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1. Introduction

Let E be a domain in R- (m  3). E is said to be thin at a point xo if there
exists a superharmonic function u, defined in B(xo, r) = {x ~ Rm||x-x0|  r}
for some r, such that

This is the definition given by Brelot [1] to characterize regularity of a
point for the Dirichlet problem. Using the Riesz decomposition Theorem it
is possible to prove that the "lim inf" can be taken to be infinite. This fact
implies that the solid angle subtended by ~B(x0, r) n E at the point xo is very
small. In fact, it tends to zero with r. More precisely, if

where u is the Lebesgue measurc on ùB(xo, r), then 0(r) ~ 0, as r ~ 0. A
proof of this result can be found in [5, p. 211]. Therefore the following
natural question arises: how big can 0(r) be when E is thin at xo? In this
paper we shall give an answer to this question which is best possible in a
sense that will be made precise later on.

In the theorem that follows we shall give the condition of thinness, for
domains which are thin at infinity, in terms of the characteristic constant of
spherical sets. The precise definition of this can be found in Section 2. The
corresponding condition for domains which are thin at the origin is the
same. This is so since the characteristic constant is invariant under inversion
with respect to the unit sphere Sm .
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THEOREM 1: Let E be an unbounded domain in Rm (m  3), containing the
origin and thin at infinity. Let Ec be the complement of E; we assume that (E)c
is regular for the Dirichlet problem. If 03B1(r) is the characteristic constant of
ôB(0, r) n Ec, then

COROLLARY: Let E be as above and 0(r) = [03C3(~B(0, r) n E)]/[a(ôB(0, r)].
Then

and

This corollary is a consequence of Theorem 1 and the asymptotic expres-
sions (as ~ ~ 03C0) for the characteristic constant 03B1(C~) of a spherical cap

where Sm is the unit sphere of Rm. These expressions are

and
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as ~ ~ n. The proofs of these asymptotic results can be found in [2, Th. 4].
We shall prove that Theorem 1 is best possible in the following sense.

THEOREM 2: Let 0(t) be a positive decreasing function defined in [0, oo) such
that

Then, there exists an unbounded regular domain E ~ R- (m  3), which is
thin at infinity and such that 0(t) = O(03B1(t)), as t - oo, where 03B1(t) is the

characteristic constant of 8B(0, t) n EC.

2. The characteristic constant

Following [4] let E be a measurable set on the unit sphere S"’ of Rm. We shall
associate to E a constant a(E) (the characteristic constant of E) in the
following way. If E is regular with analytic boundary then we define

where

and d03C3m denotes an element of surface area on SI. Since the class  gets
larger with increasing E and the infimum smaller, A(E) decreases with
increasing domains. If Fis a general compact set, we define Â(F) as the upper
bound of Â(E) over the class of all domains E containing F. Finally, if E is
a general set then we define A(E) as the lower bound over the class of all
compact sets F contained in E. The characteristic constant of E is defined to
be the positive root of the equation

If the set E lies on the sphere S(0, r) we define a(E) = a(Ê), where Ê is the
radial projections of E on S"’ (i.e., Ê is the set of all x/|x|, where x E E). We
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remark that the characteristic constant is invariant under inversion with

respect to the sphere Sm .

3. Thinness at the origin and thinness at infinity

A set E is thin at the origin if and only if

where 0  03BB  1, En = E ~ {x ~ Rm|03BBn+1 IXI  03BBn} and C(En ) is

the Newtonian capacity of En . This is the well known Wiener criterion

[6. p. 287]. In what follows F* will denote the image of the set F under
inversion with respect to Sm .

LEMMA: Let E be an open set in Rm with the origin as a boundary point and
E* the inversion of E with respect to ,S’m . Then E is thin at 0 f and only if

where En = E ~ {x e Rm|03BBn+1  Ixl  03BBn} and 0  03BB  1.

Whenever a set E* satisfies (3.2) we shall say that E* is thin at infinity.

Proof. This is a consequence of the Wiener criterion together with the
estimates

4. Proof of Theorem 1

Since E is thin at infinity then

where En = E n {x ~ Rm|03BBn+1  |x|  03BBn} and 0  03BB  1. Therefore
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there exists a positive Borel measure Il such that the support of Il is contained
in E, U03BC  1 throughout Rm, where

is the Newtonian potential associated to /1, and VIl(X) == 1 quasi-everywhere
on É. A proof of this result can be found in [6, p. 280]. The exceptional set
that appears here is empty since (E)c is regular. In fact, using the mean value
inequality for the superharmonic function Vil it is easy to prove that

U03BC(x) ~ 1 in E. On the other hand, if Vil (xo)  1 for some xo in É then xo
must belong to the boundary of E, and using Brelot’s definition of thinness
at a point one deduces that E is thin at xo. This implies that xo is an irregular
boundary point of (E)c, which is absurd. Now we set u(x) = 1 - U03BC(x)
and notice that u is a non-negative subharmonic function in Rm, bounded
above by one and identically zero on E. If D(r) = aB (0, r) n (EY’ and

then we can apply the Carleman-Huber convexity theorem [4, p. 137] to the
function u restricted to (E)c. Therefore there exist two positive constants C
and ro such that

where a(t) is the characteristic constant of 8B(0, t) n E". Since u is bounded
above by one m(r, u)  1 and thus

5. A certain class of thin sets and proof of Theorem 2

In [3] we have introduced the following domains dcfined by sequences. Let
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where (t, 0) = (t, 0, ... , 0) E Rm(m &#x3E; 3),

and {an} is a non-increasing sequence of positive real numbers such that
a,  3/10. This upper bound for a, is required in order to prevent two
consecutive balls in the sequence {B((22n, 0), r(22n))} from intersecting. In the
case m = 3 we define E as above with

where {rn}n  1 is a non-increasing sequence of positive real numbers with
r,  1/4. The domain E is thin at infinity provided

and

A proof of this result can be found in [3, Ths. 7, 8]. Now we are in a position
to prove Theorem 2. Let us first assume that m  4. We set ~n = ~(22n).
Then

Since 0(t) is a non-increasing function of t
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This says that (1) is equivalent to

Using the sequence {~n} we define a domain E in R- whose associated
sequence {an} is

where c is a positive constant chosen so that a,  3/10. As a result of (5.2)
and (5.3) E is thin at infinity. On the other hand, since the characteristic
constant of a set decreases as the set increases

where C03C0-0n+1 is a spherical cap of angle n - 03B8n+1, and On+l = sin-’ an+1.
From the asymptotic behaviour of 03B1(C0), as 0 - n, in the case m  4, we
obtain

for all n sufficiently large, and cl a suitable constant. Now combining (5.4)
and (5.5) and taking into account that 0 is a non-increasing function, we get

where 22n  t  22n+ 1. This completes the proof in the case m  4. Let us
suppose now that m = 3. We set On = ~(2n). Since 0 is a non-increasing
function we can write

which proves that, for m = 3, (1.1) is equivalent to
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We now proceed as in the case m  4 defining a domain E ~ R3 associated
to a sequence {rn}n1, which is defined in the following manner

and

where the constant c2 is so chosen to make sure that r1  1/4. Before
carrying on, we must see that the sequence {rn}n1 is well defined. In order
to do that we ought to prove that the series in (5.7) converges. In fact we are
going to prove that

Since {~n} is a decreasing sequence then, in view of (5.6), we have that

Thus

which proves (5.8). It is obvious that the sequence {rn}n1 is decreasing.
Therefore we can associate to it a domain E z R3. We claim that E is thin
at infinity. According to (5.1), all we have to prove is that

Since n~n ~ 0, as n - oo,

Then, if n  n0 and k  0, we have that
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Therefore,

which allows us to say that

Then,

From here and using (5.7) we get that

Hence

by (5.6). Therefore (5.9) holds and so E is thin at infinity. In order to
complete the proof of Theorem 2 it remains to prove that 0(t) = O(03B1(t)).
Let t E [2n, 2n+1]. We define

and

Since the characteristic constant of a cap decreases as the cap increases

On the other hand, the asymptotic expressions for 03B1(C0), as 03B8 ~ 03C0, allows



10

us to say that there exists a constant c3 such that

for all sufficiently large n. Here we are using that 0,, ~ 0, as n - oo, which
is a consequence of the fact that rn - 0. We also have that

From (5.10), (5.11) and (5.12) we deduce that

Since 03B3n+1  rn+l we deduce from (5.13) that

for all sufficiently large n and t E [2n, 2n+1]. Now if we use the following
lower bound for rn+1, which is obtained from (5.7),

in (5.14) we get
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for a suitable constant c4. In obtaining the last inequality we have taken into
account that t a 2n and that 0 is non-increasing. This completes the proof
that 0(t) = O(a(t)), as t tends to co.
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