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Introduction

The main purpose of this note is to show that if V is any finite-dimensional

complex representation of the symmetric group Ss of degree five, then the
quotient varieties P(V)/S5, and so VIS5, are rational. In particular, it

follows that the moduli space M6 for curves of genus six is rational over W;
this follows from the well known fact that the canonical model of such a
curve lies as a quadric section on a unique quintic Del Pezzo surface 1, so
that if U2 = H0(O03A3(2)), then M6 ~ P(U2)/S5, since S5 = Aut 03A3. (We|let|the
symbol - denote birational equivalence.) This is essentially equivalent to
the classical fact that a generic curve C of genus six has five g6’s, and each
g6 maps C to a plane sextic with four nodes in general position.

In the final section, we shall extend this result to an arbitrary base field.
It turns out that the geometry of E is the key to other actions of SS ; see
Proposition 9.

Preliminaries

We gather various well known facts and set up some notation.
The irreducible representations of Ss will be denoted by 1, 0, x, 03C8, X’, ~’,

03C3, of degrees 1, 4, 5, 6, 4, 1 respectively. 1 is the trivial representation, u is
the signature, 0 is the representation of S5 as the Weyl group W(A4),
~’ = ~ ~ 03C3 and ~’ = x (8) a. For the convenience of the reader, the

complete character table of Ss is reproduced at the end of the paper.
The quintic Del Pezzo surface E is obtained by blowing up four distinct

points Pl,..., P4 in P2, no three of which are collinear, and is anticanonically
embedded in p5 via the system of cubics through P1, ..., P4 . The group of

* Supported by N.S.F. grant no. DMS 85-03743.
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Cremona transformations of p2 based at P1, ..., P4 is isomorphic to SS
and acts biregularly on 03A3; S5 is the whole of Aut E, and the action on
K~03A3 ~ H2 (E, Z) ~ Pic 1 is the representation ouf 85 as W(A4). 03A3 contains
five pencils of conics and ten lines; both sets are permuted transitively by Aut
E. Finally, the action of S5 on £ extends to a linear action on p5, and since
O03A3(1) is the determinant of the tangent bundle T03A3, it is SS -linearized; i.e., the
action of S5 on p5 is induced from a representation of S5 on the six-
dimensional vector space H0(O03A3(1)).
Throughout, we shall denote the vector space H0(O03A3(n)) by Vn.

Représentations of S. associated to E

LEMMA 1. U1 ~ 1/1.

Proof.- It is enough to show that VI contains no one-dimensional represen-
tation of SS , or equivalently that there is no Aut E-invariant hyperplane in
P5. So suppose that there is such a hyperplane, say H. Since Aut E acts
transitively on the lines in X, H n E cannot contain any line, since

deg(E n H) = 5. Similarly H n X cannot contain any conic, and so
H n E is a reduced and irreducible quintic curve of arithmetic genus one.
Then the normalization of H n E is either Pl or elliptic; however, S5 cannot
act effectively on such a curve. Q.E.D.

We shall let W denote the space of quadrics in p5 through E. Because E is
projectively normal (since a hyperplane section, a quintic elliptic curve, is
so), W is five-dimensional, and in fact X is cut out by the elements of W.

PROPOSITION 2 (Mukai): W is irreducible.

Pro of. It is well-known (and easy to see) that each line in 03A3 lies in six

pentagons contained in E. Hence there are 12 pentagons in E, each of which
is a hyperplane section of 03A3, and if nI = {l1, ... , l5} is a pentagon, then
the remaining lines {m1, ..., m5} on E also form a pentagon 03A0’1. Hence the
twelve pentagons fall into six pairs {03A01, 03A0’1}, ..., {03A06, 03A0’6}. Choose linear
forms Li, Lt cutting out ni, 03A0’i respectively on E. Then the quadrics
Qi = LiL’i form a six-dimensional space W’ upon which S5 acts (up to
twisting by a character E or 03C3) as a transitive permutation group. So W’ has
irreducible five-and one-dimensional components. The five-dimensional

component W" is generated by the differences Qij = Qi - Qj, all of which
vanish along 1, and so contain E. Hence W" = W, and we know that
W" = x or X’. Q.E.D.
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COROLLARY 3. Either

Proof.- By the projective normality of Y-, we have U2 ~ Symm2(Ul)IW. A
brief computation involving the character table of S5 shows that

Symm2(U1) ~ 1 (D 0 0 2x ~ x’ 0 a, and now the Corollary follows
from Proposition 2.

Curves of genus six

Our aim is to give a proof of the classical fact mentioned in the introduction,
that the canonical model of a general curve of genus six lies on a unique
quintic Del Pezzo surface.

PROPOSITION 4. Suppose that F c p5 is the canonical model of a non-hyper-
elliptic smooth curve of genus six, and that r lies on a smooth quintic Del
Pezzo surface E. Then r is a quadric section of Y-, r has exactly five gl’s (cut
out by the pencils of conics on 03A3) and 03A3 is the only quintic Del Pezzo surface
on which r lies.

Proof.- By the Hodge Index Theorem, r is numerically, and so linearly,
equivalent to a quadric section of 03A3. Since E is projectively normal, it follows
that r is a quadric section of E. Note that since E is an intersection of
quadrics, so is r, and so r is not trigonal. Suppose that |D| is a g4 on r; then
|D| has no base points, and so |K0393 - D| is a g26. By the geometric version of
Riemann-Roch, every divisor E E |K0393 - DI lies in a 3-plane L in p5; then
L meets X in at least six points, and so L meets E in a curve C. Since L moves
in a net, so does C, and so |C| is a net of twisted cubics on E .

It follows that if |H| is the system of hyperplane sections of 03A3, then IH-CI
cuts out |D|, the given g4, on r, and IH-CI is a pencil of conics. So every g14
on r is cut out by a pencil of conics on E.

If there were two pencils lAI and |B| of conics on 1 that cut out the same
gl on r, then a member of lAI would meet a member of |B| in at least four
points, and so either |A| = |B| or A· B  4; the latter is impossible, since
A . B = 1 if JAI ~ IBI, and so lAI = |B|. Hence r has exactly five gl’s, and
they are all cut out by pencils of conics on E. Also r has just five g2,’s,
residual to the g4’s, and they are cut out by the nets of twisted cubics on E.

Finally, suppose that r lies on two smooth quintic Del Pezzo surfaces, E
and E’. Choose a g6 on r, say IDI; then IDI is eut out by a net lAI of twisted
cubics on E and another such net |A’| on E’. Then every member of lAI meets



16

some member of IA’I in at least six points; however, distinct twisted cubics
can meet in at most five points, and so every member of lAI lies on Z. Since
lAI sweeps out E and IA’I sweeps out E’, it follows that X = X’. Q.E.D.

COROLLARY 5: M6 - P(U2)/Aut X.

Proof.- By Proposition 4, if X c P(U2) is the locus of smooth quadric
sections of E, then the natural map X/Aut 03A3 ~ M6 is injective. Since both
are of dimension fifteen, the corollary follows:

THEOREM 6: M6 is rational.

Proof.- By Corollary 5, it is enough to show that P(U2)/S5 is rational. By
Corollary 3, U2 contains a copy of 0. Let a: P --+ P (U2) be the blow-up of
the base locus of the projection P(U2) ~ P(~) and n :  ~ P(~) the
induced morphism. Put 2 = 03B1*O(1); then S5 acts freely on an open sub-
variety Po of P(o) and the sheaf Y is S5 -linearized. Hence by [4, Prop. 7.1]
the quotient /S5 is generically a Severi-Brauer scheme over P(~)/S5;
moreover the sheaf 2 descends to P/SS and cuts out O(1) on the fibres of
the map ]P/S5 - P(O)IS5. Hence /S5 ~ P(~)/S5 x P11; since P(~)/S5 is
rational, by the theorem on symmetric functions, it follows that P/S5, and
so P(U2)/S5, is also rational. Q.E.D.

REMARK 7. [1, Lemma 1.3]. One key point in the preceding proof is that
if a reductive algebraic group G acts generically freely on P(U), where
U is a representation of G, and if P(U)/G is rational, then P(U 0 V)/G is
rational for any representation V of G. In particular, for G = S5, to prove
that P(U)/G is rational for all U, we have only to consider irreducible
representations U of S5.

Other représentations of S.

LEMMA 8. If V is a representation of the reductive group G and 03C3 is a character
of G, then the quotients P(V)/G and P(V Qx 03C3)/G are birationally equivalent.

Proof.- Obvious.

In view of Remark 7 and Lemma 8, to prove that P(Y)/S5 is rational for
every representation Y of S5, it is enough to prove the result for the cases
Y = ~ and Y = 03C8.



17

REMARK. Recall that 1 Q x is the restriction to S5 of the permutation
representation of S6, where S5 is embedded in S6 as a transitive subgroup.
If S6 permutes the variables vl , ..., v6 and ui is the i’th elementary sym-
metric function of 03C5~, ... , v6, then the field of invariants C(l p x)SS is

C(03C31...,03C36, W), where W is the expression givlen on p. 679 of [7]. From
this description, however, it is not clear that the field is rational.

PROPOSITION 9. There are birational equivalences P(03C8)/S5 ~ P(X)IS5 x pl
and P(~)/S5 ~ 03A3(2)/S5, where I:(2) denotes the symmetric square of I:.

Proof.- Recall that W is the space of quadrics through E and that W ~ x or
x’, so that P(W) ~ P(x) as S5-spaces. Let fi: P5 ~ P(x) denote the rational
map defined by the linear system P(W). Let H c p5 be a generic hyper-
plane ; then the induced map 03B2|H: H ~ P(x) is defined by the linear system
of quadrics through the quintic elliptic curve E n H. By [5, VIII 5.2,
pp. 181-2] (for a proof, use [2, Ex. 9. 1.12]) this map is a birational equivalence,
and so 03B2 is generically a P1-bundle. Hence, as in the proof of Theorem 6,
P5/S5 ~ P(x)1 S5 x pl, which is the first part of the Proposition. Moreover,
we see that the generic fibres of 03B2 are just the secant lines to E, so that a
generic point in p5 lies on a unique such secant, and P(x) is birationally
equivalent, as an SS -space, to the variety of these secants. This variety is in
turn birationally equivalent, as an SS -space, to the symmetric square I:(2), the
variety of unordered pairs of points on E. This completes the proof of
Proposition 9.

REMARK: The proof of Proposition 9 shows that a quintic Del Pezzo surface
1 defined over any infinite field k has a bisecant L defined over k. This gives
an immediate proof, via projection from L, of the theorem of Enriques-
Manin-Swinnerton-Dyer that E is rational over k.

THEOREM 10. 03A3(2)/S5 is rational.

Pro of. Points of 03A3(2)/S5 correspond to unordered pairs of points on E,
modulo Aut X. In turn, these correspond to cubic surfaces with a chosen
unordered pair of skew lines, modulo automorphism.

Recall that given two skew lines Mi and M2 on a smooth cubic surface F,
there are exactly five skew lines L1,..., L5 on F meeting Ml and M2.
Blowing down L1, ... , L5 maps F to a quadric Q, and Mi, M2 are mapped
to twisted cubics meeting in five points, and so lying in opposite families. I.e.,
one is of bidegree (1, 2) and the other of bidegree (2, 1). Conversely, given
two general twisted cubics CI and C2 on Q in opposite families, we recover
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five points as CI n C2 ; blowing up these five points leads back to the
configuration MI, M2, L1, ... , L5 on F.
Hence 03A3(2)/S5 ~ (A x B)/Aut Q, where A is one family of twisted cubics

on Q and B is the other. So we need to prove the following result.

PROPOSITION 11. (A x B)/Aut Q is rational.

Proof.- Let pl , P2 denote the projections of Q onto Pl. Set V(i) = no ((9pl (i))
and V(i, j) = H0(p*1OP1(i) ~ p*2OP1(j)). Let G denote Aut Q and GO
its connected component. We have A = P(V(1, 2)) and B = P(V(2, 1)),
and G = GO x (r), where r2 = 1. Go acts on each of A and B, and
so diagonally on A x B, while 03C4 acts on A x B by interchanging the
factors.
To prove that A x B/G is rational, we shall use the slice method, as

follows. Via the symbolical method [3] we shall construct a G-equivariant
rational map a: A x B - P(V(1, 1)) = P3, which we shall prove to be
dominant. Let P E P3 be a generic point whose stabilizer in G is H ; then
A x B/G ~ 03C3-1(P)/H (this is the slice method). We shall prove that
03C3-1(P)/H is rational by a further application of the slice method.

LEMMA 12. There is a dominant G-equivariant rational map 03C3: A x B - p3

given by a linear system of bidegree (1,I) on A x B.

Proof.- Let x = (x1, x2) be homogeneous co-ordinates on one copy of Pl and
y = (y1, Y2) co-ordinates on the other. Suppose that fe V(1, 2) and
g E V(2, 1); then symbolically we write

where ax = al xl + a2x2, etc. We define u by

where (ab) = a1b2 - a2 bl and (AB) = A 1 B2 - A2B1. Clearly a is equi-
variant under s; it is thus G-equivariant. To check that u is dominant, we
shall compute it explicitly. In non-symbolical terms, we can write
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and

where the coefficients 03B1ij, 03B2kl are given in terms of the symbols ai etc. by the
relations

and

Then expansion of the formula for a followed by these substitutions
shows that

Choose f, g given by the conditions aol - 0, 03B111 = 2, other 03B1ij = 1,
03B211 = 2 and other 03B2kl = 1. Then a trivial check shows that a(f, g) =
3x, y, - 4x2 Y2 = P, say. Since P is irreducible, its G-orbit in P3 is dense,
and so 03C3 is dominant. This completes the proof of Lemma 12.

We can replace P by any other point in the same orbit, and so we may
assume that P = Xl Y2 - x2 yl ; then up to isogeny, the connected com-
ponent H° of the stabilizer H of P is the diagonal subgroup of SL2 x SL2 ,
and then H = no x 03C4&#x3E;. As H° -spaces, we have V(1, 2) né V(2, 1) ~
V(1) ~ V(3), and so an H° -equivariant projection 0 : A  B ~ P(V(1)) x
P(V(1)). If s acts on the right hand side by permuting the factors, then 0 is
in fact H-equivariant. Put Y = 03C3-1(P).

LEMMA 13: The restriction Oly is dominant.

Proof.- Since the G-orbit of P is dense, it is enough to show that 0 is

dominant. This is clear from the construction of 0.
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Now let y ~ P(V(1)) x P(V(1)) be a point not on the diagonal, and
K c H its stabilizer. Then K n H° = T, a maximal torus in SL2. Let N
denote the normalizer of T in SL2 ; suppose that w E N - T. Then if

y = (q1, q2), we have w(y) = (q2, ql ) and so sw( y) = y. Hence K is
generated by T and rw, and so is isomorphic to N. Put Z = 03B8-1(y) n Y;
since the H-orbit of y is dense, we have Y/H ~ Z/K, by the slice method,
and so A x BIG - Z/K.

LEMMA 14. Z/K is rational.

Proof.- Recall what we have established: we took P = Xl Y2 - x2 yl E p3,
whose stabilizer H = HI x (r), where H° is (up to isogeny) the diagonal
subgroup of SL2 x SL2. In the formula for a given above, let Fij denote the
coefficient of xiyj; then the equations defining Y = (J-l (P) in A x B are
F11 = 0, F22 = 0 and F12 = F2l. Next, the rational H-equivariant map 0:
A x B - P(V(1)) x P(V(1)) is given symbolically by

where oc = a1-i1ai2A2-j1Aj2 and 03B2kl = b2-k1bk2B1-l1 Bl2, as before. Then we

can take y = ( y, , x2) ~ P(V(1)) x P(V(1)), so that Stab( y) - K and
Z = Y ~ 03B8-1(y) is given by the five equations

and

The action of the torus T on A x B is given by

and for a suitable choice î of a generator of K/T we have

Using the equations above we can eliminate ao2 and 03B201, and then project
Z to
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this is K-equivariant and birational. The equation defining Z’ is

Consider the locus Z° c A6 = Spec C[03B1’00, 03B2’21, 03B1’01, 03B2’11, 03B1’12, ,0 the
open subvarieties of Z and P3 x P3 given by the conditions 03B111 ~ 0 and
PlO =1- 0, where oc’ = 03B1ij/03B111 and 03B2’kl = PklIPlO. The group K acts linearly on
A6, and the action of T is given by (03B1’ij, 03B2’kl) ~ (t-4+2(i+j)03B1’ij, t-2+2(k+l)03B2’kl).
Embed A6  P6 and Z0  Z* by adjoining a homogeneous co-

ordinate w, invariant under K. The equation defining Z* is

i.e. Z* is cubic.

Let 03B6 denote the centre of SL2, and put K = K/03B6, T = T/03B6. Then K acts
on P6 and the sheaf O(1) is K-linearized. Consider the 3-plane II in p6 given
by the equations w = 03B1’01 = yl - 0; then inspection of the equation defin-
ing Z* shows that n c Z*, so that projection away from n expresses Z*
birationally as a three-fold quadric bundle Z over P2 = Proj [w, 03B1’01, 03B2’11].
We have

a commutative diagram on which 9 acts equivariantly. The factor P4 is Proj
C[03B1’00, 03B1’12, 03B2’21, 03B2’00, v], where v is K-invariant. Since T acts on P2 via

(w, 03B1’01, 03B2’11) ~ (w, t-203B1’01, t2 03B2’11), if follows that k acts generically freely on
P2. Moreover, the sheaf O(1) on P4 is k-linearized, and so generically ZIK
is embedded in (P2/K) x P4 as a 3-fold quadric bundle over the rational
curve P2/K. Then by Tsen’s theorem Z/K is rational over P2/K, and so
rational.

This completes the proof of Proposition 11, and so of Theorem 10.

THEOREM 15. P(03C8)/S5 and P(X)IS5 are rational.

Proof.- This follows from Proposition 9 and Theorem 10.
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Arithmetic rationality of M6

In this section we prove that in fact M6 is rational over any field. In fact we
prove something slightly stronger, to state which we need a definition.

DEFINITION - LEMMA 16. If X, Y are Z-schemes of finite type that are

geometrically reduced and irreducible, then they are arithmetically birational
(denoted X ~z Y) if there are open subschemes X° of X and yo of Y that are
isomorphic and faithfully flat over Z. The relation of arithmetical birationality
is an equivalence relation.

Clearly, if X ~z Y, then for any field k the k-varieties X Q k and Y (8) k
are birationally equivalent; it is not clear, however, that the converse is true.

THEOREM 17: M6 is arithmetically rational.

Pro of. Let 03A3 be the scheme obtained from Pi by blowing up the points
(1 , 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1); as before, 03A3 is embedded anticanonically
in Pi as a quintic Del Pezzo surface. Put U2 - H0(O03A3(2)), a Z-lattice, and
let U° c P(U2) be the locus whose geometric points correspond to smooth
curves. As before, the group S5 acts on both of those, via automorphisms of
03A3. We shall prove the result by showing that P(U2)/S5 ~ z pIS and that
U0/S5 ~ z M6.
Define a functor : Schemes - Sets by (S) = {isomorphism classes of

flat projective morphisms 7r: C ~ S| all geometric fibres of n are smooth
curves of genus six with exactly five gl ’s) . We shall show that U0/S5 = M,
say, coarsely represents .

First, we construct a morphism ~:  ~ hM = Hom ( -, M) as follows:
for any scheme S, suppose that [03C0: C ~ S] ~  (S). There is an étale Galois
cover  ~ S, with Galois group H  S5 corresponding to the monodromy
on the gl’s on the geometric fibres of n. Put A:C= C  s  ~ . There are
five distinct line bundles on C inducing a g14 on the fibres; pick one, say 2,
and put 2 = 03C9/ (8) il-le Then H1(Cs, 2s) is two-dimensional for all

geometric points s of S, and so n*2 is locally free of rank three, by the
base-change theorem, and induces a gi on each fibre of n. Moreover, * 2
generates 2, and so gives a morphism C - P(*), a P2-bundle over S.
Over each geometric point s of S, the gl’s on ès besides ils are eut out by

the systems of lines through the nodes of the plane model of ès given by 2s;
since these gl’s are defined globally over S, it follows that P(* 2) has four
disjoint sections, and is therefore trivial. Blow up along these sections to get
  03A3 x S, a relative quadric section. So there is a classifying map
 ~ U°, and so a morphism S = /H ~ U0/H ~ U0/S5 = M. This
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defines an element of h,(S), and so gives us a map à(S) - hM(S). It is clear
that these maps, as S varies, are given by a morphism ~:  ~ hM of functors.
According to Mumford’s definition [4, Definition 5.6] we must prove two

things:
(i) for all algebraically closed fields Q, the map ~(Spec Q): S (Spec 03A9) ~

hM (Spec Q) is an isomorphism, and
(ii) for all schemes N and for all morphisms 03C8:  ~ hN, there is a unique

morphism x: hM ~ hN such that 03C8 = ~  ~.

Proof of (i ): By a theorem of Seshadri [5, Theorem 4], the natural map
(P(U2)/S5) ~ 03A9 ~ (P(U2) Q 03A9)/S5 is an isomorphism; then (i) follows

from Proposition 4, whose statement and proof are valid over any Q.

Proof of (ii): Suppose that 03C8:  ~ hN is given. Suppose that [a: S ~ M ] ~
hM(S). Put S = S x M U’. From the family C - U°, induced from the
universal family of quadric sections of 03A3, we get fc: C = C  U0  ~ S; i.e.,
[] e à(9). We define the morphism x by ~(S)(03B1) = 03C8()().
So M = U°/SS does indeed coarsely represent , which is an open sub-

functor of the moduli functor; hence U0/S5 ~ z M6.
It remains to show that P(U2)IS5 _ pl5.
Recall that all complex representations of S5 are defined over Q. Let A

denote the root lattice A4 ; by Corollary 3 there is an S5-equivariant sur-
jection U2 Q Q - A Q Q = 0. It is well known (and easy to see) that the
only non-zero ZSs -sublattices of A are isomorphic to either A or Av, and so
we have an SS -equivariant surjection U2 ~ 039B1, where AI is one or other of
A and AV. Let V denote the kernel, and fi: P = BlP(V)P(U2) ~ P(Al)
the induced morphism. (For any lattice L, we define P(L) = Proj
(Symm 8 (L V)).)
The action of Ss on both A and A" is generated by reflexions; let

A c P(039B1) denote the discriminant locus, which is the union of the reflexion
hyperplanes. Put P° = P(039B1) - A, then po is faithfully flat over Z, and S5
acts on po with trivial geometric stabilizers. So the natural map P0 ~ PIS5
is étale, and if y : X = 03B2-1(P0)/S5 ~ Y = P0/S5, then all the geometric
fibres of y are isomorphic to plI. We want to show that y is a trivial

P11-bundle.
Since AI is either A or A" , there is a non-zero SS -invariant pairing

AI x Aj - Z, i.e., an S5-invariant element of Av ~ 039B1, and so an

invariant element of 039B1 Q U2, which we interpret as an element A of
Symm* (A 1 ) Q U2. We can assume that the coefficients of À have no
common factor in Z. Then the zero-locus of 03BB is a divisor, flat over Z, on
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the regular scheme X. Let L be the corresponding line bundle. L is very
ample, with vanishing higher cohomology, on each geometric fibre of y, and
so by the base change theorem, L is very ample relative to y and gives an
isomorphism X - P’ 

1 
x Y.

Hence P(U2)S5 ~ z(P(039B1)/S5)  pll. Now similar arguments, involving
projection onto each factor, show that

and

Now the ring of invariants Symm* (039B)S5 is a polynomial ring, by
Newton’s theorem on symmetric functions, and so P(039B)/S5 ~ z P4. Hence
P4 x P(039B1)/S5) ~ z P4 x P4, and so

The character table of S5
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