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1. Introduction

Let E = C/A be a complex elliptic curve with period lattice A = ZWI +
Z03C92, and let p(z), 03B6(z) be the associated Weierstrass functions. Then p(z) and
03B6(z) are meromorphic on C and p(z) = - 03B6’(z) is A-periodic, whereas ’(z)
satisfies

with certain ~i E C. Between the periods of first kind 03C9i and that of second
kind ~i, Legendre’s relation

holds (suppose im(wl/w2) &#x3E; 0). Further, the ’1¡, considered as functions on
the complex upper half-plane, are closely related to the "false Eisenstein
series of weight two," i.e., the logarithmic derivative of the discriminant
function 0394(03C9) (See [8], App. 1 for a precise statement).

(1.3) Let now K be a function field in one variable having the field Fq with
q elements as exact constant field (q = some power of the prime p). Fix a
place ~ of K of degree £5, say, and put

On A, we have the degree function deg a = c5 times (pole order of a at ~).
Further, let K~ be the completion of K at oo with its normalized absolute
value |?|, and C the completion of an algebraic closure K(~ with respect to
the unique extension, also named |?|, of 1?1 to K~. Note that C is again
algebraically closed, i.e., is the minimal complete algebraically closed field
containing K~. The basic example (in fact, the only one considered later on)



278

is given by

(1.5) It is well known that there is a deep analogy between the arithmetic
of Q and that of K, where A (resp. K~, C) replaces the ring Z of integers
(resp. R, C). Roughly, the role of complex analysis in number theory is
played by rigid analysis over the "complex" field C. (See [5] and the references
given there.)
As explained below, the classical theory of elliptic modular forms corre-

sponds to the theory of rank two Drinfeld modules. By following ideas of
Pierre Deligne, as elaborated by Greg Anderson and Jing Yu, we will define
quasi-periodic functions, periods of second kind, and de Rham cohomology
for a Drinfeld module. Specializing to the case A = Fq[T] and rank = two,
where the theory of modular forms is sufficiently well developed, we obtain
a non-vanishing result (Cor. 6.3) for the associated determinant which
replaces ( 1.2). For weight reasons, the latter will not be a constant as in (1.2),
but a meromorphic modular form of negative weight. Applying the results
of [6], we get a very precise description of that form, in particular its

expansion at oo. As in the classical case, the maps 03C9 ~ ~i(03C9) (i = 1, 2)
which to each cv associate its periods of second kind are related to a "false
Eisenstein series" (Thm. 7.10). Finally, we calculate the Gauss-Manin con-
nection V on HDR (~), where the Drinfeld module 0 varies over the "upper
half-plane" Q (Thm. 8.8). After a suitable normalization, V is defined

for the Tate-Drinfeld module, i.e., by a matrix whose entries are power
series over A.

Certainly, some of our methods and results may be widely generalized.
(For the "de Rham cohomology" introduced in section 3, see the forthcoming
articles [2] and [9].)
For example, the local system over the moduli scheme defined by H*DR,

which is rather simple in our case, will be of high interest if A is general.
Nevertheless, the relation with modular forms presented here seems to be a
feature special to the polynomial case A = Fq[T] where one disposes of a
"natural" basis for HriR.
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2. Review of Drinfeld modules

(See [3] or [5] for proofs.)
Let A be a rank r lattice in C, i.e., a projective, discrete A-submodule of

C of A-rank r ~. Put

where as usual, II’ will denote the product over the non-zero elements of a
lattice. The product is easily seen to converge for z E C; it defines an entire
surjective mapping e039B: C ~ C which is additive and Fq-linear. Further, e039B
is A-periodic with kernal A.

Let C{03C4} be the non-commutative ring of polynomials over C of the form
03A3li03C4i, where i corresponds to Xq, and the multiplication f g is defined by
inserting g(X) into f(X). Elements of C{03C4} will be referred to as q-additive
polynomials. Note that r’ = X is the identity of C{03C4}. We may consider

as an element of the ring C{{03C4}} of "power series" in T with certain growth
conditions on the coefficients 03B1i.

Next, for a E A, let ~039Ba E C{03C4} be defined by the commutative diagram
with exact rows

A closer look shows ~039Ba to be of the form

where li E C, d = deg a, 1. = a, lrd ~ 0. Further, a H ~a defines a ring
homomorphism ~039B: A ~ C{03C4}.

(2.4) A ring homomorphism ~: A - C{03C4}, a H ~a satisfying the con-
ditions of (2.3) will be called a Drinfeld module over C of rank r. Given ~,
one may recover e039B and A (see, e.g., [5]). This sets up a bijection A H ~039B
between the set of rank r lattices in C and the set of rank r Drinfeld modules
over C. By means of ~, the additive group Gai C gets another structure as an
A-module which differs from the canonical one. Two lattices, A, A’, define
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isomorphic Drinfeld modules if and only if they are similar, i.e., there exists
c E C* such that A = cA.

(2.5) From now on, let us restrict to lattices A which are free over A. Let
r be the group GL(r, A), considered as a discrete subgroup of the Lie group
GL(r, K~) that operates on the projective space Fr-1 (C) by fractional linear
transformations. We define

Then 03A9r carries the structure of an r-1-dimensional rigid analytic manifold
over C, and the induced action of r on fàr is analytic. We have the bijection

which in fact gives an analytic description of the moduli scheme for Drinfeld
modules of rank r.

2.6 EXAMPLE: Let A = Fq[T]. Any rank r Drinfeld module is given by

where lr ~ 0. If further r = 2, then n= n2 = P1(C)/P1(K~) = C/K~,
and F = GL(2, A) acts by (ad) (z) = (az + b)/(cz + d). Any rank two Ç
is given by ~T = Ti° + gi + 039403C42, where g, A e C, 0394 ~ 0. Letting vary cjJ,
g and A are modular forms for r, see (4.9).

3. Quasi-periodic functions

(This section is developed entirely from the ideas of Greg Anderson, Pierre
Deligne, and Jing Yu.)

Let A be a rank r lattice in C with exponential function e - e039B and

Drinfeld module 0 = OA . Let a E A be non-constant and ô e 03C4C(03C4) an
element of C{03C4} without constant term. The difference equation

has a solution F E C{{03C4}} which is well-defined up to adding a multiple of
TO = X. Thus, assuming the 03C40-coefficient to be zero (which we will always
assume in what follows), there exists a unique solution F E C{{03C4}}. Comparing
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coefficients, one easily verifies F to define an entire function C ~ C, also
called F.

(3.2) Let C4J {03C4} be the A-bimodule C{03C4}, where the left action is as usual,
and the right action of a E A is right multiplication with Oa -

3.3. LEMMA: (i) Let 0(0): A - C{03C4} a H ~(0)a be defined by ~(0)a = ~a - au’.
ab = a~(0)b + ~(0)a  ~b, i.e., ~(0) is a derivation A ~ C~{03C4}.

(ii) Let ~: a H aa be any Fq-linear derivation of A into C4J {03C4} with values in
03C4C{03C4}. Then the unique solution Fa E 03C4C{{03C4}} of

does not depend on a, provided that a is non-constant. (For a = constant,
ê, = 0 = F. )

Proof : (i) is trivial: ~(0)ab = ~ab - abto = a(~b - b03C40) + (~a - a03C40)  ~b
since ~ab = ~a  ~b. (ii) Let Fa be the unique solution (without T’-term) of
(*). From the derivation relations, it is straightforward to show
(1) Fca - Fa (c E F*q);
(2) Fa = Fb ~ Fa+b = Fa = Fb;
(3) Fa = Fb ~ Fab = Fa = Fb.
Clearly, (1), (2), (3) imply the assertion for A a polynomial ring A = Fq[a].
Since any A is an integral extension of a polynomial ring, (1), (2), (3) give
the result.

(3.4) In the following, derivations will always assumed to be Fq-linear. Let
D(~), Di(~), Dsi(~) respectively be the A-bimodule of derivations, inner
derivations, strictly inner derivations respectively from A to C~{03C4} with
values in 03C4C{03C4}. (Some a E D(~) is called an inner (strictly inner) derivation
if there exists m ~ C{03C4} (m E 03C4C{03C4}) such that for a ~ A, ~a = m  ~a - am
holds.) The function Fa associated with some a E D(~) will be called quasi-
periodic for A.

3.5. Remarks: (i) F: C ~ C to be quasi-periodic implies F(z + À) =

F(z) + F(03BB) (03BB E A), where F restricted to A is A-linear. This is analogous
with (1.1).

(ii) If ê 8(0) is the inner derivation defined in (3.3i), then

Fa(z) = e(z) - z which thus is quasi-periodic.
(iii) Let ô be the strictly inner derivation associated with m E 03C4C{03C4}. Then

F~(z)=- m(e(z)) which in fact is periodic and vanishes on A.

3.6. EXAMPLE: Let A = Fq[T] as in (1.4). Some ~ ~ D(~) is given by
ôT E iC(i) which may be arbitrarily prescribed. The corresponding Fa is
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the solution of

Since 0, = T03C40 + ··· + /,T’, 1, ~ 0, it is easy to see that H*DR(~) =
D(~)/Dsi (0), considered as a left C-vector space, has dimension r. A basis is
given by the r derivations aU) defined by ~(i)T = TB 0  i  r, or rather

{~(i)|0  i  rl, where ~(0)T = OT - Ti° . A generalization of this fact for
arbitrary A, as well as an interpretation of H*DR(~) as de Rham cohomology
group of the Drinfeld module ~, will be given in [2], see also [1]. In that
context, the map A x H*DR(~) ~ C: (03C9, ô) H F~(03C9) will appear as some
sort of "path integration."

4. Relations with modular forms

From now on, we assume the situation of (1.4), (2.6), (3.6), i.e., A = Fq[T].
Let (o = (03C91, ... , Wr) E C’, the Wi linearly independent over K~, and A.
the lattice AWI + ··· + A03C9r. Let e = eA, and ~ = ~039B the associated
Drinfeld module. We further put for 0  i  r F(i) = F~(i). Thus

We use a subscript (o to indicate the dependence of all the data introduced
from (J), thus e = e03C9, ~ = 0,,,, F(i) = F2). Now for any lattice A, z and
c E C. C =1= 0. we have

As an easy consequence, we deduce

Note that for i &#x3E; 0, F(i)03C9 (03C9j) is the analogue of a period of second kind on
an elliptic curve.
We are interested in the Legendre determinant
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By the above,

4.4. LEMMA: For y E GL(r, A), we have

Pro of: F2) depends only on the lattice Am = Aym. Thus, L(yo» = det
(F(i)03C9 ((03B303C9)j)) = (det y) det(F2)(wj» = (det 03B3)L(03C9) since F(i)|039B is A-linear.
We now finally restrict to the case r = 2 where we will give a description

of the map m - L(e». By (4.3), it suffices to consider co of the form
w = (03C9, 1) with a) E S2, = CBKoo. The function L(co) = L((03C9o, 1)) now
satisfies

(4.5) (i) L(yw) = (det 03B3)(c03C9 + d)-q-1 L(03C9) (y = (a c b d) E F GL(2, A) acts
by yco = (a03C9 + b)/(cw + d)), and (ii) L is holomorphic on S2 in the rigid
analytic sense.

Here, (i) is just a repetition of (4.3) and (4.4), whereas (ii) had to be shown.
Since we did not give a description of the analytic structure on S2 (which may
be found e.g., in [7]), we omit the simple proof. But compare (5.3).

(4.6) In order to make a meromorphic modular form out of L(co), we have
to introduce cusp conditions. Let o the rank one Drinfeld module

(sometimes called the Carlitz module) defined by (2T = T03C40 + r = TX + Xq.
Via (2.4), it corresponds to the rank one lattice L = ?L4 with some number
03C0 E C. Hopefully, the double occurrence of the symbol L will cause no
confusion. Note: 03C0 is only defined up to a (q - 1)-st root of unity. We
choose one ic and fix it for what follows. It is similar to the period 203C0i of the
exponential function. Several additive and multiplicative expressions are
known for 03C0 ([6], (4.9)-(4.11)). In particular, its absolute value equals q ql(q - 1).
Let eL be the lattice function associated with L, and t(z) = 1/eL(03C0z).
Obviously, t(z) is A-periodic. In our framework, it plays the part of

q(z) = e203C0iz as a uniformizer at oo.

(4.7) For z E C, we define the "imaginary part" 1 z Ji = inf 1 z - x 1, where
x runs through K~. Also, let Os = {z E 03A9~z|i  s}, where s E R. Then we
have:

4.8. LEMMA ([6], LEMMA 5.5): For Izli &#x3E; 1, leL(nz)1 is a monotonically
increasing function of |z|i. Namely, if Izl = |z|i = qd F with some d ~ N,
0  e  1, then 10gqleL(nz)1 = q d(ql(q - 1) - 8). There exists a constant
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co &#x3E; 1 such that 1 z 1, K logq |eL(03C0z)|  c0|z|i. Further, t(z) dennes an analytic
isomorphism of AB03A9S (s &#x3E; 1) with some pointed ball {z E C||z|  rl - {0}.

4.9. DEFINITION: A function f : Q - C is a holomorphic modular form of
weight k E Z and type m E Z/(q - 1) if the following conditions hold:

(i) f(03B3z) = (det Y)-m (cz + d)kf(z) y = (ad) C 0393;
(ii) f is holomorphic;
(iii) f is holomorphic at oo.
The last point signifies that for |z|i ~ 0, f(z) has a series expansion

f(z) = 03A3i0 aiti(z), which, due to (4.8), corresponds to the cusp condition in
the elliptic modular case. Replacing "holomorphic" by "meromorphic" and
admitting Laurent series around oo with a finite number of terms of negative
order, we may define meromorphic modular forms. For a further discussion,
see [5] or [6]. In the next sections, we will calculate the expansion of L(cv)
around oo, thereby verifying it as meromorphic modular of weight - q - 1

and type - 1. For that purpose, we will need the following series of poly-
nomials : for 0 ~ a E A of degree d, let a(X)  aX + ... E A[X] be the
polynomial derived from the Carlitz module. We have deg (a(X)) = qd =
lai, and its leading coefficient agrees with that of a as a polynomial in T. Put
fa(X) = a(X-1)X|a|. Then for example, 03BB1(X) = 1, fT(X) = 1 + TXq-1,
IT2(X) = 1 + (T + T1)Xq2-1 + T2Xq2-1.

5. Behavior of L at infinity

In all that follows, A = Fq[T], and we are considering the rank two case
only.
For w E Q and i = 0, 1 let F(i)03C9(z) = F(i)(03C9,1) (z) as defined in (4.1). Also, let

e03C9, Aw ... be the objects associated with (» = (03C9, 1). We are going to
investigate the function

(5.1) ev - L(w) = F(1)03C9(03C9) - 03C9F(1)03C9(1) on S2 which, in view of F(O)(z) =
e(z) - z, is the inhomogenous expression of L(ro) = L«o), 1)). Actually, we
will show

5.2. THEOREM: lim t(03C9)L(03C9) = 03C0-q,
lwlj - 00

the proof of which will occupy this section. Let us first treat the function
F03C9(z) = F(1)03C9(z) (there is no further need for the superscript (1)). From (4.1)
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we get

Looking at the definition of e03C9, we see |e03C9(z)| = Izi whenever Izl 
inf |a03C9 + b| = inf (|03C9|i, 1). Thus
(0, 0) ~ (a, b) ~ A2

which shows the convergence (pointwise, in fact locally uniformly in z and
in 03C9) of the series

We are interested in the behavior of FQ)(w) and F03C9(1) for |03C9|i ~ 0. The

above shows:

In order to handle F,,, (co), we have to control the different terms in (5.3).
(5.5) Let u = (Mi, u2 ) E K2BA2, where for i = 1, 2, ui = si/n, the si and n

in A, deg si  deg n, and n monic. Let further r(n) be the congruence
subgroup {03B3 e r y == 1 mod nl of r. In [4], we studied the functions

on g which are meromorphic modular forms of weight - 1 for F(n).
Their behavior at oo is described using the uniformizer t1/n(03C9) = t(wln) =
1/eL(03C003C9/n). It is related with t(co) by

(In loc. cit., t1/n had been labelled by tn which, unfortunately, is inconsistent
with notations in [6] and in Sections 6-8.) Now, eu has a convergent product
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expansion given by (loc. cit. (2.1)):

Here 03B6 = 03B6u2 = eL(03C0u2) is an n-division point (= root of n(X)) of the
Carlitz module Q. The factor corresponding to 0 ~ c E A in (5.7) equals
eL(ic((c - Ul)W - u2))/eL(03C0c03C9). Since I (c - u1)03C9 - u2|i = |c||03C9|i, (4.8)
implies its absolute value to be 1, provided that leili 1 &#x3E; 1. Due to (5.3), we
may write

5.9. LEMMA: For i &#x3E; 0, lim t(03C9)Ti equ(i) (03C9) - 0 uniformly in i, where the lim
is over those ro E S2 that satisfy lrol = la)li, and Icol - 00.

Proof: Put ad hoc ti = t1/n where n = T’, and let la)li Z = |03C9| I &#x3E; 1. Then by
(5.7), eu(i) (03C9) = 03C0-1 t-1i+1(03C9) x unit since u(i) = (T-i-1, 0), SI = 1, and
U2 = 0 = (. Therefore,

Using (4.8), one easily sees this tends to zero with lrol ~ oo. In order to
get uniformity in i, we have to use (4.8) in full detail. Let lrol = Icoli = qd-f. 
where d ~ N and 0  e  1. We compute the q-logarithm of

By (4.8) logq|eL(03C003C9)| = qd(q/(q - 1) - 03B5).
For the numerator, we distinguish the cases
(a) |03C9/Ti+1| &#x3E; 1, i.e., i + 1  d

(b) |03C9/Ti+1|  1, i.e., i + 1  d.
In case (a), m’ = 03C9/Ti+1 satisfies 1 m’l = 1 m’ Ii = qd-i-1-03B5, thus

logq|eL(03C003C9’)| = q d-i-1 (q/(q - 1) - 8).
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We get the estimate

since i  d - 1 and 03B5  1.
In case (b), |eL(03C003C9/Ti+1)| = |03C003C9/Ti+1| as an immediate consequence of

the definition of eL. Thus

Since log, 1 n- = q/(q - 1), this becomes

Clearly, sup (hl (d ), h2(d)) tends to - oo if d increases, which establishes the
result.

Now we are able to prove Theorem 5.2: since L(ro) is A-periodic, we may
restrict the limit lim|03C9|i~~ (simply denoted by "lim") to those ro satisfying
lrol = |03C9|i. Then

The second limit vanishes by virtue of (4.8), (5.4), and the assumption
Iwl = |03C9|i. As to the first, since the limits in (5.9) are uniform, we may
interchange lim and L. Hence

lim t(03C9)L(03C9) = lim t(03C9)equ(0)(03C9)

since the limit of the factors of 03A0’e~A (...) in (5.7) gives 1. Finally,

thus
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6. L as a modular form

Consider the inverse 1/L(03C9) as a function on Q. It is meromorphic on Q, of
weight q + 1 and type 1 for 0393 = GL(2, A), and has a simple zero at oo (see
(4.9)). More precisely, its t-expansion begins 1 /L(ev) = irlt(w) + ... , due
to Theorem 5.2. If 0 ~ f(03C9) is any meromorphic modular form for r of
weight k and type m, we have (see [6] for explanation):

where vx ( f ) is the order of zero of f at x (negative if f has a pole at x), the
sum on the left hand side is over the non-elliptic points of 0393B03A9, and vo, vx
is the order at the elliptic point, at co, respectively.

Since L is holomorphic on Q (so I /L has no zeroes on Q), (6.1 ) shows 1/L
to have neither zeroes nor poles on Q. Thus 1/L is a holomorphic modular
form of weight q + 1 and type 1. But the space of those forms is one-

dimensional, generated by the form h(co) discussed in [6], Section 9. Using
theorem 9.1 of that paper, we have

6.2. THEOREM: L(03C9) = - 03C0-qh-1(03C9), where the modular form h of weight
q + 1 and type 1 has the product expansion around oo

Note that h has several a priori différent characterizations, e.g., as a

Poincaré series, or as the "Serre derivation" of the normalized Eisenstein
series of weight q - 1 (which explains the minus sign).

6.3. COROLLARY: In the notation of (4.3), L(03C9) = L(col , cv2 ) is always
non-zero.

We may even compute that value. The Drinfeld module 0 associated with
A03C91 + A(02 is of the form

where 0394(03C9), considered as a modular form, equals -03C0q2-1hq-1(03C9). Replacing
03C9 = (COI, ro2) by cm replaces (g, 0394) by (c1-1g, c1-q20394), so we may assume
A(m) = - 1. From the above, we get

6.4. COROLLARY: If 03C9 is normalized such that A(m) = - 1 then Lg-’ (w) =
03C0q-1.
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Clearly, this is a nice analogue of Legendre’s relation (1.2). The occur-
rence of (q - 1 )-st powers reflect the fact that à is not intrinsically defined,
but 03C0q-1 is. Similarly, the definition of h (but not that of n-h or irq h) depends
on the choice of 7c.

(6.5) For v E A03C9 = AWI + AW2 and a E D(cfJ) we formally write

which by remark 3.5(i) vanishes if Ô E Dsi(~). We thus obtain a pairing of
the two-dimensional C-vector spaces 039B03C9 Q C and H*DR(~03C9) which by (6.3)
is non-singular. For a generalization of this fact, see [9].

7. The periods of second kind

For the last time, we change notation and set for co E Q

the periods of second kind of the Drinfeld module associated with Aco + A.
They are related by

which follows immediately from (4.2). Further,

if 03B3 = (aâ) e r with c = 0. Therefore, ’12(W) has a t-expansion that we will
calculate. By means of section 5, we may write down two kinds of series
representations for ’12. First, (5.3) and (5.5) give

Applying (5.7) and noting fnc(t1/n) = fc(t) yields
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Next, putting e. (z) = 03A3i0 03B1i(03C9)zqi, the C(i(W) are modular forms of weight
qi - 1 and type 0. Their t-expansions may be calculated with the methods
of [6]. Let [i] be short for the element Tqi - T of A. Comparing coefficients
in the difference equation that defines F(103C9, we see

in particular

Note that (7.4) is an infinite sum of meromorphic modular forms of weight
- q of different levels, whereas (7.5) is a sum of holomorphic modular forms
of level one, but with different weights. Both sums converge in a neighborhood
of oo, but fail to give us rationality properties of the t-coefficients since for
each term, an infinite number of summands contribute. At least we may read
off the constant term:

7.6. LEMMA: ~2(~) = -03C01-q.

Proof: As in (5.3), we have

for the unique solution F(z) without z-term of the difference equation

Since fc(0) = leading coefficient of c as a polynomial in T, the right hand
factors of (7.4) evaluate to 1 at t = 0.

Now (6.2) combined with (7.2) gives the transformation law for 112:

03C9q~2(03C9-1) = 03C9~2(03C9) - 03C0-qh-1(03C9). (7.7)

But h(03C9-1) = -03C9q+1h(03C9), thus 2(03C9) = 03C0q-1h(03C9)~2(03C9) satisfies

2(03C9-1) = -03C922(03C9) + 03C0-103C9. (7.8)
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Let 0 be the differential operator n-l d/d03C9, given in terms of t by - t2d/dt.
(For this and the following, see [6], Section 8.) Let E = 0(A)/A be the
logarithmic derivative of the discriminant function A(m). Then E satisfies the
same transformation rule (7.8) as ij2. E( w) is an analogue of the "false
Eisenstein series of weight 2" which up to a constant gives the periods
of second kind of a complex elliptic curve ([8], p. 166). Let us note the
t-expansion of E(w):

which in particular has coefficients in A.
The function 03C9 ~ 2(03C9) - E(03C9) has the following properties (which

result from corresponding properties of ~2, h, and E):
(i) It is of weight 2 and type 1 for r = GL(2, A);
(ii) it is holomorphic on Q;
(iii) it has at least a double zero at oo.

The last fact comes from Lemma 7.6, h(03C9) - t + ... , and E(03C9) =
t + .... Thus by (6.1), it has to vanish identically, and we have shown:

7.10. THEOREM: ~2(03C9) = 03C01-qE(03C9)/h(03C9).

7.11. COROLLARY: Up to the factor ic l-q, ~2(03C9) has its t-coefficients in A.

7.12. COROLLARY: Up to the factor ic1-q, the t-series given by (7.4) and (7.5)
have coefficients in A.

8. The Gauss-Manin connection

Let := 0. be the generic rank two Drinfeld module associated with
A,,, A03C9 + A, a) varying over the upper half-plane Q, and cvl = 03C9,

W2 = 1. Following Katz (see [8], A 1.3), we define the Gauss-Manin con-
nection V = ~03B8 of the differential operator 0 = ic-1 d/dw as the unique
endomorphism V: H*DR(~) ~ H*DR((~) satisfying

V is well-defined in view of (6.5). Clearly, for f holomorphic on Q and
a e H*DR(~) a "differential form,"
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holds. Now H*DR(~) is spanned by aU) (i = 0, 1), and F~(i)(03C9j) (where
i = 0, 1 and j = 1, 2) is given by the matrix

Trivially, (d/d03C9)~i(03C9) = 0 as results from (5.8) and (7.5). Hence

and solving (8.1) gives

From [6], (8.5) we know that Oh + Eh is a modular form of weight q + 3
and type 2. Comparing t-expansions, we see it has a zero of order &#x3E;, 3 at co.
By (6.1), it vanishes identically, hence

Similarly ([6], Theorem 9.1, note the différent normalization used there):

Let now TD be the Tate-Drinfeld module over the power series ring
R = A[[t]], defined by

where for g (resp. A), we insert the t-expansion of ji;l-q g (resp. 03C01-q2 0394) which
in fact has coefficients in A. In order to have everything defined over R, we
replace the basis {~(0), ~(1)} of H*DR(~) by {(0), (1)}, where
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Note that (0)T = gi + LiL2, i.e., (3(0) is the inner derivation canonically
associated with TD. Using (8.2)-(8.7) and some calculation, the following
matrix representation for V is yielded:

8.8. THEOREM:

By (7.9), the entries may be considered as elements of R. Stressing further
the analogy with the elliptic modular case, the nilpotency of the matrix for
V evaluated at ru = oo, i.e., t = 0 should indicate {(0), (1)} to be a basis
for the canonical extension of (HDR (TD), V) to 00 .
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