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1. Introduction

It is well known that the method of Thue-Siegel-Roth does not provide
bounds for the sizes of good rational approximations of algebraic numbers.
But it does give explicit bounds for the number of such approximations.
Thus if a is algebraic of degree d ~ 2 and if ô &#x3E; 0, the number of rational

approximations x/y with

is under some bound which depends on d, à and on the height Ho = Ho(a),
which is the maximum modulus of the coefficients of the minimal defining
polynomial of a over Z. Explicit estimates were given by Davenport and
Roth [5]. More recently, Bombieri and Van der Poorten [2] used a theorem
of Esnault and Viehweg [6] to obtain significantly better such estimates.
Note that (1.1) may be written as |L1(x)L2(x)|  y-03B4 where x = (x, y),

L, (x) = y, L2(x) = ay - x. This is closely related to IL, (x)L2(x)1  Ixl-b
where IXI = (x2 + y2)1/2. More generally, let L1, ... , Ln be linearly
independent linear forms in n variables, with real or complex algebraic
coefficients. The Subspace Theorem ([11]; see also [N]) says that the integer
solutions x = (xj , ... , xn) ~ 0 of

where |x| = (x21 + ... + x2n)1/2, lie in a finite number of proper rational

subspaces of Rn. In particular, they lie in a finite number of subspaces of
dimension n - 1; in what follows, the word subspace will always designate
a rational subspace of dimension n - 1.

* Supported in part by NSF grant DMS-8603093.
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Our goal here will be to derive a bound for the required number of
subspaces. Given linear forms LI, ..., Ln in n variables, let det(LI, ..., Ln)
denote the modulus of the determinant of their coefficient matrix. We will

suppose throughout that n &#x3E; 1.

THEOREM: Let LI, ... , Ln be linearly independent linear forms with coe, ffzcients
in a real or complex algebraic number field K of degree d. Consider the

inequality

where 0  ô  1. There are proper subspaces SI’ ..., St of R’ with

(and with [ ] denoting integer parts), such that every integer solution x of (1.2)
either lies in one of these subspaces, or has norm

where the H(Li) are suitably defined heights.

Our definition of heights is the same as in Bombieri and Vaaler [1], and had
already been discussed in [10]. Given a number field K, let M(K) be an
indexing set for the absolute values of K; for w E M(K), the absolute value
|03BB|w defined for 03BB e K will be an extension of the standard absolute value of
Q or of a p-adic absolute value of Q. Let nw be the local degree, i.e. the degree
of Kw over Qw, where Kw is the w-adic completion of K and Ow the com-
pletion of Q (so that Qw is R or Qp). Then the product formula

holds for 03BB =1= 0 in K. It will be convenient to introduce a set M’(K) of
symbols v, such that to each w E M(K) there correspond nw symbols v in
M’(K), and for such v put |03BB|v = |03BB|w. The product formula may be rewritten
as
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We will suppose that K is embedded in C, and then the standard absolute

value JÂJ equals one of the archimedean absolute values |03BB|v; say the one with
v = v*.

Given a - (al , ... , an) ~ Kn, put

for v archimedean,

for v non-archimedean.

Here and below, the product is over v E M’(K). For 03BB =1= 0, 03BB E K, we have
HK(03BB03B1) = HK(03B1) by the product formula. It also follows that HK(03B1) ~ 1. In

contrast to the "field height" HK, the "absolute height", given by

where d is the degree of K, is independent of K. That is, if the components
of ce lie in a field K, and also in a field K’, then H(03B1) is the same whether
computed in terms of K or of K’. Now when L = al Xl + ... + 03B1nXn is a
nonzero linear form with algebraic coefficient, we put

In what follows, H will denote max(H(L,), ... , H(Ln)), or more

generally will be any quantity with

The inequality (1.4) may then be replaced by

There are only finitely many integer points with (1.8), and one can give
various estimates for the number of proper subspaces which contain all the
solutions of (1.2), (1.8). For this see Section 4. But such estimates involve not
only n, d, 03B4, but also H. It may be seen~ that the number of solutions of (1.1),
or the number of subspaces containing all the solutions of (1.2), cannot be esti-
mated independently of heights. But see the remark at the end of Section 4.

t See e.g. J. Mueller and W. M. Schmidt, On the number of good rational approximations to
algebraic numbers. Proc. A.M.S. (to appear).
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As was pointed out above, recent results of Esnault and Viehweg may be
used to estimate the number of solutions of (l.l). A conjectured generalization
of their work, which would be relevant for simultaneous approximations,
has so far not been established. Therefore we have to appeal to the more
classical "Roth’s Lemma". A generalization of the work of Esnault and
Viehweg would lead to a significant improvement of our estimates. Another
reason why the general estimates are so much worse than for approximation
to a single algebraic number is that for simultaneous approximations we
have to use certain "transference principles" from the Geometry of Numbers.
The number 26 in the definition of t in (1.3) is somewhat arbitrary and could
easily be reduced.

Often one would like to estimate the number of solutions of ( 1.2), and not
just the number of subspaces containing them. But there is a difficulty here.
We cannot estimate the number of subspaces independently of H, and in fact
we would be quite happy to get an estimate for the number of solutions of
(1.2) involving H. But the dependency on H is deadly in a possible induction
argument: we would have to estimate the number of solutions of (1.2) with
x in a subspace S, say a subspace of dimension n - 1. The integer points
in S are of the type x = Ty, where T is a linear map Rn - 1 ~ S, and where
y runs through Zn -1. Now (1.2) leads to an estimate for |L’1(y) ··· L’n’(y)|
with L;(y) = Li(T(y)). Moreover, if, say, |L’1(y)| ~ ··· ~ |L’n(y)|, it is

usually possible to obtain an upper bound for

which is analogous to (1.2). An application of the case n - 1 of our Theorem

gives a bounded number of proper subspaces of Rn - 1, as well as possible
solutions y whose norm 1 yi is bounded by the analogue of (1.4). But since
we don’t known anything about S, we don’t have any estimates on the heights
of the forms L’1, so that ultimately we have no estimate for |y| in terms of
the given data, and therefore no estimate for the number of solutions y.
The situation is différent again when it comes to diophantine equations

which may be treated by diophantine approximation methods. It has been
known since Evertse’s work [7] that the number of solutions of a Thue
equation F(x, y) - h may be bounded in terms of h and the degree of F, but
independently of the coefficients of F, i.e., independently of the "height" of
F. In forthcoming work [12] we will use the present main theorem to reach
a similar conclusion for norm form equations. In fact, this application is the
main motivation for the present paper.

Basically, our task here will be to make the arguments as presented in [N]
more explicit. Wherever possible we will refer back to this earlier work. We
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will try to strike a balance between being too brief and being too repetitive
of [N]. One difference is that now we will make a more systematic use of
heights. We will collect preparatory material in Sections 2-8, and will begin
with the main arguments in Section 9.
We will use symbols such as X, Xl , X2, ... for variables, and x, xl ,

x2 , ... for rational integers. Linear forms are of the type

with 03B1 = (oc,, ..., 03B1n), X = (Xl , ..., A,). For m, fi in Rn we put
03B103B2 = 03B1103B21 + ... + 03B1n03B2n. Also, |03B1| = (a, 03B1)1/2. Hence in the special case
when ce has components in a real number field K, we have |03B1| = |03B1|v* in the
notation introduced above.

We will quote my 1980 Lecture Notes as [N], and [N, X] will denote
chapter X of [N], etc.

1 wish to thank H.P. Schlickewei for pointing out a number of inaccuracies
and obscurities in my original manuscript.

2. Réduction to the case of real coefficients

PROPOSITION A: Let Ll , ... , Ln be linear forms with real algebraic coefficients
and nonvanishing determinant. The solutions of (1.2) with

(where, as always, H is a quantity with (1.7)), lie in at most to subspaces, where

We are going to deduce the Theorem. So let LI, ... , Ln be linearly
independent linear forms with coefficients in a real or complex algebraic
number field K of degree d. Let K be the field obtained from K by complex
conjugation, and K’ the compositum of K, K and Q(i). It has degree
d’ - ddl with dl  2d. Since the Theorem is invariant under replacing the
linear forms by nonzero multiples, we may suppose that each Li has
some coefficient equal to 1. Write Ln - L" + iL"n where L’n, Ln have real
coefficients. Either det(L1, Ln-1, L’n) or det(L1, ... , Ln - 1, L"n) is

~ 1 2 det(L 1 ... , Ln - 1, Ln ). Say the former is. Then since |L’n(x)| ~ |Ln(x)|,
(1.2) yields |L1(x) ... · Ln -1 (x)L’n(x)|  2 det(L1, ... , Ln - 1, L’n)|x|-03B4. In a
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similar manner we may replace each of L1, ... , Ln’ to obtain real forms
L1, ... , Ln with |L’1(x) ... L’n(x)|  2n det(L1, ... , L’n)|x|-03B4. Now in

the Theorem it will suffice to consider points with |x| ~ (n !)8/b, so that
|x|03B4/2 &#x3E; 2n, and

We will apply Proposition A to L’1, ... , Ln, d’, and with ô/2 in place of 03B4.
To do so we have to estimate tüe heights H(L’l).

Say Ln is the real part of Ln, so that when Ln(X) = 03B1X, we have
L’n(X) = 1 2(03B1 + 03B1)X. Thus

Since ce (and à) has a component equal to 1, we have |03B1|v ~ 1, |03B1|v ~ 1 for

each v. Thus

when v is nonarchimedean, and

when v is archimedean. Therefore

and H(L’n) ~ 2H2(Ln) ~ 2H2 . The situation is similar when Ln is the imagin-
ary part of Ln . More generally, the quantity H’ = max(H(L’1), ... , H(L’n))
has H’ ~ 2H2.
The points x violating (1.8) have

|x| ~ max«n!)8/b, H) ~ max((n!)4/(03B4/2), 1 2H’1/2).

Thus by Proposition A, the integer points x with (1.2) but not (1.8) lie in not
more than

subspaces.
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3. The gap principle

Consider rational approximations x/y to a real number a with

where P ~ 4. If x/y and x’/y’ are two distinct such approximations in their
lowest terms with 0  y ~ y’, then

so that we have the "gap principle" that y’ &#x3E; (P/2) y. Therefore if

x1/y1, ... , xv/yv are distinct approximations with (3.1) and with
0  y1 ~ ··· ~ yv ~ B, then yj ~ (P/2)i-l ( j - 1, ... , v), so that

(P/2)v - 1 ~ B and

The following lemma is (except for the values of some constants) a
generalization of these facts.

LEMMA 3.1: Let L1, ... , Ln be linearly independent linear forms in n variables
and with real coefficients. Suppose that

and put Q = (log B)/(log P). Then the integer points x in the ball

and satisfying

lie in the union of not more than

proper subspaces.
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Proof: Given linear forms L = 03B11X1 + ··· 03B1nXn = aX and M = 03B2X,
put (L, M) = oefl. Also put ILI = (L, L)I/2 (so that in the case when L has
coefficients in a number field K, then ILl = |L|v* in the notation of the
introduction). We will reduce the problem to a situation where L1, ... , L,,
are pairwise orthogonal, i.e., (Li, Lj) = 0 for i ~ j.

Write Li = 03B1iX (i = 1, ... , n) and form the exterior products

(For a definition of such products see [N, IV, Section 6].) Then

where bii is the Kronecker symbol. Now (3.4) is invariant under replac-
ing Li by ÀiLi (i = 1,..., n) with nonzero 03BB1, ... , Àn. If we take

03BBi = |i|(/(|1| ··· |n|)1/(n -1), then 03B11 is replaced by 03BBi03B1i, and &#x26;i is replaced
by 03BB1 ··· 03BBi - 103BBi + 1 ··· Àn&#x26;i = |i|-1i. We may thus suppose that

|1| = ··· = |n| = 1.

By symmetry it will suffice to consider solutions of (3.3), (3.4) with

and to prove that they are contained in not more than n -’ · n3n Qn - 1
subspaces. We may write ân as

Taking the inner product with j we obtain

Since 1nj| ~ |n||j| I = 1, with equality for j = n, we have |cj| ~ Ic,,1
( j = 1, ... , n). Thus 03B1’n = c-1nn has

with |c’i| ~ 1, and an is orthogonal to 03B11, ..., a.n -1. Set L’n = 03B1’nX =
c’1L1 + ... + c’n -1Ln - 1 + L,. Then det(L1, ... , Ln - 1, L’n) = det(L1, ... ,
Ln - 1, Ln), moreover L’n is orthogonal to Li, ... , Ln - 1, and |L’n(x)| ~
nLn(x) by (3.5). Thus we see: it will sufice to show that when Ln is
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orthogonal to LI, ... Ln - 1, then the points x in (3.3) with

lie in at most n-1 · n3nQn-1 subspaces.
Starting with these new forms L1, ... , Ln - 1, Ln , where Ln is orthogonal

to L1, ... , Ln - 1, we repeat the process. Again we may suppose that
|1| =... = lân 1 = 1. It will sufHce to show that the solutions of (3.3),
(3.6) with

lie in at most n-1(n - 1)-1n3nQn - 1 subspaces. Now n - 1 is orthogonal to Gen,
hence is spanned by 03B11, ... , 03B1n-1:

Here |cj| ~ |cn - 1| ( j = 1, ..., n - 1). We set L’n - 1 = 03B1’n -1X with 03B1’n - 1 =
c-1n-1n-1. Then L’n - 1 is orthogonal to Ll , ... , Ln -2 and |L’n - 1(x)| ~
(n - 1)|Ln - 1 (x)l. We see: It will suffice to show that when Ln is orthogonal to
LI, ..., Ln - 1, and Ln - 1 orthogonal to LI, ... Ln -2’ then the solutions of
(3.3) and

lie in at most n-1 (n - 1)-ln3nQn-l subspaces.
Continuing in this way we finally see that it will be enough to prove that

for pairwise orthogonal forms LI, ... , L,, the points in the ball (3.3) with

lie in not more than (2n2)n - 1Qn - 1 ~ (n!)-1n3nQn - 1 subspaces.
Replacing L1, ... , Ln by multiples, we may finally suppose that

(Li, Li) = bu and det(L,, ..., Ln) - 1. Then (3.3) yields

With C = (P/(n!)2)1/(n-1), (3.7) may be rewritten as
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Write

Our solutions satisfy either

for some i in 1 ~ i ~ n - 1, or

for certain integers p, , ... , pn - 1 in 0 ~ pl ~ R (i = 1, ... , n - 1).
Any n points x1,... , xn satisfying (3.3) and (3.10) for a given i, have by

det(L1, ... , Ln) = 1 and by (3.8),

so that in fact det(xl , ... , Xn) = 0. Therefore at most n - 1 such points
can be linearly independent, so that these points lie in a fixed proper
subspace. On the other hand when Xl’ ... , xn are satisfying (3.9), as well
as (3.11) for given values of pl , ... , Pn-l, then

so that

Again such solutions lie in a proper subspace. The total number of our
subspaces is
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Now from (3.2) we have C ~ p1/2(n - 1) and n !Bn  Bn + 1, so that

The number of subspaces is

We now briefly return to rational approximations to a real number. This
time we consider approximations with

If x/y and x’/y’ are two distinct such approximations in their lowest terms
and with 41/03B4  y ~ y’, then

so that y’ &#x3E; 1 2y1+03B4 ~ y1+(03B4/2), and this is a second "gap principle". Therefore
if x1/y1, ..., xv/yv are distinct approximations with (3.12) and with
41/03B4 ~ y1 ~ ··· ~ yv ~ B, then

When 0  ô  1, then (1 + ô/2)’-’  log B and v  1 + (log log B)/
log (1 + 03B4/2))  1 + (4/ô) log log B. When B &#x3E; 4, this is  (50/b) log log B.
A generalization is as follows.

LEMMA 3.2: Suppose that 0  ô  1 and (n!)4/03B4 ~ A  B. Then the points
x in A  Ixl ~ B with

lie in

subspaces.
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Proof.- Initially we consider the case where B = Ae. Solutions of (3.13) have

with P = A03B4 ~ n!4. By Lemma 3 .1, the points x with (3.14) and |x| ~ B
lie in

subspaces.
In general, the interval A  03BE ~ B is contained in the union of the

intervals Aev  03BE ~ Aev+1 with 0 ~ v ~ log (log B/log A), so that the

number of these intervals is ~ 1 + log (log B/log A). The Lemma follows.

4. Applications of the gap principle

(i) A reduction

PROPOSITION B: Let L1, ... , Ln be independent forms with coefficients in a
real number field K of degree d. The points x with

and with

where 0  03B4  1, H satisfies (1.7), and where

lie in the union of tl subspaces.

We will deduce Proposition A. First we observe that (1.2) implies (4.1 ) (but
the difference is not too great by (5.3) below). We still have to consider
solutions of (1.2) with A  Ixl ~ B, where A = max((n!)4/03B4, 1 2H1/2) and
B = (2H )el, We observe that
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and log B/log A  4et’  e(3/2)t1, and

Thus when B &#x3E; A, Lemma 3.2 tells us that the solutions of (1.2) in question
lie in

subspaces. By Proposition B, the integer points with (1.2), (2.1) lie in not
more than

subspaces.
It will be convenient to use forms whose coefficients do not necessarily lie

in our number field K, but which are proportional to forms with coefficients
in K. Such a form will be said to be defined over K. Similarly, if fi ~ 0 is
proportional to a vector in Kn, we will say that it is defined over K. If 0 is
proportional to a in K’’-, we put H(03B2) = H(03B1); since H(03BB03B1) = H(a) for
03BB ~ 0 in K, this causes no ambiguity. Similarly we define H(M ) when M is
a form defined over K. If L has coefficients in K, then M(X) = |L|-1 L(X)
is defined over K and is normalized in the sense that lM 1 = 1. Clearly it will
sufHce to prove Proposition B for normalized forms Ml , ... , Mn defined
over K. The inequality (4.1) then becomes

We will write M ;(X) = 03B2iX with |03B2i| = 1 and H(03B2i) = H(Mi) (i = 1,..., n).
The relation (1.7) may be written as

and (4.4) becomes

(ii) Very small solutions

Suppose that H &#x3E; (n!)8/b and consider solutions of (1.2) with
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If L1, ... Ln are complex, we can use the procedure of Section 2 to obtain
real forms L 1, ... , Ln such that (1.2), (4.7) yield

By Lemma 3.2 with A = (n!)8/b, B = H, and à/2 in place of ô, so that

the integer points in question lie in the union of

subspaces.
There remain possible solutions with Ixl 5 (n !)8/b. There are less than

(2n ! + 1 )Inll such points.
Incidentally, when (1.2) is replaced by

with q &#x3E; 0, the integer solutions will lie in t * subspaces, where t * may be
bounded in terms of n, d, ô, q, but independently of H.

5. On heights

We shall have occasion to use general exterior products. Recall that when
03B11, ... , 03B1p lie in Rn with 1 ~ p ~ n, the exterior product 21 A... A 03B1p
lies in R’ with

(See [N, IV, §6].) In particular, 03B11 039B ··· A 03B1n-1 lies in Rn and is orthogonal
to each of 03B11, ... , an - 1 -

LEMMA 5.1: Let a, , ..., ap be linearly independent in Kn where K is an

algebraic number field. Then
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has

Proof: For every v E M’(K) we have

This follows from the définition of the exterior product when v is non-
archimedean, and is well known when v is archimedean. The assertion now
follows from the definition of HK as a product over v E M’(K).

LEMMA 5.2: Again let y = 03B11 039B ··· A 03B1p, where 03B11, ..., 03B1p are linearly
independent in Kn . Suppose K is of degree d. Then

In the case when p = n, we note that |03B11| 039B ... A 03B1n| = |det(03B11, ..., 03B1n)|,
so that

Pro of. We have |03B3|v ~ |03B11|v ··· |03B1p|v, for each v. Therefore

The lemma follows.

LEMMA 5.3: Suppose x has components in a field K of degree d, and g is an
integer point with 03B1g ~ 0. Then

Proof. We have

for v nonarchimedean,

for v archimedean.
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The absolute value |03B1| = |03B1|v* is one of the archimedean absolute values.
Further there are precisely d elements v E M’(K) with 1... Iv archimedean.
By the product formula,

The lemma follows.

LEMMA 5.4: Let 03B11,... , 03B1n-1 be linearly independent in Kn, and put
y = a 1 039B ··· 039B 03B1n-1. Let g be an integer point with 03B3g ~ 0. Then

Remark: Lemmas 5.1, 5.3 together yield the somewhat weaker estimate
Iygl ? |03B3|(H(03B11) ··· H(03B1n - 1))-d|g|1-d.

Proof: 03B3g = det(03B11, ... , 03B1n-1, g), so that for each v,

Here Iglv = Igl when v is archimedean, and |g|v ~ 1 otherwise. By the
product formula,

The lemma follows.

LEMMA 5.5 : Let A = (03B1ij) (1  i, j ~ n) be a nonsingular matrix with entries
in K, and let C = (Yii) be its inverse. Let 03B1i = (ocil, ..., 03B1in) (i = 1, ... , n)
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be the rows of A, and yj = (YIj, ... , Ynj) ( j = 1, ..., n) the "columns" of
C. Then

Proof: Up to a ± sign, ri equals

Thus by Lemma 5.2,

LEMMA 5.6: Let LI, ... , Ln be linearly independent linear forms with

coefficients in K. The variables X may uniquely be expressed as linear

combinations:

Then

Proof: Let Li = 03B1i1X1 + ... + 03B1inXn = 03B1iX. The matrices A = «(Xi)) and
C = (03B3ij) are inverses of each other. By the preceding lemma,

LEMMA 5.7: Let Lo, LI, ..., Lk be nonzero forms with coefficients in K, and
heights H(Li) ~ H (i = 0, ... , k). Suppose Lo is a linear combination of
LI, ... , Lk. Then the normalized forms Mi = ILil-l Li (i = 0, ... , k)
satisfy a relation

with Ici ~ H(k + 1)d (i = 1, ... , k).

This lemma, which fits well in the present context, will only be needed in the
subsequent paper [12].

Pro of. By throwing out some of the forms LI, ... , Lk, we may suppose
that Lo is not a linear combination of a proper subset of L1, ... , Lk .
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Then any k among Lo, L1, ... , Lk are linearly independent. Write

Li = 03B1i1X1 + ··· + 03B1inXn = 03B1iX and L; = 03B1i1X1 + ... + 03B1lkXk = 03B1’iX
(i = 0, ... , k). We may suppose that L’1, ... , Lk are linearly independent.
There is a relation

where up to signs, 03BBi = det(L’0, ... , L’i-1, L’i + 1, ... , L’k). Here 03BB0 ~ 0 by
the independence of L’1, ... , L’k, and hence also 03BB1 T 0, ... , 03BBk ~ 0,
since any k of the forms in (5.9) are linearly independent. We have
H(L’i) ~ H(Li) ~ H and therefore

by (5.3). Now

so that

From (5.9) we get (5.8) with

Now (5. 10) yields the desired bound |ci| ç H(k + 1)d.

LEMMA 5.8. Let LI, ... , Lm be nonzero linear forms in n variables and with
coefficients in a number field K of degree d. Then if md  n, the system of
equations

has a nontrivial solution x E Zn with

where
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Proof. This follows from Theorem 12 and Corollary 13 in [1]. In that
theorem it suffices to consider the special case when k = 0 and Mi = 1, and
to observe that the smallest solution x has |x|n-md ~ |x1|···|xn - md | , when
x1,..., Xn-md are any linearly independent solutions.

LEMMA 5.9: Let 03B31, ..., Vk be vectors in Kn. Suppose we know that there is
a h :0 0 in on with

Then there is a h ~ 0 in Zn with (5.12) and with

where H1 = max(H(03B31), ... , H(03B3k)).

Proof: There is a solution h E QnBo of (5.12) with the least possible number
of nonzero components, say 1 nonzero components. Say h = (hl , ... , hr,
0, ... , 0) with h1h2 ... hl ~ 0. Thus h lies in a coordinate-plane of
dimension 1. We may replace 7i, ... , yk by their projections yl , ... , yk on
this coordinate plane, and restrict our attention to this hyperplane, on
noting that H(03B3’i) ~ H(yi) (i = 1, ..., k).
We therefore may suppose without loss of generality that every solution

h E QnB0 of (5.12) has all its coordinates nonzero. Thus h is uniquely
determined up to a factor. Let 03C31, ... , (Jd be the embeddings of K into C,
and write (XU) = 03C3J(03B1) for a E K. Define K(j) = 03C3j(K), and 03B1(j) = 03C3j(03B1) (in
an obvious notation) for ce E Kn . Now yih = 0 implies that 03B3(j)ih = 0 for
j - 1, ... , d, and since we know a solution to (5.12) to exist, the (kd x n)-
matrix with rows 03B3(j)i (1 ~ i ~ k, 1 ~ j ~ d ) has rank  n - 1. We claim
that its rank is n - 1: for denote its rank by m - 1, so that 1 ~ m :9 n. We
may suppose that the first m - 1 columns of the matrix with rows yF) have
rank m - 1; then also the first m columns constitute a matrix of rank
m - 1. This (kd x m)-matrix has rows y’(j)i (1 ~ i ~ k, 1 ~ j ~ d),
where y;U) E Cm is the projection of 03B3(j)i on the first m coordinates. There is
by linear algebra a vector h’ ~ 0 in Cm, unique up to a factor, with
03B3’(j)ih’ = 0 (1 ~ i  k, 1 ~ j ~ d). We may choose h’ to have its com-
ponents in the compositum E of the conjugate fields K(1), ... , KCd). Now E
is normal, and for 0 in the Galois group of E/Q, we have
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But ~(03B3(j)i) = ~03C3,(03B3l), and ~03C31,..., ~03C3d is just a permutation of

03C31, ..., 03C3d. Thus

Thus up to a factor, ~(h’) is the same as h’. If, as we may, we choose h’ with
some nonzero rational coordinate, then in fact ~(h’) = h’ for every 0 in the
Galois group, so that h’ E Qm. This yields a rational solution of (5.12) with
at most m nonzero coordinates, and by the supposition made at the

beginning, this shows that m = n.
Thus the matrix with rows 03B3(j)i ~ (1 ~ i ~ k, 1 ~ j ~ d ) has rank n - 1.

Let hl, ... , 03B4n - 1 be any n - 1 linearly independent rows among these kd
rows. Then à = 03B41 039B ··· 039B 03B4n - 1 has 03B3(j)i03B4 = 0 (1 ~ i ~ k, 1 ~ j ~ d),
and ô is proportional to h. Thus by Lemma 5.1,

We may choose h to have coprime components in Z. Then

6. Geometry of numbers

We will collect some results from this area. Throughout, 03B21, ..., 03B2n will be
linearly independent vectors in Rn with a determinant of modulus B -’ . The
inequalities

define a parallelepiped n of volume 2n B. Let Âl ..., 03BBn be the successive
minima of n, so that Â, is the least number 03BB such that there are j linearly
independent integer points in 03BB03A0, i.e., in the set with |03B2ix| ~ 03BB(i = 1, ... , n).
We have 0  03BB1 ~ ··· ~ 03BBn  oc and, according to Minkowski,

(See e.g., Cassels [3], Th. V on p. 218). Fix linearly independent integer
points gl, ... , gn with

Then
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(See Cassels [3], Corollary on p. 219, or [N, IV, (1.9)] where we had wasted
a factor n ! by using a weak form of Minkowski’s inequality.)

LEMMA 6.1: Let o, , ... , on be reals with

Then there is a permutation of 03B21, ... , fin such that after this permutation, the
new parallelepiped 11" defined by

has successive minima 03BB’1, ..., 03BB’n with

Moreover, every integer point x not in the subspace Si-, l spanned by
g1, ... , gi-1 (with g1, ... , gn the points in (6.3)) has

For a proof of this lemma, which is essentially due to Davenport [4], see
[N, IV, Theorem 3A].
Given linearly independent 03B21, ..., Pn, let 03B2*1, ..., 03B2*n be the reciprocal

basis, i.e., let 03B2*l (1 ~ i ~ n) be the vector with 0* 0, = 03B4ij, the Kronecker
symbol (1 ~ i,j ~ n). The parallelepiped II* given by

is the reciprocal parallelepiped to the parallelepiped given by (6.1). Denote
the successive minima of Il* by 03BB*1, ... , À: .
Now if again g1, ... , gn are the integer points in (6.3), let g* , ... , gn be

the reciprocal basis, and put

so that g,, ... , g, lie in Zn. We have gigj = ±03B4ij det(gl , ... , gn) and
therefore
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LEMMA 6.2: We have

and

This is due to lviahier [8].

Proof.- For (6.11) we just have to compute the constants in the proof
of [N, IV, Theorem 4A]. On page 94 of this work we obtain

|Aij| ~ (n - 1)!03BB1 ··· 03BBj-103BBj+1 ··· 03BBn, and thus

by (6.2). Combining this with (6.9) we obtain (6.11). But (6.11) yields
03BB*i03BBn+1-i ~ (n - 1)! and the right hand inequality in (6.10).
Put

Then F, F are "distance functions" which are polar to each other (Cassels
[3], VIII. 5). Thus if 03BB1, ... , In are the successive minima of the set of x with
F(x) ~ 1, we have 03BBi03BBn+1-i ~ 1 (i = 1, ... , n) (loc. cit., Theorem VI). But
now F(x) ~ nF*(x), and since 03BB*1, ... , À: are the successive minima of the
set of x with F*(x) ~ 1, we have 03BBi ~ n03BB*i, and the first inequality in
(6.10).
Suppose now that 1 ~ p ~ n and 1 = (np). Let C(n, p) be the set of

p-tuples 6 = {i1  ...  ip} of integers i in 1 ~ i ~ n; the cardinality of
this set is l. If 03B21, ... , 03B2n are a basis of Rn with Idet(Pl’ ... , 03B2n) I = B-1,
put
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for 6 E C(n, p). The vectors fi, with 6 E C(n, p) are a basis of R’, and
the determinant of this basis is of modulus B - lpln (see [N, VI, §6]). The

inequalities

where X(p) stands for a vector in Rl, define a parallelepiped in R’ of volume
2’ B’p/n called the pth pseudocompound of II (see [N, VI, §7]).

Let îl, ... , Àn be the successive minima of II, and for r E C(n, p) put

There is an ordering 03C41, ... , 03C4l of the elements of C(n, p) such that

Let g, , ... , gn be independent integer points with gj E ÀiI1, i.e., with

|03B2igj| ~ 03BBj (1 ~ i, j ~ n). For 03C4 = {j1  ...  jp} in C (n, p), put

By Laplace’s identity,

(See [N, IV, (7.4)].)

LEMMA 6.3: (Mahler [9]). The successive minima vl, ... , v, of the pseudo-
compound have

Proof: The upper bound follows from (6.13). Now (6.2) yields

and the analogue of (6.2) in R’ is
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Thus

and the upper bound in (6.14) implies the lower bound.

LEMMA 6.4: Define the points G03C4 and 1’1’ ... , 1’, as above. Once the span of
G03C41, ... , G03C4l-1 in Rl is determined, the span o f g1,..., gn p in Rn is
determined. 

Proof: Denote the span of G03C41, ... , G03C4l-1 , by S(p). It is an (1 - 1 )-dimensional
subspace of Rl. Now if (G03C41)*, ... , (G03C4l)* is reciprocal to G03C41, ... , G03C4l,
then (G03C4l)* lies in the orthogonal complement of S(p). On the other hand if
g* , ... , gn is reciprocal to gl , ... , gn in Rn, and if (G*)03C4 = gil 039B ··· A g*jp
forr = {j1  ... jp}, then (G03C41)* = (G*)03C4l(see[N,IV(6.12)]). Thus(G*)03C4,
lies in the orthogonal complement of Sep). Now clearly 03C4l = {n - p + 1,
n - p + 2, ..., n}, so that g*n-p+1 I A - - - A g: lies in the orthogonal
complement of S(p). But once the direction of g*n-p+1 1 039B ··· A g*n in Rl is
given, the span T of g*n-p+1, ... , g*n in Rn is determined. (See [N, IV,
Lemma 6C].) Then the span of gl, ... , gn-p is the orthogonal complement
of T.

7. Geometry of numbers continued

Again 03B21, ... , fJn will be linearly independent vectors of Rn with determinant
of modulus B-l. We will make the additional assumption that they are
normalized, i.e., that

Throughout, cl , ... , cn will be reals with |ci| ~ 1 (i = 1, ... , n) and with

Given Q &#x3E; 1, let II = II(Q) be the parallelepiped

This is the same as |03B2’ix| ~ 1 (i = 1, ... , n) with 03B2’i = Q-cl03B2i, and the
theory of the last section applies. We define minima 03BBj = 03BBj(Q) with respect
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to II(Q), and again we have points gl , ... , g, with (6.3). The reciprocal
parallelepiped 03A0* = 03A0*(Q) is given by |03B2*lx| ~ Q-cl (i = 1, ..., n).

LEMMA 7.1: The point gn - g, A ... A gn-l has

Proof: Write fi, = 03B21 A ... A 03B2l-1 A 03B2i+1 039B ··· A 03B2n, so that in analogy
to (6.9), fli = ± B-103B2*i (i = 1, ... , n). By Laplace’s identity

and thus

If we write gn as n = uj fij + ’ ’ ’ + un03B2n, this says that |ui| ~ B(n - 1)!
03BB1 ··· 03BBn-1Q-cl, and therefore

Lemma 5.2 remains true for vectors defined over K. In particular, if

Pl’ ... , Pn are independent and normalized, we have

From now on, H will be a quantity with (4.5), and we obtain

The estimate (7.3) yields

LEMMA 7.2: Let 03B21,..., 03B2n be linearly independent and normalized vectors
defined over K. Let II(Q) be given by (7.2), and let g1, ... , gn, as well as gn,
be as above. Then for every subscript i with
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we have

Prcc/P Lemma 5.4 remains true for vectors defined over K. In particular, since
03B21,...,03B2n are normalized, since 03B2l = fil 039B ··· 039B 03B2i-1 039B 03B2i+1 039B ··· 039B 03B2n,
and since kn ~ 0, we have

On the other hand we have (7.4), so that

There is a linear form V = V(X) = v1X1 + ··· + vnXn with coprime
integer coefficients vanishing on gj, ... , gn -, . This form is unique up to a
factor + 1. Write

We will write

Also, S will denote the set of subscripts i with

LEMMA 7.3: Suppose à &#x3E; 0,

and

Suppose there is an i E 6 with Pi gn =1= 0, i.e., with (7.8). Then
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Proof.- Clearly gn is a multiple of the coefficient vector v of V, say gn - mv.
In view of (6.4), the g.c.d. of the components of g, is ~ n!, so that

1 ~ m ~ n!.
Now (7.7), (7.10) yield

and the second inequality in (7.12) follows from (7.11). On the other hand,
Lemma 7.2 with ci &#x3E; 0 yields

by (7.10), (7.11).

LEMMA 7.4 : Again let II = II(Q) be the parallelepiped (7.2), where 03B21, ..., 03B2n
in Rn are normalized and have determinant of modulus B-’ . Suppose that

and that there is an integer point h ~ 0 with

03B2*ih = 0 for every i with nB|h|03BBq Qcl ~ 1.

Then

Proof.- The inequality (6.10) is valid for Il and its reciprocal 03A0*. In particular,
for i with nB|h|03BBqQcl  1, we have

Since 03B21, ... , Pn are normalized we have |03B2*i| ~ B, and thus

for such i. Since (7.14) holds for the other values of i, it follows that h lies
in the interior of 03BB*203A0*.
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On the other hand, we observe (7.5); and since 1 ~ n03BB*203BBn - 1, we obtain

Thus gn also lies in the interior of 03BB*203A0*. Since any two integer points in the
interior of 03BB*203A0* are proportional, we see that h, gn are proportional. Now
gn is orthogonal to gi, ... , gn - 1, and hence so is h, and (7.15) is established.

LEMMA 7.5: Let 03B21, ..., Pn be linearly independent, normalized vectors
defined over K. Suppose there is an integer point h ~ 0 with

for i E 6, i.e., for every i with ci &#x3E; 0. In fact, let h be an integer point with this
property having smallest possible norm Ihl. Suppose that (7.10) holds, i.e., that
03BBq ~ Q-03B4 with £5 &#x3E; 0, and that

Then (7.15) holds, i.e. g, h =... = gqh = 0.

Proof.- It will suffice to check the conditions (7.13), (7.14) of the preceding
lemma. Now

by (7.6), (7.17). On the other hand, by Lemmas 5.9, 5.1,

Therefore nB|h|03BBqQcl ~ 1 implies that
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so that Qcl &#x3E; 1 by (7.17). We may conclude that i E G, so that 03B2*lh = 0 by
(7.16). But this is (7.14).

LEMMA 7.6: Let again 03B21, ..., fi, be normalized and independent, and defined
over K. Let II(Q) be given by (7.2), and let S = S(Q) be the subspace spanned
by gl , ... , gq. Suppose that

Then the values of Q with Àq = Àq(Q)  Q-’, and lying in an interval

where E &#x3E; 1 and

give rise to not more than

distinct subspaces S(Q).

Proof.- The argument will be similar to the one in Section 3. Consider an
interval of the type

with (7.19). Let Q, , ..., Qn be any values of Q in (7.20) with 03BBq(Q)  Q-b.
For 1 ~ j ~ n, let h, be one of the points g1(Qj), ... , gq(Qj). Then

Now

where the maximum is over permutations j, , ..., jn of l, ..., n. For i with
c - à  0 we have
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whereas for i with c, - 03B4 ~ 0 we have

We obtain (on observing (7.1))

where E is the sum of cl - £5 over i with cl - 03B4 ~ 0, so that 2  n. Thus

by (7.19). We may conclude that det(hl , ... , hj = 0, so that hl, ... , h,
are linearly dependent. In fact, any vectors hl, ... , h, with hi E S(Qi) are
linearly dependent. Therefore S(Q1) = ··· = S(Qn), and for Q in (7.20)
with (7.10), the subspace S(Q) is always the same.
The given interval (7.18) is contained in the union of not more than

intervals of the type (7.20).

8. The index

The ring of polynomials

in nm variables and with integer coefficients will be denoted 91. Given an
m-tuple

of natural numbers, R’ will denote the set of polynomials in 9î which are
homogeneous of degree 3h in the block of variables Xh1, ... , Xhn
(1 ~ h ~ m). The symbol will denote nm-tuples of nonnegative integers
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and we will use the notation

We put

With n denoting the maximum modulus of coefficients of a polynomial, we
have for P E R’ that

with

(See [N, VI, Lemma 5A].)
Let L1, ... , Lm be nonzero linear forms, where Lh is a form in the

variables Xh1, ... , Xhm, so that Lh - och 1 Xh 1 + ..- + 03B1hnXhn (h = 1,..., m) .
Let T be the subspace of Rmn defined by Ll - ’ ’ ’ - Lm - 0. In view of
lemmas 4B, 4C of [N, VI], the index of a polynomial P ~ R with respect to
(L1, ... , Lm ; r) could be defined as follows. When P = 0, set Ind P = oo .

When P ~ 0, the index is the least value of c such that there is an J with
(-3/r) = c, such that p3 is not identically zero on T. Furthermore, if Oth 1 =1- 0

for h - 1, ... , m, then there is an

with (3/r) =1= 0 and with p3 not identically zero on T.
We now quote a version of Roth’s Lemma from [N, VI, Theorem 10 B].

LEMMA 8.1: Suppose that 0  0  1/12, that m is a positive integer, and

Let r,, ... , rm be positive integers with
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Let V,, ... Vm be nonzero linear forms in n variables with coprime rational
integer coe,ff cients where Vh is a polynomial in Xh1, ... , Xhn . Suppose that
0  0393 ~ q = n - 1, and that

Let P E 9î’ be nonzero, and with

Then the index of P with respect to (V1, ..., hm; r) is ~ 0.

9. The index theorem and the polynomial theorem

R’ consists of polynomials

where the sum is over nonnegative integers j11, ..., jmn with ih 1 + ... +
jhn = rh for h = 1, ... , m. Given h, the number of such jh1, ..., jhn is

(rh + n - 1 n - 1 ), so that the number N of summands in (9.1 ) is

with r given by (8.2). Thus there are N coefficients c(j11, ..., jmn), and 91’ is
a free 7L-module of rank N.

LEMMA 9 .1: Suppose L = a 1X1 + ... + (XnXn =1= 0 has coefficients in a field
K of degree d. With P given by (9.1), construct a polynomial P* in the nm-m
variables

’ The condition (10.3) in [N, VI, Theorem 10B] should be 2 ~ h ~ m.



153

by setting

where 3 is of the type (8.3):

Then every coefficient 03B3 of P* is a linear form y = iB ((c(j11,...., jmn))) in the
N coefficients c(j11,..., jmn) of P, and every such form Ey =1= 0 has

Proof.- Only the inequality (9.4) needs to be shown. Now P* is the sum of
N summands

where for 1 ~ h ~ m,

lf qh denotes a typical coefficient of Ph, then for archimedean v,
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Thus every coefficient ~ of Pj P2 ... Pm has

with t = r - il - ··· - im . On the other hand for nonarchimedean v we
have

and therefore

Let P, be the coefficient vector of 2-,. Then fi, has N components, and each
component is a coefficient 1 of the type considered above. Therefore

when v is archimedean, and

when v is nonarchimedean, so that

where d is the degree of K. The assertion (9.4) follows on extracting d th roots
and noting that t ~ r.

Given a linear form L = (Xl Xl + ··· + 03B1nXn, we make m forms out of
it by setting L[h] = (Xl Xhl + ... + 03B1nXhn (h = 1, ... , m). The index with
respect to (L; r) is defined as the index with respect to (L[1], ... , L[m]; r).

INDEX THEOREM : Suppose L1, ..., LS are nonzero linear forms with coefficients
in a field of degree d. Suppose
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Suppose that e &#x3E; 0 and

Then given r = (rl, ..., rm), there exists a nonzero polynomial P E 91’ with
(i) Ind P ~ ((1/n) - 03B5)m with respect to (Li ; r) (i = 1, ... , s),
(ii) P  2mn (3n1/2H)r.

This is Theorem 6A of [N, VI], but with a more explicit estimate for rPl .

Pro of. Write P in the form (9.1); the number N of available coefl’lcients is
given by (9.2). Let us deal with condition (i) for a particular (Li ; r). Write
Li = 03B11X1 + ... + 03B1nXn; we may suppose without loss of generality that
03B11 ~ 0. In view of what we said in the last section, the index condition will
be satisfied if every PJ with J of the type (8.3) with (J/r)  (n-1 - s)m
vanishes on the subspace Ti given by L[1]i =... = L[m]i = 0.
Keep i and J fixed at the moment. The condition then is that P* as defined

in Lemma 9.1 vanishes identically. Now P* is homogeneous in Xh2, ..., 1 Xhn
of degree rh - ih (h = 1, ... m), hence has

say, potential coefficient. Each coefficient y is a linear form y = Ëy in the
coefficients c(j11, ... imn). Each of the fj (il) ... fm(im) potential coefficients
has to be set equal to zero. This gives f1 (i1) ··· fm (lm ) linear equations in the
c(j11, ... , imn). Summing over i from 1 to s, and summing over J, we obtain

equations, where the sum £ is over nonnegative il , ... , im with

(i1/r1) + ... + (im/rm)  (n- 1 - 8)m. By an estimnate in [N, p. 179],

so that M ~ N/2d by (9.6). Each linear equation is given in terms of a linear
form Ëy whose height may be estimated by (9.4). We now apply Lemma 5.8
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with N, M in place of n, m. We obtain a nonzero polynomial P with

Let L1 , ... , Ln be linearly independent forms with coefficients in a field
of degree d, and let Ml , ... , Mn be their normalizations, i.e.,

We may write Xl , ... , Xn as linear combinations of Mi, ... , Mn , and
Xh1,..., Xhn as linear combinations of M[h]1, ... , M[h]n (h = 1,..., m).
Now if (9.6) holds with s = n, let P be the polynomial of the Index
Theorem. Given an mn-tuple 3, we may write PJ uniquely as

Here the summation may be restricted to jh 1 + - .- + jhn ~ rh (h = 1,
...,m).

POLYNOMIAL THEOREM:

(i) When (J/r) ~ 2em, then dJ(j11, ..., Jmn ) = 0 unless

(ii) Each coefficient d3 has

Except for the more explicit estimate for Id31, this is Theorem 7A of [N, VI].

Proof.- (i) is exactly as in [N]. So let us turn to (ii). Writing Vi =

ni1M1 + ’ ’ ’ + YIinMn we have |~ij| ~ Hnd by Lemma 5.6. A typical
monomial Xj1111 ... Xjmnmn may be written as



157

and this is a polynomial in the forms Mkl’l with coefficients of modulus

Since PJ ~ 2rn , we obtain

10. The index of P with respect to certain rational linear forms

Let Li(X) = 03B1iX (i = 1, ... , n) be linearly independent linear forms with
coefficients in K and with (9.5), and let Mi(X) = 03B2iX (i = 1, ... , n)
be their respective normalizations. We will suppose that e &#x3E; 0 and
m &#x3E; 403B5-2 log (2nd), and that P is the polynomial of the Index and Poly-
nomial Theorems. As in section 7, cl , ... , cn will be reals of modulus ~ 1

satisfying (7.1 ), and II(Q) will be the parallelepiped (7.2). Given Q, we have
minima 03BB1 = 03BB1(Q), ... , 03BBn = 03BBn(Q), and we have certain points
g 1 = g1(Q),..., gn = gn(Q). Again, V = V(Q) will be the linear form
with coprime integer coefficients and vanishing on gl, ... , gq where

q = n - 1. If V = v1X1 + ... + vnXn write V"1 = v1Xh1 + ··· + vnXhn
(h = 1, ..., m).

LEMMA 10.1: S’uppose that 0  ô  1 and 0  e ~ 03B4/16n2. Let QI, ... , Qm
satisfy

and

Then P has index ~ me with respect to (V[1] (Q1), ... , V[m] (Qm); r).

This corresponds to Theorem 9A in [N, VI].

Pro of. Let T be the subspace of R mn where V[1](Q1), ..., v[m](Qm) vanish.
It will sufHcc to show that p3 = 0 on T whenever (J/r)  em. Let rh
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be the "grid" consisting of points

where ul , ... , uq run through the integers in 1 ~ ui ~ [03B5-1 ] + 1. Just as
in [N, page 189], it will sufHce to show that

when (3/r)  2em and uh E I’H (h = 1, ... , m).
Now

Here

so that

By assertion (ii) of the Polynomial Theorem we have dJ(j11, ... , jmn) = 0
unless

so that for k = 1, ..., n, in view of (1 + 03B5)((1/n) + 3nE)  (1/n) + (7/2)ne,

We may infer that
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By assertion (ii) of the Polynomial Theorem, and since cl + - - - + cn = 0,
and each |ck - 03B4| ~ 2, every summand in (10.5) has modulus

by (10.1). The number of summands in (10.5) is ~ 2n(r1 + ··· rm) = 2 nr so that

by (10.3). We may conclude that PJ(u1, ... , um) = 0.

11. The next to last minimum

LEMMA 11.1: Suppose that 0  ô  1 and

Put

Let II(Q) be the parallelepiped (7.2), where 03B21, ..., fJn are independent and
normalized vectors defined over a field of degree d, and with heights
H(03B2i) ~ H (i = 1, ... , n). Suppose there is no integer point h =1= 0 with
(7.16) for every i E 6. Then the numbers Q with

and with

lie in at most m - 1 intervals of the type
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Proof: We first remark that m &#x3E; (log 2) -1 (log 2n2d) + 1 by (11.1), so that
2m-1 &#x3E; 2n 2d and

This yields

and thus (10.3) if we set

Suppose the lemma were false. Let QI be the infimum of the values of Q
with (11.3) and (11.4). Then Q with (11.3), (11.4) will have Q &#x3E; 6i If all
the values of Q with (11.3), (11.4) were in the interval QI  Q ~ QE, the
lemma would be correct. So there are Q ~ QE1 with (11.3); let Q2 be their
infimum. And so forth. Continuing in this way we find Q1, ..., Qm with
03BBg(Qh) ~ Q-03B4h (h = 1, ..., m) and

Let r1 be so large that

For h = 2,..., m put

Then for h = 1, ... , m,

and (10.1) holds. By (11.1) and (11.8), m satisfies (9.6) (with s = n) of the
Index Theorem. Let P be the polynomial of the Index and Polynomial
Theorems. Since (10.1), (10.2), (10.3) are satisfied, we see that P has index
~ m03B5 with respect to (V[1] (Q1), ..., V[m](Qm); r).
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Now with 0 = 1/15 and with 03C9 given by (8.4), we have E = 2/03C9, so that

by ( 11.10), (11.9). Thus (8.5) is satisfied.
Since there is no h with (7.16) for every i E 6, there is for each Qh an i E 6

with 03B2*in ~ 0 where n = n(Qh), so that by Lemma 7.3 (on noting that
(11.4) implies (7.11 )),

with

where Vh = V(Qh). We obtain

i.e., (8.6). Furthermore, by ( 11.11 ), and since E = 2/m,

in view of (11.4). Thus (8.7) holds. Finally, from the Index Theorem,

and therefore

by (11.4); thus also (8.8) holds.
By Roth’s Lemma, the index of P with respect to (V1, ... , Vm; r) is ~ 0.

Since 0 = 1/15  m03B4/15n2 = me, this contradicts the lower bound given
above.
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LEMMA 11.2: Let b, m, E be as in Lemma 11.1, and II(Q) the parallelepiped
(7.2), where 03B21, ... , fin are independent and normalized, defined over a field
of degree d and with heights ~ H. Given Q, let S = S(Q) be the subspace
spanned by g, = g, (Q), ... , gq(Q) (so that S is the zero set of the linear form
v = .
Then as Q ranges over values with (11.3) and (11.4), S(Q) ranges over less

than

distinct subspaces.

Proof.- Suppose at first that there is an integer point h ~ 0 with (7.16) for
i E G. Let h be a point with this property with smallest possible norm. Then
since (11.4) implies (7.17), Lemma 7.5 shows that S(Q) consists of x with
hx = 0, and hence is fixed.

If there is no such integer point h, we may apply Lemma 11.1. Then since
(11.4) implies (7.19), Lemma 7.6 shows that for Q in a particular interval
( 11. 5), S(Q) will run through not more than 1 + 403B4-1 log E distinct sub-
shapes. Summation over h in 1 ~ h  m gives the desired result.
We have to give another version of the lemma just proved.

LEMMA 11.3: Suppose that 0  ô  2 l,t

and that E is given by (11.2). Given positive reals Al, ... , An with

let 03A0 = Il (A 1 , ... , An ) be the parallelepiped

where Pl, - - . , fi, are as in Lemma 11.2. Let 03BBj(A1, ... , An) for j = 1,..., n
be the successive minima of II(AL, ... , An ), let gj = gj(A1, ... , An ) be
corresponding integer points, and S(A,, ... , An ) the subspace spanned by
g1,...,gq.

t Here and in the lemmas below, the upper bounds for 03B4 are unnecessarily small and could be
increased.
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Then for values of A1, ..., An, Q with

and

among not more than

fixed subspaces.

Proof.- Writing Ai = Q~l (i = 1, ..., n), we have - 1 ~ 111 ~ 1 and

Il 1 + ··· + 11n = 0. Let v be the least integer 2/ô, and jj = - 1 + (l/v)
(1 = 0, 1, ... , 2v). We claim that it is possible to pick integers Il, ..., ln
in 0 ~ 1 ~ 2v with

and

Choose Il with 1111 - 03BEl1| ~ (2v)-1. If l1, ... , lj - 1 have been chosen with
( 11.18), (11.19) valid for i = 1, ..., j - 1, and if

pick Il with |~j - ç’j |  v-1 and 17i - 03BElj ~ 0 (or ~ 0, respectively); then
(11.18), (11.9) are valid also for i = j.
Note that (11.19) for i = n gives |03BEl1 + ··· + 03BEln|  v-1 and thus

03BEl1 + .. · + 03BEln = 0.
Let us initially restrict ourselves to values of Al , ... , An with fixed

l1, ... , ln, and put ci = ç". Then |ci| ~ 1 and (7.1) holds. Now
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with 03A0(Q) given by (7.2). Further (11.17), together with the definition of v,
yields

By this, and since (11.12) and (11.15) are (11.1) and (11.4) with ô/2 in place
of ô, the number of possibilities for S(Q) is

by the preceding lemma.
The vectors gi = gi(A1, ..., An) for 1 ~ i ~ q lie in Q-03B4/203A0(Q). On the

other hand, since by Minkowski and by (7.6),

we have 03BBn(Q) &#x3E; Q-M2. Therefore S(Q) is spanned by the gi(A1, ... , An )
for i = 1, ... , q, and S(Q) = S(A1, ... , An) . The number of possibilities
of S(Al, ..., An) is bounded by (11.21).

It remains for us to take account of the possible values of Il, ... , ln . This
introduces a factor

12. The last two minima

LEMMA 12.1: Suppose that 0  b  n and

Let E be given by (11.2), and let 03B21, ... , fin, H, Al , ..., An, 03A0(A1, ... , An),
etc., be as in the last section. Then for values of A1,..., An, Q with

and
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S(A1, ... , An) is among no t more than

m(24n/b)n(1 + 32n03B4-1 log E) (12.5)

subspaces.

Proof.- From (7.6), the modulus B -1 of the determinant of 03B21, ... , 03B2n has

Moreover, as in the proof of the Polynomial Theorem, we have Xl =
~l1(03B21X) + ... + ~in(03B2nX) (i = 1, ... , n) with |~lj| ~ Hnd, so that

Writing 03BBl = 03BBl(A1, ... , An ) we have (6.2) and therefore

The basis vectors el , ... , en have |03B2iej| ~ 1  AiQ, so that 03BBn ~ Q. On
the other hand, integer points x ~ 0 have

SO that 03BB1 ~ (nHndQ)-1.
Put

The relations (6.5), (6.6), (6.7) of Lemma 6.1 are satisfied. Thus there is a
permutation tl , ... , tn of 1, ... , n such that the successive minima

03BB’1, ... , 03BB’n of the parallelepiped FT given by

satisfy
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Now

by (12.4), so that

since Qb/2n &#x3E; 4"’ by (12.2) and (11.6). We have

by (12.4), (12.2). Therefore

and Q-2  Aig-1t1 1 = A’i  Q2 . In view of (12.1), (12.2), (12.8) we see that
the conditions (11.12), (11.15), (11.16), (11.17) of Lemma 11.3 are satisfied
with A’1, ... , A’n,Q2,03B4/4n in place of Al, ..., An, Q, 03B4. So if S(A’1, ..., An)
is the subspace belonging to the parallelepiped 03A0’ =- 03A0’(A’1, ..., A’n) given
by (12.7), we see that it has not more than (12.5) possibilities. (This is the
bound of Lemma 11.3 with 03B4/4n in place of b.)
By the last assertion of Lemma 6.1, for every integer point

g ~ S(A1, ..., An ) we have

max (|03B2ig|tlA-1i) = max (|03B2ig|A’-1i)

by (12.2), while on the other hand 03BB’n-1 1  Q-b/2n by (12.8). Therefore such
g cannot lie in S(A’1, ... , A’n). Thus S(A1, ... , An) = S(A’1, ... , A’n),
and the number of possibilities for S(A1, ... , An) again is restricted by
(12.5).
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13. Two adjacent minima

LEMMA 13.1: Le t Pl, ... 03B2n, H, A1, ... , An’ II - 03A0(A1, ... , An),
Â, = 03BBi(A1, ... , An) and gi = gi(A1, ... , An ) be as before. Let

1 ~ s  n, and Ss = SS(A1, ... , An ) the subspace spanned by gl , ... , gs.
Put

suppose that 0  ô  l,

and put

Then for values o f ’ A1, ..., An, Q with

and

S s (A,, ..., An) is among not more than

m(481njbY(1 + 641nb-l log E) (13.6)

s-dimensional subspaces.

Proof.- Put p - n - s, recall from section 6 that C(n, p) is the set of p-tuples
03C3 = {i1  ...  ip} of integers in 1 ~ i ~ n, and define Pa by (6.12). Also
write
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We will apply Lemma 6.3 with PiA1-l in place of 03B2i. The parallelepiped n(p)
given by

is the pth pseudocompound of II. Denote its successive minima by VI’ ... , vl .
It is clear that in Lemma 6.3 we may take

Thus Lemma 6.3 in conjunction with (13.5) and (13.3) gives

We have

by (5.2). We introduce the normalized vectors 03B303C3 = |03B203C3|-103B203C3 and the

parallelepiped N(p) defined by

whose successive minima we denote by vl , ... , v’l. Now H-pd03A0(p) c
N(p) c 03A0(p), and therefore

Together with (13.7) and (13.3) this yields

Note that H(03B203C3) ~ Hp by Lemma 5.1, and thus also H(03B303C3) = H(/03B203C3) ~ HP.
We have

We now apply Lemma 12.1 with n, ô, fi; , H, Q replaced respectively by 1,
Ó/2p, 03B303C3, HP, QP. The conditions (12.1), (12.2), (12.3), (12.4) are replaced

COMP 2758-48
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respectively by (13.1), (13.3), (13.9), (13.8). The conclusion is that the

subspace S(p) of R’ spanned by the first 1 - 1 minimal points of N(p) is

among a set of not more than (13.6) subspaces of R’.
Let again gl, ... , g, be independent points with gi E 03BBi03A0 (i = 1, ... , n).

By (6.13), the points G03C41, ... , G03C4l-1 lie in

But

by (13.5), (6.14) and (13.3). Thus G03C41, ... , G03C4l-1, span S(p). Therefore there
are not more than (13.6) possibilities for the span of G03C41, ... , 1 G,l - , in R’.
By Lemma 6.4, there are not more than (13.6) possibilities for the span of
gl , ... , g, in Rn, i.e., for Ss.

14. Proof of Proposition B, and hence the Theorem

We will adopt the notation of section 4. We will introduce a new parameter
IL &#x3E; 0: Initially we will study solutions of (4.6) with

Writing Ai = Ai(x) = |03B2lx|/(|03B21x| ··· IPnxl)l/n we have Al A2 ... An = 1.
In view of |03B2ix| ~ Ixl we have

Thus with Q = (Hlxl)" we have Q-1 ~ Ai ~ Q. Furthermore, when Ixl &#x3E;

Hwe have Q = (H|x|)03BC  Ixl2fl, and (4.6) yields |03B21x| ··· IPnxl  Q-b/2fl and

Thus if Il = 03A0(A1, ..., An ) is the parallelepiped (11.14), then x lies in
Q-b/2nJl 03A0, and Â  Q-03B4/2n03BC. on the other hand we have Àn &#x3E; (nHd)-1 from
(6.2) and (7.6), and if we suppose that
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then

Thus x lies in the subspace S = S(A1, ... , An ) spanned by g l , ... , gq,
where again gi = gi(A1, ... , An ). Let k be minimal such that x lies in the
k-dimensional subspace Sk spanned by gl, ... , gk ; then 1 ~ k ~ q. By
(14.2), Âk  Q-03B4/2n03BC. There is by (14.4) an s in k ~ s ~ q with

The idea now is to use Lemma 13.1 with 03B4/3n203BC in place of ô. Since
l = (n s) ~ 2n - 1 and

the condition (13.1) will certainly be true if

With E given by (13.2), the condition (13.3) (with b/3n2J1 in place of ô) will
hold if

Since Q ~ Ixl", this will certainly be true when

When 0  (5  3n2J1 (so that 03B4/3n203BC  1), we may apply Lemma 13.1 to
conclude that Ss(A1, ... , An ) is among not more than

subspaces, so that x itself lies in a collection of not more than this many
subspaces. Summing over s in 1 ~ s  n, we see that x with (4.6), (14.1),
(14.7), lies in a collection of not more than

subspaces.
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Points x with 03B2ix = 0 for some 03B2i lie in n subspaces. For other integer
points x, (14.1) holds with y = d by Lemma 5.3. However, if we substitute
p = d into (14.6), then m, and as a consequence E, will grow rather rapidly
with d. In order to obtain a better dependency on d, we now proceed as
follows.

Integer points lying in a coordnate plane xi = 0 or satisfying 03B2ix = 0 for
some i are contained in 2n subspaces. We will disregard such points for the
time being. Let fi be one of the vectors 03B2i; then |03B2x| ~ |x|1-dH-d by
Lemma 5.3. Suppose now that

and consider points x with

Suppose that, say, Pl e2, ... , en are linearly independent, where el, ... , en
are the coordinate basis vectors. We have

with b = (ple) - n. Since ô  3n2 J1, we may apply what we said above to
fi, e2, ... , en, and we see that points x with (14.7), (14.11) lie in a collection
of not more than 03C42 subspaces. But 03B4/03BC = (1/e) - (n/03BC) &#x3E; 1/4, so that
03BC/03B4  4, and we obtain less than

subspaces. With our present values of /1, ô, the relations (14.6), (14.7) will
hold if

Now if 10n  d and we carry this out with y = 03BC1, ... , 03BCw where

m, = del - and w = [log (d/10n)], we see that points x with

and (14.13) lie in not more than wt, subspaces.
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We now return to (4.6). We treat each 03B2i in the way just described and see
that if we exclude not more than nwt3 subspaces, then (14.1) holds with
J1 = 03BCw /e ~ de(10n/d) = 1 Oen, hence holds with y = 1 Oen . This was when

10n  d; but when d ~ 10n, then (14.1) holds with y = l0en anyhow. We
now may apply what we said at the beginning with y = 10en, and we obtain

subspaces. With our present value of y, the conditions (14.6), (14.7) will hold
if

Recalling the 2n subspaces excluded at the beginning, we have not more
than

subspaces. We now choose m minimal with (14.14). Then also (14.12) holds
since 0  (5  1. We have

and in view of (14.16), the number of subspaces will be

Since 217 d2 mn7 23n 03B4-2 E  e11, the condition (14.15) (and also the weaker
condition (14.13)) will hold true if |x| &#x3E; (2H)et1.

Proposition B, and hence the Theorem, follow.
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