pm2. Then the line {X0 = Xl , X2 = X3} is
contained in I.
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In general, we have

THEOREM 3.3: Under a fixed coordinate system, a generic surface with b2 - pm
and deg X = 1 + kpm has only a finite number of pm-inflections.

Proof. The surfaces with b2(X) = pm and deg X = 1 + kpm are determined
uniquely by Fo, ... , F3 up to a constant multiplication, thus the set

of such surfaces can be parametrized by an open set Sk,pm in PN, where
N = 4(k+33) - 1. 

Let Y be the surface defined by (****)i. Then Yi is smooth if and only if
the four surfaces Fji(j = 0, ... , 3) have no common point in P3; it is well
known that this is an open condition of those coefficients in Fji(j = 0, ... , 3),
so hereafter we assume all the Y are smooth. Now fix Yo and take a point
Q in Yo . The section of a surface through Q, cut out by Yo, is singular at Q
if and only if the surface is tangent to Yo at Q. A general surface tangent to
Yo at Q submits to 3 independent equations, so we see by dimension
computations that the subset of Sk,pm consisting of those surfaces to which
the corresponding Y, are tangent to Y0, has dimension (4(k-1+33) - 1) + 5.
Since dim Sk,pm - 4(k+23) - 4 = 2(k + 1)(k + 2) - 5 &#x3E; 0, it follows
that almost every surfaces in Sk,pm has the property that its YI, cut out by Yo,
gives a smooth section. Moreover, since the divisor on Yo, determined by
this section, is ample, the section is connected and conseqûently irreducible.
It follows that the homogeneous ideal (03A3XjFpmj0, 03A3 XjFpmj1) is prime. Now we
show that to a general point in Sk,pm the corresponding Y2 intersects its
Yo n Fi in a finite number of points only. If to the contrary, the intersection
would contain a curve, thus it coinciding with the intersection of Yo and Y,
since the latter is irreducible. By Nullstellensatz we have 03A3 XjFpmj2 E (03A3XjFpmj0,
03A3 XjFpmj1), hence 03A3 XjFpmj2 = a 03A3XjFpmj0 + b 03A3 XjFpmj1 where a and b are con-
stants for the sake of degree.

Differentiating them with respect to Xi, we obtain F2"’ = aFô + bffm,
where j = 0, ... , 3 and (a, b) =1 0, thus resulting in 3(k+23) - 1 relations

among their coefficients. Since dim Sk,p"’ - 3(k+23) + 1 &#x3E; 0, we conclude

finally that the scheme defined by (****) of a general point in Sk,pm contains
no curve. Therefore, our proof is complete by 3.1.
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