
COMPOSITIO MATHEMATICA

WILLIAM M. MCGOVERN
Unipotent representations and Dixmier algebras
Compositio Mathematica, tome 69, no 3 (1989), p. 241-276
<http://www.numdam.org/item?id=CM_1989__69_3_241_0>

© Foundation Compositio Mathematica, 1989, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1989__69_3_241_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


241

Unipotent representations and Dixmier algebras
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Abstract. Let G be a complex semisimple Lie group with Lie algebra g. David Vogan has
studied algebras A with 1 having also the (compatible) structure of a finitely-generated
Harish-Chandra U(g)-bimodule with G-action. Here we study such A satisfying also (1) the
kernel of the natural map U(g) - A is a maximal unipotent ideal and (2) A is completely
reducible as a bimodule. We define a property called strong primality lying between primality
and complete primality and give necessary and sufficient conditions under mild hypotheses for
A to be strongly prime. Under stronger hypotheses, all strongly prime A are actually completely
prime. This fact enables us to disprove a conjecture of Vogan that completely prime A are in
bijection to ramified covers of orbit closures in g*; in a wide family of examples, there are too
many algebras to correspond to orbit covers. Finally, we prove some results concerning
filtrations of A and investigate what happens when the mild hypotheses alluded to above are
not satisfied.

Compositio Mathematica 69: 241-276, 1989
© 1989 Kluwer Academic Publishers. Printed in the Netherlands

1. Introduction

Let G be a complex semisimple Lie group, g its Lie algebra, and U(g) the
universal enveloping algebra of g. The aim of this paper is to present some
results concerning finitely-generated admissible Harish-Chandra bimodules
over U(g), endowed also with the structure of an associative algebra A with
1. 1 studied these in my thesis [McGovern, 1987], calling them Dixmier
algebras. They had previously been studied by David Vogan [Vogan, 1986],
who was attempting to rescue and generalize a false conjecture suggested by
the famous orbit method of Kostant and Kirillov, namely that completely
prime primitive quotients of U(g) should be in bijection to coadjoint
G-orbits. Vogan conjectured that completely prime Dixmier algebras should
be in bijection to irreducible varieties X equipped with a finite map X - g *
and a rational action of G on X compatible with this map. This formulation
represents in part an attempt to extend the methods of algebraic geometry
to an important, (slightly) noncommutative case; it is an analogue of the
equivariant Nullstellensatz.

Research supported in part by NSF Grant DMS-8120790.
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We restrict attention in the first five sections to Dixmier algebras A that
are completely reducible as U(g)-bimodules and that contain a quotient
U(g)/I with I maximal unipotent, calling them unipotent also. The term
"unipotent" is defined in several papers of Barbasch and Vogan most
notably [Barbasch-Vogan, Definition 5.23]; the definition goes as follows.
Given a nilpotent orbit ,0 of g *, assume that it is special in the sense of
[Lusztig, 1979] or equivalently [Barbasch-Vogan, 1985, Definition 1.10].
Attach to ,0 an infinitesimal character ÀD by the recipe of [Barbasch-Vogan,
1985, 5.4], assuming as théy do that the dual nilpotent orbit LD is even. Then
a maximal ideal I of U(g) is attached to D if its infinitesimal character is 03BBD;
I is unipotent if it is attached to some special Z with LD even in this sense.
The point of this restriction is that unipotent Dixmier algebras are nicely
built out of irreducible bimodules and these pieces behave in a nice way.

THEOREM 1.1 (THEOREM III OF [Barbasch-Vogan, 1985]): Let ,0 be special
and LD even (as in the definition of maximal unipotent ideal). Let e E D and
suppose I is attached to Z. Then the set HCD of irreducibnle Harish-Chandra
bimodules with right and left annihilator equal to I and a compatible locally
finite G-action is parametrized by irreducible representations of A(Z), Lusztig’s
canonical quotient of the G-equivariant fundamental group n7 (,0) of D. Here
n7(D) is isomorphic to the component group Ge/G3 of Ge, and Lusztig’s
canonical quotient is defined [Lusztig, 1984, 13.1.2 ] and [Barbasch-Vogan,
1985, 4.4c]. Moreover, if f.1, v E A(D)^ and the bimodules corresponding to
them are denoted by V03BC, Vv and if

then

In other words, the character theories of HC, and A(D) coincide.
We start in Section 3 by considering the case where A(Z) is abelian, so

that the right sides of (a) and (b) above have only one term. This puts a very
strong constraint on possible multiplication tables of Dixmier algebras. In
particular, we prove the following result.

THEOREM 1.2 : There is a natural finite-to-one correspondence from the set of
all strongly prime unipotent Dixmier algebras corresponding to A(Z) to the set
of subgroups S of A(Z). The fiber over S has cardinality 0 or IH2 (S, C )B, the
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order of the Schur multiplier of S, and consists of algebras that are isomorphic
as bimodules.

The notion of strongly primality is defined in Section 2; it is weaker than
complete primality but stronger than primality. We also give a criterion for
the surjectivity of the correspondence. In Section 3 we show that under
certain circumstances these concepts coincide (in a setting slightly différent
from that of Theorem 1.1) and discuss a counterexample to Vogan’s
conjecture in detail. 

In Section 4, we investigate what happens if A(D) is not abelian. Here we
are forced to make an existence assumption which was needed only for the
surjectivity of the correspondence in Section 3. The most interesting non-
abelian groups that arise in practice are the symmetric groups S3, S4, and
S5. We give a rather complete analysis of the first of these and sketchy
remarks about the other two.
The foregoing results seem to indicate that we must consider sheaves of

noncommutative algebras on nilpotent orbits in order to arrive at a class of
géométrie objects capable of parametrizing even unipotent Dixmier algebras.
Unfortunately, it is not at all clear just what kind of sheaves ought to be
used. In Section 5, we analyze (possibly noncommutative) completely prime
algebras of finite type over S(g), the symmetric algebra of g. We will see that
this class of geometric objects is an unsatisfactory one for parametrizing
unipotent Dixmier algebras, although it possibly represents a step in the
right direction.

Since one often studies noncommutative algebras by filtering them, we
conclude by considering filtrations of (not necessarily prime or unipotent)
Dixmier algebras A in Section 6. We show that any A has a filtration making
the associated graded algebra gr A commutative. If A is completely prime,
it has another filtration making gr A completely prime. It is not always
possible to filter A so as to make gr A both commutative and completely
prime, but we mention some results of Moeglin indicating what happens if
this is possible.

2. Notation and definitions

We will denote Lie groups by upper case roman letters and their Lie algebras
by the corresponding gothic letters. All groups and algebras will be complex;
groups will be assumed to be connected unless otherwise stated. Given G
and g semisimple, b will denote a Cartan subalgebra of g with dual b*,
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A = A(g, 1) the set of roots, A+ = 0394+(g, 1) a choice of positive roots, W
the Weyl group, R the root lattice, and P = P(G) the weight lattice with
standard partial order - induced by A+. It will be convenient to make P a
totally ordered abelian group by an ordering  which we may assume
extends -. We also use  to order finite-dimensional holomorphic
G-representations according to their highest weights.
Denote the universal enveloping algebra of g by U(g) and the center

of U(g) by Z(g). Recall that the maximal spectrum of Z(g) identifies
with b*/W by the Harish-Chandra isomorphism; we caii éléments of this
latter set infinitesimal characters and denote the maximal ideal corre-

sponding to À by Z(03BB). A (proper two-sided) ideal I of U(g) is said to
have infinitesimal character Â if I contains the minimal primitive ideal
U(g)Z(03BB). Recall that maximal ideals correspond 1 - 1 to their infinitesimal
characters.

By an (admissible) Harish-Chandra U(g)-bimodule we will mean a

finitely-generated U(g)-bimodule V satisfying
(1) V is a direct sum of finite-dimensional irreducible g-modules E when

regarded as a g-module under the adjoint action (which we assume
lifts to G) and each E occurs with finite multiplicity [V:E] in V. If
[V : E] ~ 0, we call E a K-type of V.

(2) L Ann V and R Ann V, the left and right annihilators of V, coincide.
Harish-Chandra bimodules then automatically have finite length.
As stated in the introduction, a Dixmier algebra is a Harish-Chandra

bimodule which is also an associative algebra with 1, all structures being
compatible. This terminology was chosen because Vogan and 1 came to
consider such algebras while trying to generalize Dixmier’s bijection
between primitive ideals and coadjoint orbits from the solvable to the
semisimple case. A is unipotent if it is completely reducible as a bimodule
and Ker(C/(g) ~ A) is maximal unipotent. It may be that the second of
these conditions implies the first.

Finally, we recall for completeness a few definitions from algebra
and introduce one of our own. An algebra A is called prime (resp.
completely prime) if the product of two nonzero ideals (resp. nonzero
elements) is nonzero. If A is also a bimodule over a ring R, then we will
call A strongly prime if the product of two nonzero R-bisubmodules
is nonzero. Clearly strong primality lies between primality and com-
plete primality. A is said to be (left) primitive if it has an irreducible

(left) module V with Ann V = 0. Finally, an ideal I of A is prime (resp.
completely prime, ... ) if the quotient ring A/I is prime (resp. completely
prime, ... ).
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3. Unipotent Dixmier algebras parametrized by abelian groups

3.1. Classification of strongly prime algebras

Unraveling the definitions, we see that a unipotent Dixmier algebra A
parametrized by an abelian A(D) is graded by a finite abelian group
F zé A(Z), so that A = EBgEF Ag , and each homogeneous component Ag is
isotypic as a U(g)-bimodule. In particular, AI is isomorphic to a nonzero
direct sum of copies of U(g)/I, I a fixed maximal unipotent ideal.

LEMMA 3.1.1: If A is strongly prime, then A1 ~ U(g)/I (i.e., Al is irreducible).

Proof.- Put AI = EB7=1 1 Bl , where each Bi is isomorphic to U(g)II. Then BGi,
the set of G-fixed vectors in Bi, is isomorphic to C as a G-module, and the
sum AG1 of all the BGi is a finite-dimensional C-algebra. If dimc Ar &#x3E; 1, then
it is well known from the theory of such algebras that AG1 is not com-

pletely prime. But if A; is not completely prime, then compatibility of
the product and U(g)-action on A1 force the product of two copies of U(g)/I
inside A1 to be 0, a contradiction to strong primality. Hence AG1 ~ C and
A1 ~ U(g)lI.

LEMMA 3.1.2: Under the same hypotheses, all homogeneous components Ag are
irreducible.

Proof.- It is clear from strong primality that {g E F|Ag ~ 01 is a subgroup
of F. Suppose now that Bl , B2 c Ag, B2 r-- Ag_ with all B1 irreducible as
bimodules and B1 ~ B2. Fix isomorphisms i : B2 (8) Al B3 ~ AI, j: Bj - B2 .
Then multiplication of Bl and B2 by B3 must be given by nonzero scalar
multiples of i and ji, respectively. Whatever these multiples are, it is
clear that we can find c ~ C such that the product of the bimodules
{x 2013 cj(x))x E B1} and B2 is 0, a contradiction. The conclusion follows.

Proof of Theorem 1.2: Associate to each Dixmier algebra A attached to A(D)
the subgroup S = {g E A(D)IAg =1 01 of A(Z); this gives the correspondence
of the theorem. If a subgroup S occurs in this correspondence, we get an
isomorphism 03C4st : Vs ~ V1 Vt ~ Vst induced from the multiplication of As and
At in A and arbitrarily chosen bimodule isomorphisms Vi ~ Ai (i = s, t, st),
for each s, t E S. Associativity of multiplication in A then forces the following
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diagram to commute.

In particular, if S occurs in the correspondence it is possible to choose
isomorphisms 03C4st making (3.1.3) commute. The reasoning is reversible; given
the 03C4st, it is obvious how to place a ring structure on (B,c making it a
strongly prime algebra corresponding to S. We now assume that S satisfies
this condition and ask how many algebras are associated to it by the
correspondence. Any such algebra gives rise to a new set of isomorphisms
03C4’st which must be complex scalar multiples of the old ones: 03C4’st = n(s, t)T,,.
In order that (3.1.3) commute with is, replaced by 03C4’st, it is necessary and
sufficient that

Once again all steps in this argument are reversible; given n(s, t) =1= 0

satisfying (3.1.4), we recover the 03C4’st and the attached algebra. We now ask
when two algebras attached to the same S are isomorphic. Since any

isomorphism must respect the bimodule structures, it must reduce to a scalar
on each homogeneous component, by (3.1.2). Consequently, the n(s, t) and
m(s, t) attached to the algebras must satisfy

for some 03BB: S ~ C . But (3.1.4) and (3.1.5) are exactly the 2-cocylce and
1-coboundary conditions defining H2 (S, C ), where S acts trivially on C .

This completes the proof.
We degress briefly to calculate H2(F, C ), F an arbitrary finite abelian

group acting trivially on ex, as we need to know in the next section that this
group is not always trivial. Write F = F, x ... x Fn, with each F, cyclic
of prime-power order. It is well known that H2(F, eX) may be calculated as
the group of extensions of ex by F; i.e., as the set of exact sequences of

groups
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with the image of C  central in G, modulo equivalence, defined by the
commutativity of an obvious diagram. F has a presentation (ai , ... ,
an||Fi|i = 1, aiaj = ajaj~. Given the short exact sequence we may pull back
the generators a, of F to elements à, of G satisfying a|Fi|i = 1, Ç = bijajai
for some b,, ~ C , since ex is divisible. It is not difHcult to decide that
the bij are uniquely determined, that each is an nth root of unity for
n = g.c.d. (IF, 1, IF, 1), and that they are otherwise unrestricted. We deduce
the following result.

PROPOSITION 3.1.5: H2(F, C ) ~ ~ij Cij, where Cij is cyclic of’ order
g.c.d. (|Fi|, IF, 1) (in the above notation).

In particular H2 (F, eX) is trivial if and only if F is cyclic, but has order 2(n 2)
if F ~ (Z/2)n.

3.2. Criterion for complete primality and a disproof of Vogan’s conjecture

In this section all unipotent Dixmier algebras A will be assumed to satisfy

Ker(U(g) - A ) is completely prime (3.2.1)

unless otherwise stated. Barbasch and Vogan have conjectured that every
unipotent A has this property; at any rate, it is known that it holds whenever
the kernel is the annihilator of some irreducible unitary representation
[Vogan, 1986, 7.12]. Letting A = ~g~F Ag as in the last section, we now
localize A by the non-zero elements A * in A l . By Goldie’s theorem [Herstein,
1968], these form an Ore set in A l , and A, becomes a division ring upon
localization by this set.

LEMMA 3.2.2: A* is right and left Ore in A, so that the localization B = (A*)-’
exists. In fact, for any prime Dixmier algebra, not necessarily unipotent, one
may localize A by the regular elements of Al. The resulting ring coincides with
the Goldie right or left quotient ring of A.

Proof: Goldie’s theorem applies also to A (A being Noetherian), so A has a
quotient ring. If x ~ A is regular, consider the sum A1 + A1x + A1x2 + ···
of left A,-submodules of A. Since A is Noetherian as a left A,-module, this
sum cannot be direct, so we have ao + a, x + ··· + anxn = 0 for some a,
not all 0. As x is regular, we may cancel a power of x if necessary to conclude
that some left multiple of x lies in A* . Hence localization amounts to no
more than localizing by some element of A*1. The conclusion follows.
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Observe that B is still F-graded, but now B, is a division ring and other
pieces Bg are isomorphic as left or right Bl-modules to B1 itself. This follows
from (3.2.2): the left or right dimension of Bg over BI must be 1 since agb-1g
lands in B1 for any ag, bg E Bg - {0}. In particular B is prime right Artinian,
hence isomorphic to Dn - Mn(D), the right of n x n matrices over some
division ring D. (Note also that G no longer acts finitely on B.)

LEMMA 3.2.3: Assume that |F| is prime. Then A is completely prime if and only
if the only homogeneous roots of unit y in B lie in C c BI; that is, if and only
if no b ~ Bg is a root of unity for g ~ 1.

Proof.- Obviously A is completely prime if and only if B is. It is clear that this
condition is necessary. Conversely, if it satisfied, then 1 first claim that any
sum bg + bh of two nonzero homogeneous elements of B is invertible.
Premultiplying by bg ’ (which exists), we may assume that bg = 1. If 1 + bh
is not invertible, it is a zero-divisor. Expanding out (1 + bh)(LgEF bg ) = 0,
we see that this forces bh to be a root of unity, a contradiction. Now
let p = |F|, denote the elements of F by 0, 1, ... , p - 1, and let

Co + ··· + cp - l generate a minimal right ideal of B. Applying various auto-
morphisms of B to this element, we get p - 1 elements Co + ci c, + ··· +
~(p-1j cp-1 (j = 0, ... , p - 2; e = e21tilp) of B, each generating a minimal
right ideal. But from linear algebra the C-span of these elements contains an
invertible sum of two homogeneous elements. Hence B is a sum of at most
p - 1 minimal right ideals and has Goldie rank at most p - 1. On the other

hand, all minimal right ideals of B have the same right dimension over B, ,
while B itself has right dimension p over B1, so the Goldie rank of B divides
p. Hence the Goldie rank of B is 1, and B is a division ring.

In general, if |F| is not necessarily prime, F has a composition series
F = F0 &#x3E; F1 &#x3E; ··· &#x3E; Fn = 0 in which each subquotient Fi/Fi+1 is cyclic
of prime order pl . Setting Ci = ~g~Fi Bg, we see that Ci is Z/pi-graded with
0-graded piece Ci+1. Then we have the following criterion for complete
primality.

THEOREM 3.2.4: With the above notations, A is completely prime if and only
if the only homogeneous roots of unity of each Ci (with respect to its Zlpi-
grading) lie in C c Ci+1.

Proof. Again the necessity of the condition is clear. If it is satisfied, we argue
as in (3.2.3) to show each Ci is a division ring by downward induction on i.
The criterion of (3.2.4) is admittedly difhcult to apply in general. In

certain favorable circumstances, however, it is easy to verify. Barbasch and
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Vogan have extended the character formulas of (1.1) to certain non-integral
infinitesimal characters D attached to certain nilpotent orbits V.

In these cases there is a fixed primitive ideal I of infinitesimal character D
such that irreducible Harish-Chandra bimodules with left and right
annihilator equal to I are parametrized by irreducible representations of
nI (,0) (rather than its quotient A(D).) Moreover, the character formulas of
(1.1) carry over with nI (.0) replacing A(D). If Z(G) surjects onto nI (.0) (as
always happens in type A), then it is known that the K-types occurring in

Ag, Ah have highest weights that are noncongruent modulo the root lattice
R for g =1 h. (This work of Barbasch and Vogan has not been published, but
we will give an example in the next section for which these properties are
easily verified.) It is clear that all of the above results apply to Dixmier
algebras with left and right annihilator equal to I, provided that nI (,0) is
abelian. These considerations motivate the next result.

THEOREM 3.2.5: With the above notation, assume that the K-types of Ag, Ah
have noncongruent highest weights modulo R for g =1 h. Then the criterion of
(3.2.4 ) is satisifed, so that A is completely prime.

Proof.- It is clear that the K-type condition carries over to the Ci occurring
in (3.2.4), so it suffices to assume that |F| is prime. Suppose contrarily that
bn = 1, b - q-11 ag, a, E Al, ag E Ag =1 A, . For definiteness assume that
n = 3; the general case is similar. By definition of (A*1)-1A1, we get
equations

for some b, , c, E A, , bg, Cg E Ag. Rearranging we get

Now let  totally order the weight lattice P, as in section 2. Write all ai, bi,
cl as sums of h-weight vectors, and let a, , 03B21, Y, , ag, 03B2g, Yg be the  -highest
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weights appearing in the sums. We know that B has no homogeneous zero-
divisors. It follows that the  -highest weight appearing in the sum for a, b,
is a, + /31’ and similarly for the other products. Accordingly, we get equations

If al  oc, (resp. a, &#x3E; ag), then the first two equations force /31  03B2g,
03B31  rg (resp. /31 &#x3E; /3g, y, &#x3E; rg), contradicting the last equation. Hence
OC, = 03B1g. But this last equality contradicts the hypothesis, since the weights
of any K-type are congruent to its highest weight modulo R.
Another sufficient condition for complete primality will be given in

section 6, when we discuss filtrations. The proof of (3.2.5) actually yields the
following slightly stronger result.

PROPOSITION 3.2.6: If |F| is prime and the criterion of (3.2.4) fails, then the
set of a, E A*1 such that aIl ag is a root of unity is closed under left and right
multiplication by A* , the G-action, and the following two operations: replacing
a sum of weight vectors by the  -highest vector occurring in it, and replacing
a sum of weight vectors belonging to various K-types by a highest weight vector
for the  -highest K-type. In particular, if (A*1)-1 Ag has any roots of unity,
then it is infinitely many that are quotients of highest weight vectors of the
same highest weight.

Proof.- We saw above that if aIl la 9 is a root of unity, then it is still a root of
unity if a, , ag are replaced by the  -highest weight vectors occurring in their
sums; also, it is clear that [g - b, a, cl ] -’ [g - bj 1 ag cl ] is a root of unity for any
g E G, b1, c, E A* . The last assertions follow from an observation in section
6; any sum of vectors belonging to the K-types K1, ..., Kn is G-conjugate
to a sum of weight vectors including highest weight vectors for all K,.

This proposition shows that if there are any non-completely-prime
unipotent Dixmier algebras A parametrized by abelian groups A(D) then the
various graded pieces Ag must look very similar. We have already seen above
that their Goldie ranks must divide |A(D)| (even if |A(D)| is not prime).
Moreover, if |A(D)| is prime, then we have the following result.

PROPOSITION 3.2.7 : Let B = EBgEF Bg be a localized Dixmier algebra graded
by an F of prime order. If B is not completely prime, then its Goldie field
embeds in BI as the , fixed point set of some automorphism.
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Proof.- We have seen that the hypotheses imply that the Goldie rank of B is
IFI = p. Let b = LgEF bg generate a minimal right ideal of B with the
bg E Bg. Premultiplying by bl ’ , we may assume that b1 = 1. Choose g with

bg =1= 0, 1. If b(1 - bg ) is not 0 then it generates the same minimal right
ideal as b does, while its Bg-component is 0. Arguing as in the last part of
the proof of (3.2.3), we deduce that the Goldie rank of B is less than

p, a contradiction. Hence b(1 - bg ) = 0; it easily follows that bi = 1,
b = 1 + bg + b2g + ··· + bp-1g. Since the Goldie rank is p, the right
dimension of bB over Bi is 1.. Now conjugation by bg is an automorphism
of B, or order p, whence the dimension of B1 over its division subring B;g on
either side is p. We can recover D from bB as the commuting ring of the right
B-action on bB. But this commuting ring contains all left translations by
elements of Bbg1, which actually fill it up, by a dimension count. Hence
D ~ Bbg1.

This line of argument shows more generally that, for arbitrary F, a large
piece of D is isomorphic to a large piece of B, . We will, however, see
examples below in which the existence of a gradation with "nice" pieces is
not sufficient to guarantee complete primality (for non-abelian A(D)).
We now give a criterion for the surjectivity of the correspondence in (1.2).

Drop the hypothesis (3.2.1). Given S  A(D), we try to construct an
algebra corresponding of S’ by first constructing its localization. Filtering S
as in the discussion before (3.2.4) and making use of repeated Z/m-graded
extensions of (A*1)-1 A1, we see that it suffices to assume that S is cyclic, say
of order n. (We will not need to assume that n is prime, nor even a prime
power.) We first make a general observation about rings. If A is any

(associative) ring with 1 and y E A is invertible, suppose that some auto-
morphism cp of A fixes y and satisfies cpn = c,, conjugation by y, for some
n. Then we may construct an extension B or A which as an additive group

is just A ~ Ax ~ ··· ~ An-1x (x a new element), and which as a multi-
plicative semigroup has the presentation ~A, xlxn = y, xax-1 = 9(a) for
a E A~. We use this observation to study the desired extension of (A*1)-1 A1,
which is isomorphic to Mm(0394), 0394 some division ring. We need another lemma.

LEMMA 3.2.8: The localized modules (A*1)-1 ’A 9 all exist and have the structure
of Mm (A)-bimodules.

Proof.- It is clear that (A*1)-1 Ag exists and has the structure of an Mm(0394) - Al
bimodule. As a left Mm (A)-module, it is a direct sum of (say) r copies of 0394m,
so that its commuting ring C is isomorphic to Mr(0394). Now A1 embeds into
C but not into any Ms(0394) with s  m, so r  m. If we had r &#x3E; m, then
there would be z E C - C - 1 whose action on (A*1)-1 Ag commuted with the
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left and right actions of A1, contradicting the irreducibility of (A*1)-1 Ag as
an AI-bimodule. Hence r = m, and the conclusion follows.
As a by-product of the proof, we get an a-11 ag E (A*1)-1 Ag whose left

annihilator in A is trivial. We construct al 1 ag by taking a sum of independent
vectors, one from each copy of An inside (A*1)-1 Ag. This element will turn out
to be invertible in the desired extension B over BI = (A*1)-1 A1, if B exists.
Now we can state our criterion. Choose isomorphisms Tst as in (3.13) arbi-
trarily and use them to make LhES Ah into a ring (not necessarily associative).

THEOREM 3.2.9: The correspondence in (1.2) is surjective if and only if ag E AI
commutes with ag in this ring (under our hypothesis that S is cyclic of order n).

Proof.* Note first that this condition does not depend on the choice of the 03C4st
or on how we insert parentheses to define ang; any two definitions agree
up to a scalar. The condition is then obviously necessary. If it is satis-

fied, observe first that the -rs, extend to isomorphisms Bs ~ B1 Bt ~ Bsl
(Bs = localization of As), making Sh~S Bh into a ring. The associative law
(bgbh)bk = bg(bhbk) holds up to a scalar depending only on g, h, k (b; E Bi).
The right inverse ag ’ of ag exists; consider the map Bj - BI defined by
x - (agx)a-1g. In order to check that this is a homomorphism, it suffices to
test it on a single pair of elements from B, , as we just saw that homogeneous
elements associate up to a fixed scalar. The pair (1,1) does the trick; one
similarly shows that it is an automorphism whose nth power is conjugation
by ag . Since the condition implies that the automorphism fixes a;, we can
apply our general observation to make E Bh an associative ring by redefining
the Lst. Then (3.1.3) will commute with the new choice of 03C4st.
Hence the obstruction to constructing the extension is measured precisely

by the scalar « satisfying anhah = 03B1ahanh for all ah E Ag. As the n th power of
conjugation by ag is conjugation by ang, we see that « must be an nth root of
unity. In case n is prime and the modules Ah have analogues in characteristic
n satisfying the same character identities as above, we can construct the
extension in characteristic n. A more satisfactory sufficient condition for «
to be 1 is given below. Put J = Ker(U(g) ~ A).

THEOREM 3.2.10: Assume that

(1) there exists ah E Ag such that the set of elemen ts in Ag_l commuting with
anh is not {0}, and

(2) either Al admits a filtration making gr A1 commutative and completely
prime, or J is completely prime and satisfies the Kirillov conjecture, so
that Fract(U(g)/I) is isomorphic to a Weyl field Dn.

Then 03B1 = 1, so an extension exists.
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Proof.- Pick ah satisfying (1) and ak E Ag_I such that [ah , ak ] = 0. Either case
of (2) implies that A 1 is completely prime, so ahak ~ A*1. Now we have
anh(ahak) = 03B1(ahak)anh ~ 0. The first case of (2) implies that a - 1 by
passing to the images anh, ahak of anh, ahak in an appropriate level of gr A1. In
the second case of (2), first observe that xy = 03B1yx ~ yx cannot hold for x,
y in a Weyl algebra An, since An satisfies the first condition of (2). An easy
calculation shows that if xy = ayx holds for some x, y E Dn, it holds for a
différent x, y E An , a contradiction.

Barbasch and Vogan have conjectured that every maximal unipotent J
satisfies the first case of (2) with the standard filtration; [Joseph, 1980] shows
that every completely prime J satisfies the second case of (2). Condition (1)
is satisfied if, for example, one can find ah contained in the image of U(n),
n the nilradical of some Borel subalgebra of g. 1 do not believe that a ever
deserves to be anything but 1.

As was observed in the last section, H2 (F, eX) is not always trivial, so the
correspondence in (1.2) is not in general 1 - 1. (We will see an example in
the next section.) Since the geometric objects corresponding to unipotent
Dixmier algebras attached to V should be just covers ofD, parametrized by
conjugacy classes of subgroups of 03C01 (D), we see that Vogan’s conjecture fails
in general. In any event, the existence of nonisomorphic algebras with the
same bimodule structure precludes a natural construction attaching distinct
geometric objects to these algebras, if these geometric objects are to be
determined by the G-module structure.

3.3. An example

We warm up to the main example with a smaller one. Let G = SL(2, C),
D = principal nilpotent orbit in g*, ÀD = infinitesimal character of the
lowest weight g-module with lowest weight 1 2. In this case 03C0G1(D) =
03C01(D) ~ Z(SL(2, C)) ~ Z/2. It has two subgroups, both having trivial
Schur multiplier, by (3.1.5). So there are two Dixmier algebras attached to
Z. These turn out to be U(g)/U(g)Z(03BBD) and A,, the first Weyl algebra
[Vogan, 1986, p. 290]. The first embeds in the second as the even operators.
Now take G = SL(2, C) x SL(2, C), V = principal nilpotent orbit,
ÀD = (À, À), where À is the ÀD of the last example. Then 03C0G1(D) ~ Z/2 x Z/2,
the Klein 4-group. By (3.1.5), H2((Z/2)2, C ) ~ Z/2, so there are two
Dixmier algebras attached to 03C0G1(D) itself. One of these is familiar:

A2 - A, x A, , the second Weyl algebra. The other has a presentation
p1, q1, p2, q2|[p11] ] = [p2q2] - 1, x1y2 = -y2x1(x,y = p,q)~. In other

words, it is "A2 with anticommutativity"; call it A2. Anticipating the last
section, let us consider filtrations of these algebras. The first is well known
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known to have a standard filtration by degree with associated graded
algebra [pl , ql, p2, q2], a polynomial algebra on four generators. If we filter
A2 in the same way, the associated graded algebra gr A2 becomes

It is still completely prime, but no longer commutative. Indeed, the existence
of anticommuting elements in A2 precludes its having any filtration with
gr A’2 commutative and completely prime. We will see in the last section that
A" does have another filtration with gr A" commutative; here gr A’2 turns out
to be

the dots denoting additional relations given in the last section. In other
words, the new gr A’2 is the ring of regular functions on D with nilpotent
elements adjoined. This ought to be a common phenomenon.
Thus the Dixmier algebras attached to the same group, though isomorphic

as bimodules, are far from indistinguishable. This fact probably runs
contrary to the reader’s impressions of the abstract constructions of the
preceding two subsections, in which no one Dixmier algebra attached to any
group could be regarded as canonical. Another important difference between
A2 and A’2 is given below.
Both A2 and A’ 2 have a natural module, namely the polynomial ring

C[x, y] on two generators. The action of A2 on this ring is by differential
operators; one puts p, - M,, multiplication by x, q1 = ~/~x; p2 = Mv;
q2 = JjJy. The action of A’2 is more complicated; p, and q, act on a monomial
x‘ y‘ exactly as for A2., but the action of p2 and q2 on this monomial is ( - 1)l
times the A2-action. There is no reasonable way to redefine multiplication in
C[x, y] so as to make P2, q2 E A’2 act by derivations. Not all Dixmier algebras
can be realized as rings of differential operators (or at least not on line
bundles). Actually, it is better to think of the A’2-module as polynomials in
two anticommuting generators, for the following reason. If we put a

Z/2-gradation on gr A’2 by giving x, àjàx grade 1, v and ~/~y grade 0, and
extending canonically, the resulting algebra becomes supercommutative. If
we then similarly put a Z/2 gradation on polynomials in two anticommuting
generators x, y by giving x grade 1, y grade 0, and extending canonically,
then it too becomes supercommutative and A’2 acts on it by superdifferential
operators. One may hope that by suitably generalizing the notion of super-
commutativity one could filter many Dixmier algebras so as to make their
associated graded algebras supercommutative and completely prime.
Section 6 gives an inkling of the benefits to be gained from such filtrations.
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Note finally that the images of U(g) in A2 and A2 , generated by the even
operators in one variable, act in exactly the same way on C[x, y]. It is not
difîicult to show that no a E A2 acts on C[x, y] as q2 E A§ , and similarly with
A2 and A2 interchanged. We conclude that neither A2 nor A2 realizes the ring
of g-finite endomorphisms of C[x, y].

4. Unipotent Dixmier algebras parametrized by non-abelian groups

4.1. General theory

It will be noted that the assumption that A(D) is abelian was crucial to the
arguments of the last section. It is much harder to construct Dixmier

algebras attached to non-abelian A(Z) and to test them for complete
primality; in particular, they are not obtainable as a sequence of n th root
extensions of division rings. While one can easily write down the analogue
of (3.1.3) its commutativity turns out to be neither necessary nor sufficient
for the existence of corresponding associative Dixmier algebras. Fortunately,
the following hypothesis will circumvent many of these difhculties.

ASSUMPTION (4.1.1) [Barbasch-Vogan, 1983]: There exists a completely
prime Dixmier algebra A on which A(D) acts by bimodule auto-

morphisms. We have an isomorphism i: A ~ 03A3n~A(D) ^ (V03C0 ~C F03C0) as a
module for U(g x g) and A(D), where F, is the A(D)-module corresponding
to 03C0.

For maximum flexibility, we do not insist that A be completely prime. (We
will later give an example in which (4.1.1 ) is satisfied.) Note that in case A(D)
is abelian, (4.1.1) merely amounts to assuming that the fiber over A(D) is
nonempty, in the language of Theorem 1.2; note also that the action of A(D)
on an algebra in this fiber was used at several critical points in the last
section.

In order to get the sharpest possible results we will need to strengthen
(4.1.1 ) slightly. Let A satisfy it and suppose that V, W are two irreducible
V,-bisubmodules of A ; then V and W are just i-1(V03C0 Q ln) and i-1(V03BC Q h)
for some n, f.1 E A(D)^, f03C0 E F03C0, f03BC E F,. (Here we are using the language of
Theorem 1.1.) Put j : F,, Q F03BC ~ 03A3x Fx , and let f03BB Q fil map to E fx under
any such isomorphism j, with f03BB E F03B3. We will assume that the product of V
and W in A is as large as it could possibly be; i.e., that it is i -’ (03A3x (V03B3 O Ir).
We are going to study Dixmier subalgebras of A ; if it does not satisfy this
condition, it can only have more subalgebras than we expect.
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Any bisubmodule B of A is i-1 (03A303C0 (V03C0 ~ S03C0)) for some subspaces
S03C0 c Fn . Under our hypothesis on A, B is a subalgebra of A if and only if
any isomorphism from F,, Q F, to a direct sum of F, maps Sn Q S, into (but
not necessarily onto) the corresponding direct sum of the Sv . So we ask, in
how many ways can subspaces S03C0 c F,, be chosen to satisfy this tensor-
product condition?
The following construction accounts for most of these ways. Let H be any

subgroup of A(Z), and for each n let Sn be FH03C0, the H-fixed vectors in S03C0. It
is immédiate that this choice of the Sn satisfies the tensor-product condition;
on the level of Dixmier algebras, this choice corresponds to the subalgebra
AH of A. It is clear that two subalgebras H, H’ of A(D) are conjugate if and
only if AH and AH’ are conjugate under A(D). To search for other ways to
choose the Sn, it is convenient to use the (possibly new) notion of partial
characters, which we now introduce. Let F be any finite group, (n, V) a
complex finite-dimensional representation of F, S a subspace of V that is not
necessarily F-stable. Make each f ~ F act on S by composing the map 03C0(f)
with the orthogonal projection V - S with respect to any F-invariant
Hermitian inner product on V. Then the partial character xs of F with
respect to S is the function which assigns to each f ~ F the trace of its action
map on S. Alternatively, it is the function on F defined by f ~ 03A3j ~03C0(f)03C5j, vj~,
where ,&#x3E; is any F-invariant positive definite Hermitian inner product
on v and {vj} is an orthonormal basis of S with respect to this product.
One verifies as for ordinary characters that ys is independent of the choices
of ,&#x3E; and orthonormal basis. The xs are not class functions, however,
as the map F ~ End S defined above is not in general a representation
of F.

Partial characters behave just like ordinary characters with respect
to direct sums and tensor products. If the subspace S is one-dimensional,
and projects onto the subspaces S, , S2 , ... of the irreducible constituents
of V, then xs is a linear combination of ~s1 , xs2 , .... Partial characters
satisfy even more orthogonality relations than do ordinary characters: given
any basis bl, ... , bn of an irreducible F-module B, there is another basis
CI’ ... , cn of B such that the inner product of the partial characters ~Cbi and

~Ccj (defined in the obvious way) is nonzero if and only if i = j. To see this,
first choose a basis ci , ... , c’n of B*, the dual of B, so that the projection
of Cbi 0 Cc’j onto the trivial F-module is nonzero if and only if i = j, define
the cj by cj, b) = c’j(b) for b E B «,) as above), and use the fact that the
sum of the group elements acts by 0 on any irreducible nontrivial module.
It follows that whenever the subspaces S, , S2’ ... are linearly independent,
then so are their partial characters XS1, XS2 , ... (in fact, it is possible for the
Xs, to be independent even if the Si are dependent).
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Our main result on subalgebras is

THEOREM 4.1.1: Only finitely many choices of subspaces S1 = VI, S03C0, S03BC, ...
satisfy the tensor-product condition.

Proof.- Let S1, S03C0, ... be one such choice and let H be the subgroup of F
consisting of all elements which fix the S03BD pairwise. Let C be the complex
span of all partial characters with respect to all one-dimensional subspaces
of the S03BD. Since the constant function 1 belongs to C, the tensor-product
condition and a Vandermonde determinant argument show that there is
some partition Pl = {identity coset}, P2,... of the left cosets of H in F
such that C consists of all functions constant on cosets and agreeing on any
two cosets in the same Pi (the definition of H shows that Pl is as indicated).
If v belongs to some Sn , the partial characters xw belongs to C; conversely,
if xw belongs to C, the independence of the partial characters forces v to be
a linear combination of elements of some Sn and thus to belong to S03C0. Hence
the Sn are completely determined by C. Since there are only finitely many
possibilities for C, there are only finitely many for the S03C0.
The parametrization of Dixmier subalgebras given by Theorem 4.1.1 is

quite inefficient. The following result limits the number of such subalgebras
far more sharply.

THEOREM 4.1.2: Retaining the notations of the preceding proof, we have
S03C0 ~ 0 whenever F:! =1 0.

Proof.- We observed above that the partition of F/H induced by C had
Pl - {identity coset}. Hence C contains the function which is 1 on H and

0 off H. If F, has an H-fixed vector v ~ 0, then the inner product of this
function and ~Cv is nonzero, whence this function is a linear combination of

partial characters at least one of which, say Xcw, is nonorthogonal to XCv. But
this forces w E Fn, by the orthogonality of partial characters, so Sn =1 0.

It is natural to conjecture that the only subspaces satisfying the tensor-
product condition are the spaces of invariants under some subgroup, but 1
do not know how to prove this except in particular cases. Note, however,
that if we assume A is completely prime, then we can localize A as in
section 3 and apply Jacobson’s Galois theory for division rings to deduce
this result [Jacobson, 1956]. We will see below how to use Theorem (4.1.2)
to prove this for S3 , S4 , and possibly S5.
We now look for abstract Dixmier algebras, not realizable as subalgebras

of the putative A satisfying (4.1.1 ). In general, the question of their existence
boils down to how commutative we can make an analogue of (3.1.3) by an
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appropriate choice of i’s (not necessarily isomorphisms); that question
appears to be very difhcult. There is one situation, however, in which the
methods of the abelian case prove helpful. Retaining the notation of the last
two theorems, let H c F and put S03C0 = F[H,H]03C0 for 03C0 E F^, where [H, H] is
the commutator subgroup of H. Then H/[H, H acts naturally on the sum
of the S03C0, and this sum decomposes into one-dimensional constituents under
the action. Translating this observation to the level of Dixmier algebras, we
get that A[H,H] is graded by the abelian group H/[H, H]. In case this group
has nontrivial Schur multiplier, we get additionai Dixmier algebras by the
results of section 3. Since the Schur multiplier of any quotient of H injects
into that of H, we can detect these additional algebras by looking at
H2(H, CX). We will say more about this later.

Before discussing particular groups F in the next two subsections, we
show how to attach a finite-dimensional algebra to a unipotent Dixmier
algebra parametrized by F. We must make the technical hypothesis that
tensor products of irreducible F-modules are multiplicity-free; this is satisfied
for F = S3 and F = S4, but not F = S5. For each f.1, v E , fix an iso-
morphism 03C403BC03BD : V03BC ~Vtnv V03BD ~ ~ VXi, as in (1.1). Given A = ~03BC~F^ Am,
write each Ap as a direct sum of copies of V03BC and fix an isomorphism from
each copy of V03BC onto V03BC itself. Construct a finite-dimensional C-algebra J as
follows. J is spanned as a vector space by linearly independent genetators v03BCi ,
one for each copy of each V03BC sitting inside A. Any two such copies, say one
of V03BC, one of V03BD, must multiply as follows: apply the isomorphisms sending
these copies to V03BC, V03BD, then apply r,, to V03BC (8) V,, getting a sum of Vx, and
finally send this sum into A by a U(g)-bimodule homomorphism. Such a
homomorphism may be naturally identified with a C-linear combination of
appropriate V,i’ Define the product of the vJl; Vv corresponding to the
original two copies to be this linear combination. Extend the definition to
arbitrary products by bilinearity. Our algebras A will always have A l = Atriv
consist of a single copy of V1 = Vtriv; we may normalize J so that v, = 1,
the multiplicative unity. J will not be associative in general. If F is abelian,
then it is always possible to choose the r,,, so that J is associative (and is in
fact just the group algebra of F), as we saw in Section 3. Unfortunately, this
result fails for non-abelian F. Nor is it true that associativity of J (for some
choice of 03C403BC03BD) implies associativity of A. Fortunately, we have at least the
following fact: A is strongly prime if and only if no linear combination of
vN’s in J annihilates any combination of v03BD’s (regardless of the choice of 03C403BC03BD).

4.2. The case of S3

The first thing to be said about this case is that there is an example in which
(4.1.1) is satisfied and A(D) ~ S3. Take 9 = so(8), the set of all 8 x 8
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complex skew-symmetric matrices; this is a Lie algebra of type D4. The
unipotent ideal attached to the minimal 10-dimensional nilpotent orbit in g*
is the Joseph ideal J, having infinitesimal character (2,1,1,0) in standard
coordinates. Put A - U(g)/J. It is well known that A is completely prime
and has K-types exactly the Cartan powers of the adjoint representation,
each occurring once [Joseph, 1976]. The group D of diagram automorphisms
of g is isomorphic to S3 and acts by automorphisms on U(g). It preserves J
since the infinitesimal character of J is the sum of the fundamental dominant

weights corresponding to the three outer roots of the Dynkin diagram of g
and these roots are permuted by D. Hence D acts on A by automorphisms.
The Lie subalgebra gD of D is a Lie algebra 9 of type G2, whence D preserves
the U(g)-bimodule action on A. Now I = U(g) n J tums out to be maximal
unipotent in U(g) [Garfinkle, 1982]; it is attached to the 10-dimensional

subregular nilpotent orbit ,0 in 9 *. C is represented by any sum e of
two orthogonal root vectors; it is quite easy to show that 03C01(D) ~ S3
by explicitly calculating Ge. Thus A is a Dixmier algebra. It can be

seen at once that it contains at least one copy of the U()-bimodule V1
corresponding to the trivial representations of S3 , and at least two copies
of the bimodule VR corresponding to the two-dimensional representation
of S3. The remaining assertions of (4.1.1) will follow from the complete
primality of A and the discussion below. Alternatively, one can verify
(4.1.1) by calculating the G2-types of A explicitly, as 1 will do in a future
paper. 

Returning to the general case where A(D) ~ S3 , denote the trivial, sign,
and two-dimensional representations of S3 by 1, S, R, respectively, and let
V1, VS , VR be the corresponding bimodules given by Theorem 1.1. By (4.1.1)
there is an algebra A whose decomposition as a bimodule is v ~ VS Q 2 VR .
The theory of the last section yields three proper subalgebras of A up to
conjugacy, having the decompositions Vl , Vl Q VS, Y Q VR, and corre-
sponding to the respective conjugacy classes {S3}, {A3}, {2 - subgroupsl of
S3. The only other possibility for a subalgebra of A, by (4.1.2), would be of
the form Y ~ Vs (B VR. But no subalgebra of A has this form. To see why,
suppose the contrary and consider the division ring Fract A with its

subdivision rings Fract (V1 (B Vs ~ VR), Fract Vl . A simple count shows
that the left or right dimension of Fract A over Fract V1 cannot be a
multiple of that of Fract (V1 ~ VS ~ VR), a contradiction. (It is an easy
conséquence of [Barbasch-Vogan, 1985, Theorem III] that, for any group
A(D), (Fract V1)V03C0 has left dimension over Fract VI equal to that of 03C0 over
C, in the notation of Theorem l.l. This fact is useful later but is not needed
now.) Hence the subalgebras of A correspond exactly to subgroups of S3 . In
the particular case A = U(so(8))/J, the three subalgebras of the form
V ~ VR correspond to the three conjugate images of U(so(7)) in A, while
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the subalgebra of the form Y ~ vS is not generated by ad-locally finite
elements and so has no such simple description.

Since the group Z/2 has trivial Schur multiplier, the Dixmier algebras of
the form a v ffl b vs that we have already found are the only ones, and no
strongly prime Dixmier algebra contains more than one copy of V1 or Vs.
Consider first Dixmier algebras B that do contain a copy of Vs. They take
the form V1 ~ VS (9 n VR, whence the finite-dimensional algebras J attached
to them are spanned by 1, Vs, vR1, ..., vRn, where the span JR of the v,’s
is stable under left and right multiplication by VS. There are two copies of
VR inside A stable under left and right multiplication by the copy of Vs;
these copies correspond to the two irreducible A3-submodules of the two-
dimensional S3-module. We may thus use multiplication in A to define
isomorphisms iss, LSR, iRS making the analogue of (3.1.3) commute when-
ever it does not involve 1: RR. With these choices of iss, isR , 03C4RS, we see that
left and right multiplication by vs are commuting involutions of JR. It

follows our algebra B is completely reducible over its subalgebra B’ of the
form V ~ vs, the irreducible constituents other than B’ taking the form VR.
We therefore ask what the irreducible B’-bimodules are, recalling that the

V1-action is prescribed. We need only consider bimodules of the form
v ffi vs or VR (actually, it is easy to show that these are the only possible
forms). Then it is not difhcult to see that the following possibilities are the
only ones. Let C be either copy of VR inside A used above to define LSR, iRS,
and define +B’± , ±C± as follows, + C_ , for example is isomorphic to

C = +C+ as a V1-bimodule, but the right VS-action on it is -1 times the
right vs-action on C, while the left hS-actions on these two bimodules agree.
The other definitions are similar. Then the irreducible B’-bimodules are

exactly those that have just been defined. We can of course define -B± as
well, but these bimodules are isomorphic to +B+ under tlie intertwining
operator which is 1 on the copy of V¡, - 1 on the copy of vs . 1 claim now
that the decomposition of A over B’ is just +B’+ EB + C+ ~- C-. Indeed,
the first two pieces occur in A by definition. If the last piece were + C_ or
_ C+ , then every copy of YR in A would be stable under left or right
multiplication by the copy of VS . Neither of these possibilities holds, as an
easy calculation with S3-modules shows. Hence A decomposes as indicated;
now multiplication in A shows that + C+ 0 B’ +C+ ~ -C- and

+ C+ ~ B’ - C- ~ +B’+. The key relation is -B’+ ~B’ + C+ ~ B’ +B’- ~ _C_,
which may be verified as follows. There are V1-bimodule isomorphisms from
+B’+ to -B’+ and +B’-, sending 1 to 1 in both cases. Then multiplication in
A combined with these isomorphisms establishes the last isomorphism; one
may check directly that it intertwines the actions as indicated. It follows that
irreducible B’-bimodules are parametrized by S3 (not 5B).
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We then get five potential Dixmier algebras including a copy of Vs, having
the decompositions B’ (B C, EB _C_, B’ ~ +B’-, B’ ~ +C- , B ~ -C+,
and B’ 0 +B’- ~ +C+ ~ +C- 0 _C+ ~ -C-. It turns out that associative
algebras exist with each of these decompositions, but that only the first is
completely prime (it is of course just A). It is clear what is wrong with

B’ ~ +B’ ; it contains two copies of V1, so cannot even be strongly prime.
In fact, it is easy to show that its localization is isomorphic to M2(Fract V1).
More interestingly, the algebras B’ ~ +C- and B’ 0 _C+, which turn out
to be isomorphic, are strongly but not completely prime. Indeed, their
localizations LI, L2 are isomorphic to the localization L of B’ Q +B_ under
maps which do not respect the G- and U(g)-module structures. (For
example, the trivial K-type occurs once in the former localizations, but
twice in the latter.) These isomorphisms are defined as follows. The map
+ C+ ~ -C-  +B’+, when localized, yields two elements r, r-1 in the
localizations of + C+, _ C_, which acts as inverses in the localization of A.
Then the algebra isomorphism L ~ LI is given by v - r Q v Q r-1 
composed with the localized isomorphism from + C+ ~ + B’ ~ -C- to
+ C_ . The other isomorphism is defined similarly. The last and largest algebra,
like the second, fails to be strongly prime because of its two copies of V1. The
upshot of the above discussion is that the only completely prime Dixmier
algebras containing a copy of VS are the two subalgebras of A with that
property.
We consider now Dixmier algebras having no copy of VS. Our main result

is the following one.

THEOREM 4.2.1: The only completely prime Dixmier algebras of the form
V1 ~n VR have n - 1.

To prove this we will use the following fact from algebraic geometry.

PROPOSITION 4.2.2: Every morphism from complex projective space pn to itself
has a fixed point.

Proof.- Recall that the graded cohomology algebra H*(Pn, Z) of pn is

isomorphic to Z[t]/(tn+1 ), where t has degree 2. We have t = el 0(1), the first
Chern class of the line bundle dual to the canonical line bundle. If ~: Pn ~ pn
is a morphism, then ~*(c1D(1)) = c1D(k) = c1D(1)~k for some k  0
[Hartshorne, 1977, Theorem 7.1.1], whence the trace of ~* on H*(Pn, Z) is
1 + k + ··· + kn &#x3E; 0. By the Lefschetz fixed-point-formula [Spanier,
1966], cp must have a fixed point.

Proof of Theorem 4.2.1 : We are given a completely prime A with attached
J spanned by 1, vR, , ... , vRn . The copies of VR inside A, when localized,
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have dimension 2 over the localization of VI, so complete primality forbids
the product of two such copies to sit inside Vl . Hence the map (al , ... , an) ~
(bl , ... , bn) defined in homogeneous coordinates by (a, VR, + ··· +
anvRn)2 = CI + b1vR1 + ··· + bnvRn in F is a well-defined morphism from
Pn-1 to itself, whence by (4.2.2) it has a fixed point. This point corresponds
to a subalgebra of A of form V1 ~ VR, which is also completely prime. The
localization L of this subalgebra acts on the localization of A, on the left,
decomposing the latter into a direct sum L ~ C1 ~ ··· ~ C, where each
Ci is necessarily thc localization of a suni of copies of VR. But each Ct must
have left dimension 1 over L, which in turn has left dimension 3 over
Fract V1. This is a contradiction.
We therefore concentrate on associative algebra structures on Vl ~ VR ;

we know that at least one exists. The crucial question is whether a surjection
7: RR: VR ~V1 VR ~ V1 ~ VR (now not an isomorphism) can be chosen so as
to make the following diagram commute.

A simple calculation shows that if (4.2.3) commutes for one choice of t RR,
then it commutes for every such choice. In this case we get a family of
Dixmier algebras parametrized by (Cx )2 modulo the equivalence relation
(a, b) ~ (ac, bc2 ). The reason for this is that any such algebra is determined
by its associated J, whose defining relation is v2R = av, + b. The J corre-
sponding to (a, b) is equivalent to the one corresponding to (ac, bc2) under
the intertwining operator 1 ~ 1, vR ~ cvR . At least one of these algebras is
completely prime, but 1 do not know about the others. If (4.2.3) fails to
commute for any iRR, then the following diagram does commute for every
03C4RR:
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Here both maps VR ~ V1 ~ VR ~ V1 ~ VR send (vr, v, wr) to (VI Vr + wr).
In this case, there is only one algebra structure on V1 Cf) VR up to iso-
morphism, namely the one we already have. We will discuss the commutativity
of (4.2.3) for the example A = U(so(8))/J below.

In case there are non-completely-prime algebra structures on lfi (9 VR ,
Theorem 4.2.1 leaves open the question of whether there is any upper bound
on the number of copies of VR in a strongly prime algebra. We mention the
following

PROPOSITION 4.2.5: No strongly prime algebra of the form V1 ~n VR has
n  5.

Proof.- Consider the J attached to such a subalgebra. We may identify its
elements with matrices by identifying v with left multiplication by v on J.
The variety of all matrices with corank at least 2 in a matrix algebra Cm has
codimension 4, so any vector subspace of Cm of dimension at least 5 meets
this variety and thus has an element annihilating vectors in any hyperplane
of Cm. Hence if n  5, some pair of linear combinations of v, in J have
product 0. We saw above that this implies that the algebra is not strongly
prime.
We summarize the above discussion in the following statement.

THEOREM 4.2.6: In the case A(D) ~ S3, the four Dixmier subalgebras of’ the
algebra A satisfying (4.1.1 ) include the only two strongly prime ones that have
a copy of Vs. All are completely prime. There is a strongly but not completely
prime Dixmier algebra of the form V, ~ Vs EB VR , which is graded by Z/2.
Depending on whether a certain diagram commutes, there is either exactly one
prime algebra at the form VI EB VR or a whole P’family of them. A strongly
prime Dixmier algebra of the form V1 ~n VR has n  4 while a completely
prime one has n  1.

We now demonstrate that associativity of the finite-dimensional algebra
J attached to a Dixmier algebra A is not necessary for the associativity of
A. Indeed, take any A satisfying (4.1.1 ) for S3 and consider the possibilities
for J. It has a basis {1, vs, vR, , vR2} with v2S = 1. We observed above that
there are exactly two copies of VR in A stable under left and right multi-
plication by Vs, so we may as well assume that vR, and vR2 are eigenvectors
for left multiplication by vs with different eigenvalues. In case J is semi-
simple it must be isomorphic to C4 or C2. In the first case VRI and vR2
commute, so we see that vSvR1vR2 = VSVR2VRI = vR1vR2 = -vR2vR1 = 0,
contradicting strong primality. In the second case we may assume that
vS = [1 0 0 -1]. Then from Lie theory the span of vR1 and vR2 is [0 * * 0] and



264

contains two elements with product 0, a contradiction. If J is not semi-
simple then by various results of [Jacobson, 1956] its Jacobson radical is a
direct summand. Tedious but routine arguments show that in all cases

VRI VR2 = 0, a contradiction. Hence J cannot be associative for any choice of

isomorphisms.
We conclude this subsection by investigating the commutativity of (4.2.3)

for A = U(so(8))/J. We can embed 9 in so(7) and so(7) in g = so(8) in such
a way that each g-weight vector of nonzero weight so(7)/g is a sum of

orthogonal g-root vectors and the 0-weight space of so(7)/ sits inside a
Cartan subalgebra of g. The U(g)-bimodule generated by the unique
g-stable complement of § inside so(7) is isomorphic to VR and appears in the
subalgebra of A of type V, ~ VR, as noted above, so we can use multi-
plication in this module to define the T RR in (4.2.3). A little reflection shows
that (4.2.3) commutes if and only if (uv), w = u(vw), for all u, v, w E C,
where (xy), , (xy),, (XY)R denote the projections of xy to V1 and VR. This
condition is satisfied if u = v = w = r, r a weight vector in C, for then r,
r2, (r2)1 = 1/3((12) ’ r + (13) · r2 + (23). r2), and (r2)R = r2 - (r2)1, are
built up out of products of commuting root vectors in g, so commute with
r (here (12), (13), (23) denote transpositions in S3). Hence (4.2.3) commutes
when restricted to the V,-bisubmodule of VR (8) VR Q VR generated by
the r 0 r Q r, but 1 do not know whether this bisubmodule is all of

VR ~ VR Q VR. If u, v, w are weight vectors of C of different weights, then
(uv), w and u(vw), are represented by different vectors in U(g). It seems to
be quite tedious to calculate whether or not these vectors are congruent
modulo J.

4.3. The cases of S4 and S5

Here no algebras satisfying (4.1.1) are known, but we do know two
particularly interesting quotients of enveloping algebras attached to nil-
potent orbits with these fundamental groups. The kernels of these quotients
are maximal ideals with infinitesimal characters specified by [Barbasch-
Vogan, 1985, 1.15b], so these quotients are determined by the orbits attached
to them. For S4, the orbit is the one with weighted Dynkin diagram 0200 in
the dual of a Lie algebra of type F4 ; for S5, the orbit is the one with diagram
0002600 in the dual of a Lie algebra of type E8. These orbits play a
distinguished role both in Lusztig’s work and in [Barbasch-Vogan, 1985,
Section 9]; the latter one is the only one in any semisimple Lie algebra dual
with fundamental group S5.

Let A, B satisfy (4.1.1 ) for A(D) ~ S4, S5, respectively. Then it is easy to
show that the only Dixmier subalgebras of A are the algebras of invariants
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under subgroups of S4. We omit the details, but the only tools needed are
dimension counting, Theorem 4.1.2, and (in one case) the decomposition of
A as a bimodule over one of its subalgebras. 1 believe that the same property
is true of B, but have not checked all the details in this case. There are,
however, two interesting Dixmier algebras which are not realizable as
subalgebras of A or B. They arise by considering bimodules over the
subalgebras AV4 and BV4, where V4 is any copy of the Klein 4-group sitting
inside S4 and S5, respectively. One can show tht there are eight bimodules
of these algebras which form a group under the tensor product having five
elements of order two. Then one can construct these subalgebras by piecing
together one-dimensional representations of this group, as indicated above.
(A similar situation exists for any A(D) admitting the dihedral group of
order 8 as a subgroup.) These algebras are interesting for the following
reason. We have seen how finite groups with nontrivial Schur multiplier
give rise to unipotent Dixmier algebras if the groups have noncyclic
abelian quotients. However, it is possible for H2(G, eX) to be larger than
H 2(GI[G, G ], eX), the smallest example being G = A4 and another example
being G = S4 [Jacobson, 1974]. It is not clear what the consequences of this
phenomenon are for unipotent Dixmier algebras in general, but perhaps the
nontrivial element of H2(A4, C ) should correspond to one of the algebras
constructed above in some reformulation of Vogan’s conjecture.

5. A revised class of geometric objects

We saw in Section 3 that orbit covers (even ramified ones) are not sufficiently
numerous to parametrize unipotent Dixmier algebras. Equivalently, it is not
enough to consider only sheaves of commutative algebras on orbits in order
to understand Dixmier algebras. So we consider the simplest kind of sheaves
of noncommutative algebras here, namely completely prime algebras of
finite type over S(g) equipped with a locally finite admissible G-action. Since
the image of S(g) is central in such algebras, they become division algebras
finite-dimensional over their centers when localized.

Let A be one such localized algebra, and consider first the case where A
is commutative. Let I be the kernel of the natural map S(g) ~ A; it

is a prime ideal with irreducible associated variety V(I). Assume that
S(g)/I r- x A is G-stable and that its G-action coincides with the adjoint
action, so that G acts on V(I); also assume that the G-action on V(I) is
transitive. (These properties hold for the applications we have in mind.)
Then A corresponds to a variety D, the G-action on V(I) lifts to a transitive
action on V, and we get a finite covering map O - V(I). Such maps are
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parametrized by conjugacy classes of 03C0G1(V(I)), which coincides with

03C01(V(I)) if G is simply connected.
Now consider the general case. It is well known that by passing to a

suitable matrix ring Am over A one obtains a crossed product algebra
(L, r, f ), where L, a maximal subfield of Am, is Galois over K = Z(A),
r - Gal(L/K), and f ~ H2(0393, L ) [Herstein, 1968]; of course the action of
G on A extends to Am. Assume that L is G-stable, and so dealt with by the
preceding paragraph; it is difhcult to see how to make any progress without
this assumption. For each a e r, let l03C3 ~ Am be an invertibte element such
that conjugation by l03C3 acts on L by 6. Then conjugation by g . 1(1 acts on L
by some i(g) E r for each g E G, so we get a homomorphism G ~ r. Under
our standard assumption that G is connected, this homomorphism must be
trivial. Thus we get a map ~03C3: G ~ Lx defined by g . k(1 = ~03C3(g)k03C3. A
simple computation shows that 0 satisfies Noether’s equations, so is a

1-cocycle. Moreover, if one replaces k03C3 by lka for some 1 E L" , one obtains
a new ~03C3 which is easily seen to be cohomologous to the old. Thus ~03C3 may
be identified with an element of H’ (G, jL" ). Applying a typical g E G to the
equation k03C3k03C4 = f(03C3, 03C4)k03C303C4, one deduces that

where the Galois group action has been indicated by a superscript. It follows
that the map 03C3 ~ ~03C3 belongs to Z’ (r, H’ (G, L )).
Thus to each algebra A there corresponds an element of

Z’ (r, H’ (G, L" )). Conversely, given L with its G-action and an element of
Z’ (r, H’ (G, L )) one can construct an algebra A satisfying the above
hypotheses if and only if two things happen; first, we can choose the f(03C3, i)
satisfying (5.1) and the "factor set condition" of belonging to H2(0393, L" );
and second, the resulting G-action on Am descends to A. If these conditions
are met, then the f(03C3, r) are determined exactly up to some element of
H2(0393, (L )G) = H2(0393, C ) (the equality following since L is completely
prime); note, however, that modifying the f(03C3, 03C4) by an element of

H2(r, eX) may affect the question of whether the G-action on Am descends
to A. We conclude, then, that algebras A satisfying the above hypotheses
correspond 1 - 1 (once L has been fixed) to elements of Z’(F, H’ (G, L" )) x
H2(r, C ) satisfying the two technical conditions above.
Of course, the second factor is just what we were looking for, but the first

depends on G, whereas the number of Dixmier algebras attached to an orbit
C depends only on A(Z). One may hope to avert this difficulty by specializing
to the 0 element of the first factor, as it is easy to see that algebras corre-
sponding 0 x H2(r, eX) satisfy the first technical condition. Unfortunately,
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they usually do not satisfy the second. To see why, let Am be one of them and
define the k, as above. Then there is 1 E Lx such that g · ka = [l/(g · l)]k03C3 for
all g E G. Replacing the k03C3 by lka, we may assume that the k, are all G-fixed.
Then so are the f(03C3, i), so they all belong to C . But now it is easy to see

that Am is just the complex span of the k03C3, whereas we must have Am - Cm
if the second condition is to be met. Hence the complex span of the k, must
be isomorphic to Cm for some m. This is usually not the case; it can happen
only if |0393| is a perfect square, for example. We conclude that we can use the
above class to parametrize unipotent Dixmier algebras only if we do one of
three things: choose some other distinguished element of Z’(F, H’ (G, L" )),
consider algebras Am such G does not act on A, or drop the hypothesis that
G acts on L. None of these alternatives seems palatable to me at the present
time.

6. Filtrations of Dixmier algebras

The main tool for getting a Dixmier algebra A to resemble the geometric
object which should correspond to it is to pass to the graded algebras gr A
attached to various filtrations of A. Vogan’s conjecture in [Vogan, 1986]
made assertions relating such graded algebras to rings of regular functions
on coadjoint G-orbits; we will study such rings of regular functions in a
future paper. For now, we study the properties we can get gr A to have. We
will broaden our horizons by studying arbitrary Dixmier algebras (not
necessarily prime or unipotent). As an introduction to this new point of
view, we mention the following result.

PROPOSITION 6.0: Every prime Dixmier algebra A is primitive.

Proof.- Let AI = U(g)/I  A. Since A has finite length as an AI-bimodule,
its ideals satisfy the descending chain condition, so A has a minimal ideal J.
If K is another minimal ideal, then primality of A forces 0 ~ JK = J = K,
so J is unique. Since A is Noetherian as a left A,-module, J has a maximal
proper left A,-submodule J, . Then JIJ, is clearly an irreducible left
A-module. If its annihilator is nonzero, it must contain the minimal ideal J.
But then J2 £; 1), contradicting J’ = J. Hence A is left (and right) primitive.

This answers in the affirmative a question raised in [Vogan, 1986] whether
certain Dixmier algebras constructed as differential operator rings are primitive.

In what follows we call a filtration of A such that gr A has some property
P a P filtration. All of our filtrations will have finite-dimensional filtered
levels.
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6.1. Completely prime filtrations

From our present point of view the three most important properties of any
ring of regular functions on an orbit are finite generation, commutativity,
and complete primality (the last coming from irreducibility of orbits). The
example of A" 2 given in section 3.3 shows that it is not always possible to find
a gr A with the last two properties, let alone all three. In this section and the
next, however, we will show that we can find gr A with the first and second
or first and third properties. In the last section we indicate some of the very
pleasant consequences of all three properties (plus others). We begin with a
lemma on finite-dimensional representations.

LEMMA 6.1.1: Let V be a finite-dimensional holomorphic G-module, E97=I Vi its
decomposition into irreducibles, v = L7=I vi, vi ~ Vi 2013 {0}. Then v is G-

conjugate to a sum of h-weight vectors of V including highest weight vectors
for each Vi (relative to some Borel 4 c g).

Proof.- Write each vi as a sum of weight vectors in v and let yi be the

-maximal weight of any vector occurring in the sum. By downward
induction on y = 03A3ni=1 yi, it suffices to assume that y is not already the sum
of the highest weights of the Vi and prove that v is conjugate to a sum of
weight vectors including some whose weights add to £5 &#x3E; y. Then some y;,
say 03B31, is not a highest weight, so the corresponding vector w, E V, is not
annihilated by some simple root vector x03B1 E g. Let {v1}, ..., {vnj} be bases
for the y, + a, Y2 , ... , Yn weight spaces of V1, V2 , ... , Vn . There are sets
of polynomials {p1j},...,{pnj} in one complex variable z such that the
components of (exp zx03B1) · v1 E G - vl , ... , (exp zx03B1 · vn ) E G · vn in the

weight spaces y 1 + a, ... , yn are given by L, p1j(Z)v1j, ..., Lj pnj(z)vnj and
such that the pkj are not all 0 for any fixed n. Choosing any zo c- C not a
common zero of the pk, for any k, we see that (exp z0x03B1) · v has the desired
property.
Our main result is

THEOREM 6.1.2: Any completely prime Dixmier algebra A has a finitely-
generated completely prime filtration.

Proof.- Let  extend , as above. Define the height of a finite-dimensional
irreducible G-module to be ko times the sum of the coefficients of the simple
roots in its highest weight, ko a fixed integer chosen so that all heights are
integral. This is always nonnegative and is 0 only for the trivial module.
Define the height of any weight similarly. Put An = sum of the K-types of
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A of height at most n. Then An is finite-dimensional, since A is admissible,
and AmAn ~ Am+n since every constituent of a tensor product has height at
most the sum of the heights of the factors. Hence {An} defines a filtration
of A. To show that gr A is completely prime, it suffices to assume that
x E An/An-1, y E Am/Am-1 are nonzero and prove that xy ~ 0. We may
assume that the representatives x and y of x and  in An and Am are sums
of vectors belonging to K-types of heights n and m, respectively. Let 03BB, 03BC be
the  -highest K-types occurring in the sums for x and y. By (6.1.1 ), there
is a g E G such that, when g - x and g - y are written as sums of weight
vectors, and y are the two  -highest weights occurring. Then g · xy =
(g · x) (g · y) is a sum of weight vectors including one of weight 03BB + f.1, since
the product of the 03BB- and p-weight vectors in A is nonzero and is not

canceled out by any of the  -lower weight vectors appearing in g xy.
Every vector in An+m-, is a sum of weight vectors whose weights have
heights at most those of the highest weight vectors in An+m-1, or at most
n + m - 1. Hence g xy ft An+m-1, so (g · x) (g · y) and xy are both non-
zero in gr A. To show that gr A is finitely generated, we first note that, by
a result in [Hochschild-Mostow, 1973] the ring of n-invariants An is finitely
generated, n the nilradical of the Borel b used to define highest weights.
(Actually, Hochschild and Mostow state their result on finite generation
only for commutative algebras, but their proof easily carries over to the
noncommutative Noetherian case.) Let Xl’ ... , Xr be weight vectors

generating A"; then any weight vector x in An is a linear combination of
products of xl whose weights coincide with that of x, and An is the sum of
its weight vectors. It follows that the canonical images Xl’ ... , xr of
x, , ... , xr i n gr A generate (gr A)n. Enlarge {x1,.. , xr} to a set

{x1, ..., xs} whose complex span is G-stable; then the subalgebra of gr A
generated by x1,..., xs is G-stable and contains (gr A)", hence fills out
gr A.

It would be interesting to know whether the filtration can be chosen
Noetherian as well. An example is given in [McConnell, 1984] which shows
that this property does not follow from the others in the theorem.
The filtration has the further property that the image of each simple factor

gi of g inside A lies in Am - Am-1, m an integer depending only on g. We
may refine the proof of Theorem 6.1.2 to reduce the value of m, but we
cannot in general assume that m = 1. For example the image of g = sl(2)
inside the Weyl algebra A1 contains squares in A, , so cannot lie in the first
level of any completely prime filtration of A, . This observation is important
because Vogan insists in [Vogan, 1986] that filtrations of A should be "good",
thus in particular have the image of g sitting inside the first level. Now
Theorem 6.1.2 suggests that this may be an unreasonable requirement which
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does not do full justice to the algebraic structure of A. Note, however, the
following advantage of at least having all images of x E gi - {0} in

Am - A,,, - 1; the left actions of the images x E gr A commute, so we get a left
action of S(g) = grstandard U(g) on gr A (even though the restriction of {An}
to the image of U(g) in A may not agree with the standard filtration). Hence
we may speak of the support of gr A in Spec S(g), though this may not be
well behaved if gr A is not finitely generated over S(g).

In the example of section 3.3, the filtration may be described explicitly.
Identify représentations of SL(2) x SL(2) with ordered pairs of non-
negative integers (i, j ). Put A = A’2, as in section 3.3. Then the filtration is
given by

A" - sum of the K-types (i, j) with i + j  n.

Hence it is just the usual filtration by the degrees of the operators. As
pointed out in section 3.3, gr A is a polynomial ring on two pairs of
generators. Each pair of generators commutes and generators in different
pairs anticommute. Note that in this case the induced filtration on the image
of U(sl(2) x sl(2)) agrees with the usual one except for a scale factor of 2,
and that the associated graded algebra of this image is isomorphic as a
commutative algebra with G-action to the ring of regular functions on the
principal orbit V c g*.

6.2. Commutative filtrations

The filtration of the last section has many nice properties, but also the
disadvantage that the recipe for it is rather inflexible. We will see below that
it is easier to construct many commutative filtrations for even more général
algebras A. One could hope to study several of these at once to gain insight
into the structure of A.

THEOREM 6.2.1: Evory Dixmier algehra A ha.s a finitely-generated commutative
(hence also Noetherian).filtrat ion.

Proof: Let a1, ..., an be a basis for a finite-dimensional G-stable generating
subspace V of A as a left U(g)-module. Choose K so large that [ai, a; ] =
aiaj 2013 aiai E UK(g) · V for all i, j. Define a sequence of subspaces An of A
inductively, as follows. Identify all U,,(q) + Ker(U(g) ~ A) with their

images in A ; denote these for simplicity by Vn(g). Put
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Then it is clear that each An is G-stable, and the formulas for A1 and An,
n &#x3E; k + 1, show that {An} is a filtration of A making gr A commutative.
We now show that gr A is generated as an algebra by the images of the ai
and of any basis of g in it; we do this by showing that these images generate
all An /An _ 1 by induction on n. Let x e An. Then x = E xi , where each xi can
be written as an expression built up from the ai’s and the basis of g by taking
products and commutators (call such an expression a word in the ai’s and
g), Define the level of any word inductively as follows: the level of a basis
element of g is 1, the level of any ai is k + 1, the level of a product uv is the
sum of the levels of u and v, and the level of a commutator [uv] is the sum
of the levels of u and v minus 1. Then any word of level m belongs to Am .
Modifying x by an element of Am-1, we may assume that each xi E An - An-1
and has level n as a word in the ai’s and g. If the expression for xi includes
any commutator [uv] with u, v products of ai’s and basis elements, then we
may systematically use the conditions [g, ai] ~ V, [ai, aj] E Uk (g) V to write
down an equivalent word for Xi of level at most n without this commutator.
Continuing, we may rewrite the word for xi so it involves only products,
whence the inductive assumption shows that the images of the ai and the
basis generate x E An/An-1.
Note that this filtration automatically satisfies the requirement g c A for

goodness mentioned above. We may easily modify the construction to make
{An} completely good; i.e., to make gr A finitely generated over S(g). This
would be the right way to study A as a U(g)-module, but not necessarily the
right way to study it as an algebra. We study the filtration given by Theorem
(6.2.1) for A2 by first studying the corresponding filtration {En} of A1, the
first Weyl algebra. This is not the usual filtration by degree, even though that
filtration (given by Theorem (6.1.2)) is in fact commutative. Instead, the first
few Bn’s are

and
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the brackets (, ) denoting the complex span. It follows that gr A is given
by C[x2, xy, y2, a, b] modulo the relations a2 = b2 - ab = ba = 0,
xya = x2b, y2a = xyb. The ring of regular functions C[x2, xy, y2 attached
to A l is more visible than it was for the standard filtration but certain
subtleties in the structure of A have been blotted out by the presence of
nilpotent elements. Similarly, the first few levels of the filtration {Cn} of A2
given by Theorem 6.2.1 are

and

The associated graded algebra gr A2 is given by C[x21, x1y1, Y21 , x22, X2Y2,
ri, al, ..., as] modulo the relations aiaj = 0, x1y1a1 = xîa2’ y21a1 =
x1y1 a2 , x2y2 a3 - x22a4, etc. (the reader may work out the rest of the relations
for himself). Again, the attached ring of regular functions is more obvious
than it is in the other filtration. A soupçon of the anticommutativity in A’2
is still present, but somewhat blurred by the welter of nilpotent elements.
We conclude this section by giving another criterion for a unipotent

Dixmier algebra parametrized by an abelian group to be completely prime.
For simplicity of notation we state it only for algebras parametrized by 7L/2,
but it will be clear how to generalize it to the arbitrary abelian group case.

THEOREM 6.2.3: Let A = A1 Ef) Ag be a Z/2-graded unipotent strongly prime
Dixmier algebra. Let E be the automorphism of A which is 1 on A1, 2013 1 on Ag .
Suppose that for each nonzero al , a2 E Al, ag E Ag there is a commutative
finitely-generated E-stable filtration of A such that
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(1) the canonical images al, a2, ag of al, a2 , ag in gr A are no t nilpotent, and
(2) if N is the nilradical of gr A and B the localization of (gr A)IN, then

dim BG = 1 (it is automatic that dim((gr A)/N)G = 1).
Then A is completely prime if and only if Al is.

Proof: As shown in section 3, it suffices to assume that Al is completely
prime and prove that (A*1)-1 Ag has no square roots of unity. We also
showed that if this fails, there are many nonzero choices of al , a2 E A1, ag,
ah ~ Ag, such that a1a2 = agah, a1ah = aga2. We invoke the technical

hypothesis above for just one choice of al , a2, ag satisfying these equations.
By Goldie’s Theorem, B is a finite direct sum of fields. I claim that this sum
has only one term. Indeed, it is clear that G maps the finite-dimensional
C-vector space I spanned by the idempotents in B to itself. If G does not act
trivially on this space, then some vector v in it is an 1)-weight vector of
nonzero weight. Then v must be a root of some polynomial equation with
coefficients in C, but as every term of this equation has a différent 1)-weight,,
some power of v must be 0. This forces v = 0, a contradiction. Hence G acts
trivially on I and dim I = dim BG = 1, as claimed. It follows that every
nonnilpotent element in gr A is a non-zero-divisor, whence the images al, a2,
ag, an of al , a2 , ag , and an in gr A still satisfy al , a2 = agah, a1ah = aga2. We
then get [(ag1a1)2 2013 l]a2 = (ag1a1)2 - 1 = 0 and ag1a1 is a square root

of 1 in the localization L of gr A. Hence ag1a1 - ± 1 + m for some
m e M = LN, the ideal generated by N in L (since L/M ~ B, a field). Then
( ± 1 + m)2 = 1, m2 = ± 2m, but the two sides of this last equation have
différent indices of nilpotence unless m = 0. Hence ag = ± al. This means
that, for some level n of the filtration, al and ag both belong to An - An-l 1
while al + ag or al - ag belongs to An-1. The e-stability of the filtration
then forces al , ag e An-1, a contradiction.
The reader can easily verify that the filtrations produced by (6.2.1) can be

chosen to be e-stable. If A can be filtered so that the induced filtration on

A1 = U(g)/Jagrees with the standard one, and if gr Jis radical in S(g), then
nonnilpotence of al and a2 in gr A will be automatic. The alert reader will
have noticed that it is impossible to filter A’2 so as to make any ag non-
nilpotent, but Theorem (3.2.2) saves the day in this case.

6.3. Results of Moeglin

As pointed out in section 3.3, A2 has no commutative completely prime
filtration. We also noted that, although A2 has a natural module, it does not
realize the ring of g-finite endomorphisms on this module. These two
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phenomena are related. Colette Moeglin has also studied Dixmier algebras
A in two recent preprints [Moeglin, 1986a, b]. She makes very strong
assumptions about the existence of commutative completely prime filtrations
of A, and then concludes that s uch A have very nice concrete realizations as
rings of g-finite endomorphisms of degenerate Whittaker modules. More
precisely, let I be a primitive ideal in U(g) with associated variety t5 c g*;
then É5 is well known tobe the closure of a single nilpotent orbit C. Choose
e E .0; by the Jacobson-Morozov theorem, e embeds in a standard triple
{h, e,f} satisfying the bracket relations of sl(2). It is knûwn that there is a
unipotent subgroup N of G such that h normalizes n, K( f, · ) restricted to
n is a character of the latter (K the Killing form), and dim N · f = 1/2 dim .0
(Moeglin gives a construction of one such N). Define a decreasing fil-

tration l OE (g)1 of U(g) by Un (g) - EB mE 7L Um-1(g)[m], where {UK(g)} is the
standard filtration and the superscript [m] denotes the m-eigenspace of ad h
acting on U(g). We say that a left g-module M is a (possibly degenerate)
Whittaker module (relative to f, N, I ) if (1) M is an irreducible quotient of
U(g)/I + U(g){x - K( f, x)lx E nl with annihilator I, and (2) {U’n(g)}
induces a fittration {Mn} of M making gr M isomorphic as an algebra and
an N-module to the ring R(N · f ) of regular functions on the universal
cover of N · f. Here we make gr M into an algebra by declaring that
(gr m) (gr m’) = gr um’, where u lifts m E Mn to Un (g) and gr x denotes the
canonical image of x in gr M.
We say that I admits a Whittaker model if there is a Whittaker module

M relative to f, N, I for some (equivalently, any) choice of f, N. Then
Moeglin’s two main results state the following. I admits a Whittaker model
if and only if U(G)II has a G-stable commutative completely prime filtration
having bounded difference from the usual one, such that the following
diagram commutes

Here oc is an injective homomorphism, i the comorphism of the canoni-
cal map G’/ G · f  9 Á g*, and fi is induced from g + I

gr U(g)/I. Furthermore, let EI denote the set of Dixmier algebras A with
Ker(U(g) ~ A) = I having a filtration making the following analogue to
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Then every A E E, is a subalgebra of the ring of G-finite maps from the
Whittaker module M to itself. For any such A, the group of automorphisms
of A fixing U(g)/I pointwise is finite, and there is a bijection between
conjugacy classes of this group and rational subalgebras of A (subalgebras
recoverable from their quotient fields as the set of G-finite vectors). Moeglin
further shows that in case G = Sp(n, C) many completely prime primitive
ideals admit a Whittaker model.

Other criteria for Dixmier algebras to have a concrete realization have
been given by Barbasch and Vogan, this time as rings of G-finite maps on
an irreducible highest weight module. We saw in section 4 that if (4.1.1) is
satisfied for some finite group r, say by A, then A has enough subalgebras
to correspond to subgroups of r up to conjugacy. Moreover, there is reason
to believe that these Dixmier algebras are the nicest ones attached to r, in
some sense. If so, it seems likely from Moeglin’s work that many such A
should admit a concrete realization via Whittaker modules.
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