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1. Introduction

Let M be a smooth n-dimensional manifold and let M denote the space of

smooth Riemannian metrices on M. The group D of all diffeomorphisms on
M acts on M by pullback and the orbit-space M/D describes the coordinate
independent properties of M. This space has been studied in the case when
M is compact by Ebin [9] and Bourgignon [2].
The space M/D is of interest in Riemannian geometry as well as in

General Relativity, where in the case n = 3 it is known as superspace, see
for example [10].

There is an analogous problem in the case where n = 4 and M is the space
of solutions to the Einstein Equations on M (i.e. a subset of the space L(M)
of Lorentz metrics on M). In this case M/D is the space of true dynamical
degrees of freedom of the gravitational field. This case has been studied by
Marsden and Isenberg [11].
The space M/D has in general the structure of a stratified ILH Frechet

manifold [2], with lower dimensional strata consisting of the metrics with
nontrivial isotropy groups for the action of the diffeomorphism group, i.e.
those metrics which admit nontrivial Killing fields.

In the above studies the assumption of compactness of M played an
essential role in that it allowed the powerful results about Fredholm proper-
ties of elliptic operators on compact manifolds to be used. The Fredholm
property fails in general if the manifold is non-compact and special assump-
tions have to be made in order to extend the results to this case. In the paper
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[4] some results in this direction were proved but, due partly to the incomplete
state of the theory of elliptic operators on noncompact manifolds at that
time, no complete results were obtained.
The aim of this paper is to generalize the results known for M compact

to the case where M is the space of Cet) asymptotically Euclidean metrics
(appropriately defined) on a manifold M diffeomorphic to R n and D is the
group of Cet) asymptotically Euclidean diffeomorphisms of M. It should be
possible to extend these results to a wide variety of noncompact settings: M
may have more complicated topology and several ends; the metric on the
ends of M may be asymptotic to a conical, cylindrical, constant curvature
or other metric, but in the interest of simplicity we will only consider the
asymptotically Euclidean case here. This case is also one of interest in the
study of asymptotically flat solutions of Einstein equations and, in fact, the
present paper may be seen as a step toward extending the results in [11] to
this case.

l.l. The asymptotically Euclidean case

In the asymptotically Euclidean case, an appropriate setting for the theory
of elliptic operators is, instead of the ordinary Sobolev spaces, the class of
weighted Sobolev spaces Hfb introduced by Cantor [3]. Let B be a scalar
constant coefficient elliptic operator on Rn of order m. Then B is a continuous
mapping from HP, to Hps-m,03B4+m and is Fredholm (i.e. has finite dimensional
kernel and cokernel) if and only if - £5 - n/p ~ N for à 5 - n/p and
£5 + m - n/p’ ~ N for £5 &#x3E; - n/p. The reason B fails to be Fredholm in the
case where either of these conditions fails to hold is that the index ind(B) =
dim ker(B) - dim coker(B) is a function of £5 and changes as à passes such
a point. This is the most important différence from the compact case where
a scalar operator always has index 0, which by the above remark no longer
is true in the noncompact case.
Here we will, for simplicity, restrict our attention to the case of L2 -type

spaces Hs. These spaces were studied in detail by Choquet-Bruhat and
Christodoulou [7], where also some results about isomorphism properties of
operators were derived. The case of systems of operators with variable
coefficients over Rn was studied in sufficient generality for the present
purposes by Lockhart and McOwen [14]. The Fredholm property holds for
an elliptic operator with variable coefficients if its symbol tends to that of a
constant coefficient operator rapidly enough and it is in fact possible to give
a sharp characterization of this.
For fixed 03B4 E R, s ~ N, let MS denote the space of Riemannian metrics on

M such that for 9 E M, g - e E Hs03B4(S2T*M), where e 13 the Euclidean
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metric on Rn. MS is called the space of asymptotically Euclidean metrics on
M of order (s, 03B4).
The group of diffeomorphisms of class Hb will be denotèd by Ds . Let

n &#x3E; 2. The space of all diffeomorphisms which leave MS invariant will be
denoted by DS+ 1. This turns out to be D§t( 0 G(n) where the asymptotic
group G(n) is either the orthogonal group O(n) or the Euclidean group
E(n) - O(n)  Rn depending on the value of £5, see §2.4.

It turns out that the Fredholm property of the operator 0394K,g = 03B4g o Kg :
Hs’03B4’(TM) ~ Hs’-203B4’+2 is crucial and that the hypotheses in [14] require
g - e E Hb with s  3 + n/2 and à &#x3E; - n/2 for this to hold. While the
condition on s is not sharp (due to the fact that we are dealing only with
integer values of s), the condition on £5 can probably not be weakened (cf.
the discussion in [1, p. 245]). We will therefore in the following consider only
s, £5 satisfying these conditions. See §2.2 for further discussion of the assump-
tions used in this paper.

1.2. ILH structures

The Hb spaces have the advantage of being Hilbert spaces ([7, p. 130]) which
makes it possible to make use of the theory of ILH structures introduced by
Omori [18] in studying the quotient M/D.

Let A : Ds+1 x Ms ~ MS denote the right action by pull-back of Ds+ 1 on MS
and let Os(g) denote the orbit A(DS+1, g) of g E Ms+1 under the action of D.
We let M, D and D denote the corresponding spaces in the limit s ~ ~.
To construct the quotient space M/D and its ILH structure (following

Bourgignon [2]) we need essentially two types of technical results in addition
to results about the ILH structure of M, D and D:

a) A slice for the action (a slice at g is roughly speaking an immersed cell
transverse to the orbit Os(g)). This means in particular that Os(g) is an
immersed submanifold of MS at g.

b) A proof that the orbits Os(g) are closed embedded submanifolds.

The proof given in [9] makes use of the compactness of M but it turns out
to be possible to use essentially the same method of proof also in the
asymptotically Euclidean case by making certain additional estimates near
infinity. A result similar to b) was stated in [4, Theorem 5.5 (2)], but the
proof given there is incomplete and shows only that the orbit is an immersed
manifold.
A detailed discussion of the ILH structure of M/D will be postponed to

a future paper.
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1.3. Overview of this paper

In §2 some of the necessary background material on asymptotically Euclidean
manifolds and diffeomorphisms is presented. A detailed analysis of the
group DS in terms of Hs-spaces does not seem to exist in the literature and
is therefore included here.

In §3 the structure of the orbits Os(g) is studied and in Theorem 3.4, Os (g)
is shown to be an embedded submanifold of MS . The method of proof is a
generalization of that in [9].

In §4 the slice theorem is stated and proved following the ideas of Ebin
and in §5 some remarks are made about the conclusions that can be drawn
from the slice theorem, extending the work of Ebin and Bourgignon. The
details of this will be postponed to a future paper.

2. Technical preliminaries

2.1. The weighted Sobolev spaces Hb

In this section we will define the weighted Sobolev spaces Hb and state some
of their basic properties.

DEFINITION 2.1: Let s ~ N and 03B4 E R. The space Hs (Rn) is defined to be the
completion of Ci (Rn) w.r.t. the norm ~ f sJ) given by

~f~2s,03B4 = 1 (de (x, Xo)III+O 1 D’l"(x) le)2 dxn, 

where de (x, x0) = |x - Xo le is the distance function given by the Euclidean
metric e on Rn w.r.t. some basepoint xo Il

The definition is a special case of that given by Cantor [3] following the work
of Nirenberg and Walker [16]. The above norm makes the spaces Hs03B4(Rn)
into Hilbert spaces [7, p. 130] and the inclusion Hb c Hs’03B4’ holds if s  s’ and
03B4  03B4’. For ease of reference, we record the following useful results.

LEMMA 2.1 (Holder inclusion property [7, Lemma 2.4]): If s &#x3E; n/2 then the
inclusion Hb E Cs’03B4’ is continuous for 03B4’  03B4 + nl2 and s’  s - n/2. ~

LEMMA 2.2 (Multiplication property [7, Lemma 2.5]): The multiplication map
(J1, f2) ~ J1 ~ f2 of

is continuous if.
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The following special case of the multiplication property will be useful.

COROLLARY 2.3: Let fi E Hs103B41 for s1 &#x3E; n/2 and 03B41 &#x3E; - n/2 and let f2 E Hs’03B4’
with s’  SI and £5’ e R. Then f2 ~ f = f1 ~ f2 is a continuous map

where

Proof: Since s1 &#x3E; nl2 and s’  s, multiplication by fl does not decrease the
smoothness of f2. By the multiplication property, f, Q f2 E Hs’03B42 with

J2  Ôl + 03B4’ + n/2. The result follows. ~

2.2. Asymptotically Euclidean metrics on Rn

Let M be a COO manifold, diffeomorphic to Rn.

DEFINITION 2.2: Let ô and s satisfy conditions

and

and let e be a given Euclidean metric on M. Let r : M ~ R be defined by
r(x) = |x - xo ) for some xo E M and for any R E R, let ~1, ~2 be a partition
of unity such that 01(x) = 1 if r(x)  R and ~2(x) = 1 if r(x)  R. A
Riemannian metric g on M is said to be asymptotically Euclidean of order
(s, (03B4) if there is an R e R such that

1) ~1g E Hs(S2T*M).
2) ~2(g - e) e Hs03B4(S2T*M).
The space of asymptotically Euclidean metrics of order (s, 03B4) on M is
denoted by Mb. Il

The space Ms is a smooth Hilbert manifold, see [4]. In this paper we will
consider the space Ms for the following two cases:

Case 1: -n/2  £5  1 - n/2,
Case 2: n &#x3E; 3 and 1 - n/2  £5  -1 + n/2.

The point is that in case 1, the asymptotic group G is the Euclidean group
E(n) while in case 2, G = O(n), the Orthogonal group, see §2.4.
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Further, we will restrict our attention to values of n &#x3E; 2, since the
behaviour of the fundamental solution of a second order elliptic systems is
exceptional in the case n = 2, namely, it contains logarithmic terms. In
particular, this has the consequence that there is no range of ô such that
0394K,g: Hs+103B4-1 ~ Hs-103B4+1 is an isomorphism, and the analysis of this situation
requires methods different from those used here.
For the same reason, we will not consider the range of ô &#x3E; -1 + n/2 in

which case 0394K,g : Hs+103B4-1 ~ Hs-103B4+1 is an injection but has nontrivial cokernel. In
this case, the characterization of Ds+1 becomes considerably more compli-
cated. Finally, the case ô = 1 - n/2 is exceptional, since 0394K,g: Hs+1-n-2 ~
H2-n/2 is not Fredholm and therefore requires special attention, which is
beyond the range of the present paper.

In the following we will consider b e R to be fixed and when convenient
suppress reference to it in our notation.

2.3. Some facts about operators on asymptotically Euclidean manifolds

The following facts are well known (see for example [9]). Let 11t: [ -1, 1 ] -
Diff(M) be a curve of diffeomorphisms of M with qo = id and let g E
Riem(M) be a Riemannian metric on M. Then

where the vector field X E F (TM) is given by X = (~/~t)|t=0~t and L,g
denotes the Lie derivative of g w.r.t. X. We will denote the mapping
X ~ Lxg by Kg(X). Thus, for a given g E Riem(M), Kg : r(TM) -
0393(S2T*M) is a 1:st. order linear partial differential operator. The formal
adjoint of Kg is given by the divergence bg: 0393(S2T*M) ~ 0393(TM). The
symbol of Kg is injective and therefore the "vector-Laplacian" 0394K,g :
0393(TM) ~ r(TM) defined by OK,g - bg 0 Kg is 2:nd order elliptic.
The next result follows from the results in [8] and [14].

PROPOSITION 2.4: With (s, b) satisfying conditions (2.1), for any g E MS the
following mappings are continuous for s’  s and any b’.

(1) Kg: Hs’03B4’TM ~ Hs’-103B4’+1S2(T*M),
(2) 03B4g: Hs’03B4’S2(T*M) ~ Hs’-103B4+1TM,
(3) 0394K,g : Hs’03B4’TM ~ Hs’-203B4’+2 TM.
Similarly, with Ag denoting the scalar Laplacian w.r.t. g E MS, we have
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Further, OK,gh and Ag are Fredholm operators between the above spaces if and
only if b satisfies the conditions

Next we consider the kernel of the operator OK,g in the various cases of interest.

PROPOSITION 2.5: Let l5 and s satisfy condition (2.1) and let n &#x3E; 2. Assume

that g E Ms and that s’  s. For b’ E R consider the mapping

The following statements are true.

(1) If - nl2  b’  - 2 + nl2 then dK,g is an isomorphism.
(2) If - n/2 - 1  03B4’  - nl2 then OK,g is a surjection with n-dimensional

kernel consisting of asymptotically constant vectorfields: if X E ker Ar)
Hs’03B4’, then

where Xo E ker OK,e n Hb: (i.e. constant) and Xl E Hô8.
(3) If - nl2 - 2  ô’  - nl2 - 1 then OK,g is a surjection with kernel

consisting of asymptotically 1:st order vectorfields: if X E ker 0394K,g n Hâs 
then if -n12  ô  1 - nl2,

where Xo is a homogeneous first order vectorfield in ker OK,e n Hs’03B4’ and
Xl E Hs03B4-1. Further, for n &#x3E; 3 we have the following additional cases: If
t5 = 1 - nl2 then we get Xl E Hs-n/2-03B5for some e &#x3E; 0 and f b &#x3E; 1 - nl2,
then X = Xo + Xl , with Xo a general first order vectorfield and XI E Hs03B4-1,
which in this case implies that X1 ~ 0 as x - oo.

If g E COO, then in the above cases, ker A c 10

Proof: Part (1) is easily proved along the lines of [8, Lemma 3.1].

Proof of (2): To prove part (2) and (3), we write 0394K,g as 0394K,g = 0394K,e + Ag,
where the variable coefficient part Ag is given by 
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where we have used F to denote the operation of pointwise multiplication
by elements of riy, the Christoffel symbols of g. By assumptions, g - e E Hs
so riy E Hs-103B4+1. Thus by Corollary 2.3 we see that for s’ and 03B4’ in the present

range, the mapping

where s1 = min(s’, s - 1) and e  03B4 + n/2. In particular, we can take
6 &#x3E; 0. It follows, using Proposition 2.4, that Ag defines a continuous mapping

for some 8 &#x3E; 0. Here s, - min (s’ - 1, s - 2).
Assume that 03B4’ satisfies the assumptions of (2). By [14, Theorem 3], if

Xo E F = ker 0394K,e ~ Hs’03B4’ then Xo is a constant vectorfield when expressed in
terms of a Cartesian coordinate system for e. It follows that Xo E H~03B4 for any
03B4  - n/2, multiplication by elements of Xo defines a continuous map
Hs03B4 ~ Hs03B4 for any s, à and AdXo E Hs-203B4+2.

Recall that by Proposition 2.4 (3), we have J1.K,g: Hs’03B4’ ~ Hs’-203B4’+2. Let

Y e H§1j) be arbitrary and consider the equation 0394K,gX = Y. Writing
X = 03A3~i=0 X , we get the equations

and

By the surjectivity of 0394K,e in the present range of 03B4’ [14, Theorem 3] we find
Xo e F + Hs203B4’+03B5 where s2 = min (s’ + 1, s). Let X(k) = E~l=k Xl denote the
remainder term. Assume that equations (2.3) have been solved for i = 1,
... , k - 1. The it remains to solve

Using the surjectivity of J1,.K,e and estimates similar to the above on equations
(2.3), we find there exists a finite k such that part (1) applies to solve (2.4).
This proves the surjectivity.

In particular, if Y = 0, then we get Xo E F and 0394K,gX(l) = AgXo E Hs-203B4+2.
Part (1) applies to show that X(l) E Hb exists. Clearly, X(l) is determined

uniquely by the choice of Xo. This completes the proof of part (2).
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Proof of (3): Let s’, b’ be as in part (3), let Y e Hs’-203B4’+2 and consider the
equation 0394K,gX = Y. By [14, Theorem 3], F = ker 0394K,e ~ Hs’03B4’ consists of
first order vectorfields w.r.t. a Cartesian coordinate system for e. We will
denote by F1 and Fo, the spaces of homogeneous first order and constant
vectorfields, respectively. Following the proof of part (2), using the surjectiv-
ity of OK,e and estimates on Ag, we first find that there exists a finite k such
that part (2) applies to the equation 0394K,gX(k) = -AgXk-1. Since surjectivity
has already been proved in this case, surjectivity follows also in part (3).
Now let Y = 0 and write X = Xo + X(l). Then, assuming that X solves

equations (2.3), the equation (2.3-1) implies that Xo E F and we get

We now have to consider three different cases depending on the value of ô.

(i ) If - n/2  03B4  1 - n/2, then part (2) applies to solve equation (2.5)
and we get X = Xo + Xl with Xo E Fo and Xl E Hâ- (which includes
the constant vectorfields).

(ii ) If 03B4 = 1 - n/2, then due to the fact that 0394K,g is not Fredholm as a
mapping 0394K,g : Hs-n/2 ~ -nl2 [14, Theorem 4], the best estimate we get
for Xl is that Xl E Hs nl2+r for any e &#x3E; 0 (typically, X, may behave like
log (r)). Thus we can write X = Xo + Xl with Xo E Fo.

(iii ) For n &#x3E; 3, if 1 - n/2  ô  2 - n/2, for X0 ~ F and 03B4 in the present
range, part (1) applied to solve equation (2.5). In particular, this

implies by Lemma 2.1 that Xj - 0 as x - oo.
This completes the proof of part (3). /

Remark :

(1) The reason one does not run into the complications discussed in [15] is
that by part (1) of the above Proposition, the variable coefficient operator
OK,g is an isomorphism in the same range of ô as its constant coefficient
part OK,e . 

(2) The above analysis can be extended to arbitrarily small b’, to give
analogous results. It would be interesting to understand the situation for
large 03B4’.

(3) The so-called logarithmic translations which have been studied in

General Relativity occurs for ô = 1 - n/2, in which case the present
theory does not give any detailed information.

(4) The proof given above is related to that in [17, Theorem 5.2c], which
covers the case of the scalar Laplacian corresponding to part (2) of the
above Proposition, see Proposition 2.6 below. ~
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After analyzing the properties of the operator J1.K,g, it is easy to prove the
corresponding properties of the scalar Laplacian 0394g.

PROPOSITION 2.6: Let ô and s satisfy condition (2.1) and let n &#x3E; 2. Assume

that g E Ms and that s’  s. For J’ ~ R consider the mapping

The following statements are true

then A9 is an isomorphism.
then 0394g is a surjection with one dimensional

kernel consisting of constant functions (this follows from the maximum
principle.

where fo is a homogeneous first order function in ker Ae n Hs, and
f, E Hs03B4-1. Further, for n &#x3E; 3 we have the following additional cases: If
c5 = 1 - n/2 then we get f1 E Hs-n/2-03B5 for some e &#x3E; 0 and if c5 &#x3E; 1 - nl2,
then f = fo + fl , with fo a general first order function and f, E H8
which in this case implies that f1 1 ~ 0 as x ~ 00.

If g E Coo, then in the above cases, ker 0394g ~ Cl’ ~

2.4. The structure of the group of asymptotically Euclidean
diffeomorphisms

DEFINITION 2.3: For s &#x3E; nl2 and c5 E R, let Db denote the group of those
diffeomorphisms ~ such that q - id and ~-1 - id are Hs. Denote by R, L:
Db x Ds03B4 ~ Ds ther right and left composition maps, respectively.

PROPOSITION 2.7: Let s &#x3E; nl2 and let c5 &#x3E; - nl2.

(1) The space Ds+103B4-1, is a smooth Sobolev manifold of maps.
(2) R~: Ds+103B4-1 ~ Ds+ 1 is smooth for all il E Ds+ 1 and Ln : Ds+ ~ Ds+103B4-1 is Cl

for 11 E Ds+l03B4. In particular, Ds+103B4-1 is a topological group w.r.t. the induced
Hs03B4 topology.
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Remark : Part (1) is straightforward, but part (2) is a nontrivial result for the
interesting range - n/2  £5  - n/2 + 1 due to [8, Corollary, p. 277].
They prove the 1 = 0 part but the rest is a straightforward generalization of
the corresponding result for M compact. The result was erroneously stated
for arbitrary £5 e R in [6]. ~

In the following, we will always assume that n &#x3E; 2. Let s &#x3E; n/2 + 3 and
let £5 be in Case 1 or Case 2 as in §2.2. Let Ds+1 denote the group of all

diffeomorphisms of M which leave MS invariant (we suppress reference to £5
in our notation where no confusion can arise). The topology on D§± is the
one that is naturally induced from the Hs+103B4-1-topology. This topology is not
appropriate for Ds+1, however. To analyze the space DS+’, we define, for

gEMs+I

XS+ 1 = I:dDs+ 1 is the "Lie-algebra" of Ds+1. Let X E XS+ 1. Then, by defini-
tion, for g E Ms+1, we have Kg(X) = Lxg E TgM = Hb(S2T*M), so by
Proposition 2.4 (2), we find that

By Proposition 2.5, 0394K,g: Hs+103B4-1 ~ Hb+ is a surjection with finite dimensional
kernel. Hence, elements in Xs+1 not in H§± must be in ker OK,g n -nj2-I-e 
for some e &#x3E; 0. It is easy to see that Hs+1-n/2-1-03B5 is the largest space we have
to consider, since it contains all the first order vectorfields. Thus, using
Proposition 2.5, we can write X E Xs+1 1 as X = Y + X, where Y E HS+103B4-1(TM)
and X E Hs+1-n/2-1-03B5 (TM) ~ ker 0394k,e.
We will consider the cases 1 and 2 defined in §2.2. The point is that in Case

1, Ds+103B4-1 contains the translations while in Case 2 it does not. We will not
consider the exceptional case £5 = 1 - n/2. Using (2.5) we see by expressing
X in terms of a Cartesian coordinate system for e, that in Case 1, X can be
chosen to be a pure infinitesimal rotation, while in Case 2, X is an infinitesimal
Euclidean transformation. It is important to note that in either case we can
take X E H~loc since e is C~.

DEFINITION 2.4: Let X, Y, X be as above, then we define the norm 11 XII xs,, 1
by
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where the norm 1 in Case 1 denotes the norm on o(n), the Lie algebra of
O(n) and in Case 2 denotes the norm on e(n), the Lie algebra of E(n), where
E(n) = R n  O(n) denotes the Euclidean group in n dimensions. ~

The following Lemma is a straightforward generalization of Proposition 2.7
to the case of Ds+ 1.

LEMMA 2.8: Let s, ô satisfy conditions (2.1) and (2.2). The space DS+ 1 is a

smooth manifold modelled on Hs+103B4-1 x o(n) or Hs+103B4-1 x e(n) in Case 1 and Case
2 respectively. The topology induced on Ds+1 by the ~ ~s+1X-norm via the
exponential mapping is independent of the choice of g ~ Ms+1. R,,: DS+ 

1 
~

DS+ 1 is smooth for all ~ E DS+ 1 and L,,: DS+ 
1 
~ DS+ 1 is C’for ~ E Ds+ 1+l. In

particular, Ds+l is a topological group w.r.t. the above topology. ~

PROPOSITION 2.9: Let G(n) denote O(n) and E(n) in Case 1 and Case 2

respectively. The following statements are true.

(1) Ds+1 ~ Ds+103B4-1  G(n).
(2) Ds+103B4-1 is a normal subgroup ofDs+ 1 and the quotient Ds+ 1/Ds+103B4-1 is isomorphic

to G (n) .

Remark : Part (2) of the Proposition corrects a statement in [ 17, Corollary,
p. 10] to the effect that in general D/Ds+103B4-1, = E(n), where E(n) is the Euclidean
group in R n. This situation may be changed by working with a more
restrictive set of asymptotic conditions modelled on the quasi-isotropic
gauge introduced in General Relativity by York [19]. ~

2.5. A splitting theorem

This is the basic result needed to show that the orbits Os(g) are immersed
submanifolds of MS. The main Lemma that we will use is the following.

LEMMA 2.10: Let Sl , i = 1, 2, 3 be Banach spaces and let A: SI ~ S2,
B: S2 ~ S3 be continuous linear operators and assume that C = BoA:
SI - S3 is Fredholm. Then ker B splits and the range of A is closed and splits
in S2.

Proof: First note that by the Fredholm property of C, ker(A) and coker(B)
are both finite dimensional. Further, the continuity of B implies that the
range of A, R(A) is closed.
Now let 9, = S1/ker(A) and S3/coker(B) and define
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in the natural way. Then C is again Fredholm and we can compute that

which are finite dimensional.

By the definition of splitting, X c Y splits if and only if Y = X + Z
where + denotes direct algebraic sum and Z c Y is some closed subspace.
In particular, any finite dimensional subspace splits. Hence, there is a closed
subspace Y c ker (B) so that ker (B) splits into

and S2 splits into

Thus, we can write S2 as a split sum S2 = R(A) + Z + Y. Hence, if we
write R(A) = X + [R(A) n ker (B)], then we have the split sum

which completes the proof.

Let g EMs’ for some s’  s + 1 and let g(n) denote the Lie algebra of the
asymptotic group G(n), see §2.4. By Proposition 2.4, 0394K,g = 03B4g o Kg is Fred-
holm as a map from Hs+103B4-1 to Hs-103B4+1 and by the finite dimensionality of g(n)
it is clearly also Fredholm as a mapping from XS+ to Hâ+ so we can apply
Lemma 2.9 with A - Kg and B = 03B4g to find that Kg(Xs+1) ~ Tg MS is a
closed splitting subspace. We record these findings in the following

THEOREM 2.11: The range of

Remark : We are working in this paper with the L2 -type Sobolev spaces H,8
which are Hilbert spaces, so any closed subspace splits, and the Lemma 2.10
is therefore not strictly necessary. However, the Lemma seems to be of
independent interest as a generalization of the result of Cantor [5, Lemma
2.2] and may be useful in applications where the L2-type spaces are not
appropriate. Il
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3. The structure of orbits

A central point in the construction of the quotient space M/D is the analysis
of the structure of the group of isometries of a metric g and the orbit

08(g) c MS. In this section we provide the necessary extensions of the
results of [9, §5].

3.1. Killing fields and isotropy groups

Let g E M and let Ig be its isotropy group w.r.t. A. It is well known that Ig
is a Lie group of dimension at most 1 2n(n + 1) and the Lie algebra of Ig is
given by the Killing fields of g. For more information about isometries, see
[12, Chapter I]. It follows from [12, Theorem 1. 3. 1 ], that if Ig is of maximal
dimension and g E M, then (M, g) is isometric to (W, e). In order to study
the structure of orbits, we need to construct the quotient space DS/Ig . This
was done for the case where M is compact by Ebin [9, §5]. The technical
results in §2 and the proofs in [9, §5] make it clear that in the present case,
the only important difference from the case treated in [9] is that the isotropy
group Ig may fail to be compact.

LEMMA 3.1: Let g E M. The map i : Ig - DS is an imbedding.

Remark : The fact that i is a homeomorphism onto its image is used crucially
in the proof of [9, Lemma 5.9].

Proof: The smoothness of i and the injectivity of Di are proved in the same
way as in [9, §5] using the results of §2. Let i denote the Lie algebra of Ig. It
is clear that Ig is isomorphic to a subgroup of the Euclidean group
E(n) = O(n) m Rn. Further, the subspace L of i such that Di(03BE) E ker OK,g
is asymptotically first order (Proposition 2.5 (3)) for 03BE E L is a subalgebra
of i which is isomorphic to a subalgebra of O(n).

First, assume that g is not flat. Let X ~ H~03B4’(TM) for some b’ &#x3E; - n/2 - 1

be a Killing field for g. Then X E ker 0394K,g and hence, by Proposition 2.5 (2),
X = Xo + AB where Xo is a constant vectorfield w.r.t. Cartesian coordinates
for the Euclidean metric e and XI E Hâ by Proposition 2.5 (2) (recall that
we are assuming that g E M). This implies that X tends to the constant
vectorfield Xo at infinity. Hence, the flow of X is complete.
For x, y E M, let d(x, y) be the distance function w.r.t. the metric e. Let

x E M be fixed and choose y E M such that

(1) 03A6X0,t(x) = y for some t, where 03A6X0 denotes the flow of Xo.
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and

(2) d(x, y) is large enough so that

for all z E M such that d(x, z)  d(x, y). Let $x,t be the flow of X. It is now
easy to see that

for some constant 6 &#x3E; 0. Hence, d(x, 03A6X,t(y) ~ oo as t - oo. But then,
since X E Ig, g is curved at oo, a contradiction to the assumption that g E M.

Thus, unless g is flat, Ig is a compact Lie group and the arguments in [9,
§5] show that the inclusion Ig c D is an embedding.

It remains to consider the case where g is flat. Then Ig = E(n), the
Euclidean group in n dimensions. Consider i(Ig) c Ds. Convergence in DS
implies pointwise convergence, by the Holder inclusion Lemma (§2.1). We
can represent Ig and i(Ig) explictly in terms of an Euclidean coordinate
system. The result is now obvious in view of the fact that the Holder

inclusion property of the Hb spaces implies that the topology on DS is

stronger than pointwise convergence. ~

Using Lemma 3.1, it is straightforward to prove the following result, which
corresponds to [9, Proposion 5.10].

PROPOSITION 3.2: Let g E M. Then the inclusion Ig c DS is a smooth embed-
ding, the quotient DslIg is a manifold and the map 03C0: Ds ~ Ig admits smooth
cross sections.

3.2. Proof that orbits are embedded

Let g e MW and let Os(g) and OD (g) denote the orbit of g in MS under Ds 1

and D§± respectively. Theorem 2.11 shows that the basic results on differen-
tial topology of infinite dimensional manifolds apply to the present situation
and the following result is easily proved along the lines in [9, §6].

PROPOSITION 3.3: Let s, à satisfy conditions (2.1) and (2.2) in §2. Then OS (g)
and OD(g) are smooth immersed submanifolds of MS. ~
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We will now prove that Os(g) and OsD(g) are also embedded submanifolds
of MS, which is what is necessary to construct the quotient spaces M/D and
M/D. Let g e Ms and let 03BAx(03B4) denote the sectional curvature of g w.r.t. the
2-plane 03C3 at x e M and let

The following result is easily proved using the results of §2.1 and the
properties of 03BA.

LEMMA 3.4: With I(g) as above, then I(g) is bounded for g E MS, I(g) = 0 if
and only if g is flat and for ~ e Ds+1 or ~ e Ds+103B4-1, I(~*g) = I(g). Further, the
mapping I: Ms ~ [R is continuous. ~

Thus we have defined a function 1: Ms ~ [R which is invariant under the

action of DS+ and Ds+103B4-1 and takes the value 0 only at the flat metric. This
makes it possible to extend the method used by Ebin to the noncompact
case.

THEOREM 3.5: Let s, t5 satisfy conditons (2.1) and (2.2). Let g e Mco. Then
OS (g) and OsD(g) are closed embedded submanifolds of MS.

Proof : We will consider only the case Os(g), the case OsD(g) being similar
and easier. We know by Proposition 3.2 that OS (g) is an immersed submani-
fold, so ait we need to show is that it is closed. Let (~m)~m=1 ~ Ds+I 1 be a
sequence of diffeomorphisms and let gm = 1J:g. Assume that gm ~ g~ in the
topology of Ms. The Theorem is proved if we can construct a diffeomorphism
~~ e Ds+1 such that ~*~g = g~.

First assume that g is not flat. By Lemma 3.4, I(g) ~ 0 and I(~*mg) =
I(g), so it follows that I(g~) = I(g) ~ 0. Let p e M and consider the

sequence pm = ~m(p). First we will show that this sequence has a convergent
subsequence. To get a contradiction, assume that {pm} has a divergent
subsequence {pk}. By assumption, s  n/2 + 3 so by the Holder estimate
[7, Lemma 2.4], g and its derivatives to 2:nd order converge uniformly to e
as p - oo in M and so we find neighborhoods Uk of geodesic radius (!k of
Pk which are covered by exponential coordinates and (!k ~ 00 as k - 00.

This means that on ~-1k(Uk), gk = 1Jkg tends to a flat metric. By assump-
tion, gk ~ g~ which means that g~ is flat. This implies that 0 = I(g~) ~
I(g), a contradiction. Thus there is a compact subset K c M such that ~m(p)
remains in K and it follows that there is a subsequence ~k such that ~k(p) has
a limit q e M.
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Now consider a covering {Ui}~l=1 of M where the U are open sets of
geodesic radius Qi spanned by exponential normal coordinates centered at
points {pi}~i=1. Using the fact that the sequence {~m(pi)}~m=1 hàs an accumu-
lation point for every i we can, by using a diagonal procedure, select a
subsequence which we again call 11k such that for all i, the sequence

P¡,k - 11k(P¡) has a limit which we call qi.
Now we are able to use exactly the same method as in the paper by Ebin

[9, pp. 29-30]. Choose an ON-frame {Vsi}ns=1 at each point pl and denote its
image under 11k by Vsl,k. By, if necessary, selecting a further subsequence of
{~k} which we will continue to index by k, we can make sure that the
sequence {(Vsi,k, pi,k)}~k=1 converges to (Wis, qi ), where {Wsl}ni=1 is an ON-
frame at qi .

Using the fact that U are covered by exponential coordinates, we can use
the knowledge of V and W to construct a diffeomorphism 1100 such that

~~(pi) = qa and 11: g = g~.
We now turn to the case where g is flat. Then (M, g) is isometric to (Rn, e).

The problem is here simplified by the fact that M is covered by a single
exponential chart. Let g E MW be flat and let gm = 11:g - g~ as above. The
assumption that g is flat implies that gm is flat for all m and so, we can
construct 11 00 as follows.
Choose p E M. Using the fact that Ig is transitive, we can find for each 11m

a diffeomorphism Zm E Ig such that 11m 0 ~m(p) = p. We can now argue as
above, using exponential charts centered at p to find a subsequence 11k and
a diffeomorphism ~~ such that ~~(pi) - qi and 11:g = goo.
The proof in [9] shows that ~k ~ ~~ considered as C1loc mappings and that

this convergence is actually in Hs+1loc, which settles the local question. We will
here show that this convergence takes place in XS+ 1.
We first consider the behaviour of the differentials ~~k and ~~~. Recall

that Ik and ~~ are defined in terms of the exponential mappings Ex Pk and
Expro of gk and goo. The tangential derivative T Expy of the exponential
mapping may be computed by solving the Jacobi equation. By the Holder
estimate and the multiplication properties of the Hs03B4 spaces, the mapping
R(y) : Ms ~ C003B4’, where R(y) denotes the Riemann tensor of y, is continuous.
This implies, by the construction of ~~, that

uniformly in k. This implies in particular, that ~~~(x) ~ A E O(n) as
x - oo. By the arguments in [9], ~~ is a local diffeomorphism, which
together with the above estimate implies that |det (~~~)(x)| &#x3E; s for all

x E M, where e &#x3E; 0 is some constant.
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We are now ready to show that the convergence of ~k to Y/oo takes place
in Ds+1. Let r, k0393 and ~0393 denote the Christoffel symbols of g, gk and g~,
respectively and set k03B5 = k0393 - ~0393. We know by (3.1) that ~fk/~x - ~f/~x ~
0 in cg, but we have not investigated the behaviour of the higher derivatives.

Lettingfkoo (Xl’ ..., Xn) and fi~ (x1, ..., Xn) be the expressions for Ik and
Y/ 00 in a coordinate system (xl , ... , 1 x,,), following the argument in [9] shows
that

in Hs-1loc n Hj+ 1. Hence fk converges in Hs+1loc 1 which settles the question of
smoothness of 1’/00. It remains to show that the convergence actually takes
place in DS+ 1.
Now assume that 1’/k ~ 1’/00 in D’ n Hs+1loc Diff(M) for some t  s (where

we give D’ the obvious topology, following §2.4). Let (xl , ... , xn) be a
Cartesian coordinate system for e. Taking traces of both sides of (3.2) w.r.t.
s, r and using the multiplication rules for the Hs spaces we find that

where A, denotes the scalar Laplace operator w.r.t. e and F is the function
determined by taking the trace of the r.h.s. of (3.2).
By the results of §2.4, under the above assumptions, we can write

~k = Ak 0 zk, where Ak E O(n) in Case 1 and Ak E E(n) in Case 2 and
Zk E D’- 1. Let the coordinate expression for Ak be Ai. Applying Proposition
2.6 to (3.3) and using the fact that 0394eAlk(x) = 0, we find that zk ~ z~ in
D’I’. The spaces O(n) and E(n) are locally compact, so the pointwise
convergence of 1Jk ~ ~~ is enough to show that Ak ~ Aoo and hence that
~k ~ ~~ in Dt+1 n Hs+1loc Diff (M). Thus, by induction we find that ~k ~ ~~
in Ds+I. That Ig~k ~ Ig~~ in Ds+IIIg can be proved exactly as in [9]. This
completes the proof of Theorem 3.4. /

4. The slice theorem

In this section we will state and prove the slice theorem for the action of Ds+1
on M’.

In the asymptotically Euclidean case, the weak L2 -metric used in [9] to
construct a slice for the action of D8 as an image under the exponential
mapping of MS of a ball in the normal bundle of 08, considered as a
submanifold of Ms, is not available.



79

However, the norm defined on HJ by

for some integer t such that c5  t  s, can be shown to give a weakly
nondegenerate Riemanian structure on M which is also invariant under the
action of D and D. Hence, we could apply a technique similar to that used
in [9] for the construction of a slice.

Instead of doing this, we will use a more elementary technique similar to
that used by Cantor [4].
The definition of a slice for the action A is as follows.

DEFINITION 4.1: Let (s, 03B4) be as in §2 and let A be the action as above.
Assume that for each g E M there exists a closed submanifold SS c MS
containing g, such that:

(1) If ~ ~ Ig, A(~, Ss) = Ss.

(2) If il E Ds, such that A(~, Ss) n SS =1= 0, then q E Ig.
(3) There exists a local cross section x : Ds+1/Ig ~ DS+ 1 defined in a neigh-

borhood Us+’ 1 of the identity coset such that if F: US+ 1 x Ss ~ MS is
defined by (u, t) ~ A(x(u), t), then F is a homeomorphism onto a
neighborhood of g.

Then we say that there exists a slice for the action A..

Remark : Note that g is assumed to lie in M"0. The reason for this is that we

wish to construct a COO structure for M~/D~ and MOO ID 00 in §6. If we only
assume that g e Ms’ for some finite s’, then the mappings in part (3) of
Definition 4.1 would be of class Ck for some finite k depending on s’ - s.

~

We are now ready to state the slice theorem.

THEOREM 4.1 : Let (s, 03B4) be as in §2 and let A be the action of D or D as above.
Then there is a slice for A satisfying the requirements of Definition 4.1.

Proof: For g E Moo, let og: Ds+1/Ig ~ QS(g) c MS be the map induced by
the action A as in §3.1. Let n : D ~ DlIg denote the natural projection and
denote the space Hs03B4(S2T*M) by Ws. Note that the inclusion MS c WS is
open, so we can identify MS with WS locally.
By Theorem 3.4, Os(g) c MS is an embedded submanifold and in par-
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ticular, with the above notation, range (T03C0(I)~g) ~ WS splits. Now, by
working in local coordinates on Ds+1/Ig, we can apply [13, Corollary 1 s,
p. 14] to this situation. This gives a mapping G: Ws ~ Wl’ x W2 , which is
a local isomorphism at g, such that

is an isomorphism from a neighbourhood Us+103C0(I) c Ds+1/Ig to a neighbour-
hood U; of 0 in WS. From the properties of G and n it is easily seen that for
if we define S by

where Us is a sufficiently small neighbourhood of 0 ~ Ws2, it will satisfy part
(1) and part (2) of the Theorem. Let Us+1I be a neighbourhood of I ~ Ds+1.
Part (3) follows by Lemma 3.1 and inspection of the mapping

where Usg is a neighborhood of g. This completes the proof of Theorem 4.1.
~

5. Concluding remarks

The results in this paper lay the foundation for an analysis of the structure
of the spaces M/D and M/D. In particular, the following results are fairly
straightforward applications of the methods of [9] and [2].

(1) M is an ILH manifold (this is straightforward from the fact that the Ms
are smooth Hilbert manifolds and the usual inclusion properties for
Sobolev spaces). Further, D and D are ILH Lie groups. The case of D
is straightforward, using the results in §2.4. For the case D one uses
Proposition 2.9 (1).

(2) The actions of D and D on M are Coo ILH actions and there is a slice
for these actions. That the action of D on M is ILH is straightforward
from [4, Proposition 5.3], and the case of D is similar. That there is a
slice for the actions follows from Theorem 4.1 and a straightforward
generalization of the techniques used in the proof of [9, Theorem 7.4].

(3) For g E M, there is a neighborhood U of G such that for g’ E U, the
isotropy group Ig. of g’ is conjugate to a subgroup of Ig, the isotropy
group of g. This is a standard result in the theory of transformation
groups and implies immediately that the set Mo of metrics with trivial
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isotropy group is open in M and also, using the techniques of [9,
Proposition 8.3] that 84o is dense in M.

(4) M/D is a stratified ILH variety but not an ILH manifold, while M/D is
an ILH manifold in Case 2, but in Case 1 it has one singular point
corresponding to flat space.
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