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1. Introduction

In recent years the study of curves over fields of positive characteristic has
again attracted the attention of people fascinated by its richness.

In this paper we give a systematic account of our results relating the
notion of non reflexivity and the geometry of curves.
The central notions we deal with, and of which we give a review in Section

2, are reflexivity and duality. Our main tool is the Hasse differential calculus
to which we devote Section 3. In Section 4 we derive some interesting
properties of a plane curve defined over a field of positive characteristic from
the properties of its parametrization at a general point. In Section 5 we study
how non-reflexivity affects the equation of a plane curve. In Section 6 we
give necessary and sufficient conditions for a plane curve to have a non
reflexive dual and show that the general member of each of the families
considered in Section 5 has a reflexive dual. In Section 7 we show that any
extremal curve, that is a curve in a projective space such that its degree is
equal to the degree of the projection from its conormal variety to its dual
variety, is a strange curve.

These results in many ways complete and generalize the works of Pardini
[Pa] and Homma [Ho], as well as some unpublished work of Kleiman and
the author [He-Kl, 1].

2. Preliminary remarks

Let Z c PNk be an irreducible variety defined over an algebraically closed
field k.

* Research partially supported by CNPq-Brazil.
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Recall that the conormal variety C(Z) of Z is the closure in Pl x (Pl)*
of the set

The dimension of C(Z) is always N - 1.

The dual variety Z’ of Z is the projection on (PNk)* of C(Z).
We note by 03C0 and 03C0’ respectively the projections of C(Z ) onto Z and

onto Z’.

A variety Z is called reflexive if C(Z) = C(Z’). It follows immediately
from this definition that if Z is reflexive, then (Z/)’ = Z, and Z’ is also
reflexive.

Examples of non reflexive varieties are the strange curves, that is, projec-
tive curves such that all the tangent lines to the curve at simple points
contain a given point. Indeed, the dual of a strange curve is a hyperplane
whose dual is a point, so (Z ’)’ =1= Z.
A fundamental result, called the Segre- Wallace criterion (see [Wa] or

[Kl, 2]), asserts that:
Z is reflexive if, and only if, 03C0’ is separable.
In such case, it follows that 03C0’ is birational.
If Z is a curve, not a line, then the fibres of 03C0’ are zero dimensional, and

so Z’ is a hypersurface. In this case we have that 03C0’ is of finite degree, that
is, K(C(Z )) is a finite field extension of K(Z’).

Define

and

So deg n’ = 03C0’i. 03C0’s.
In (3.5) of [He-KI, 2] we proved the following result, called the Generic

Order of Contact Theorem:

(2.1) A projective curve Z is not reflexive if, and only if, for a general point
P of Z and a general tangent hyperplane H to Z at P, we have

where I(P, Z. H) is the intersection multiplicity of Z and H at P.
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An immediate consequence of (2.1) is that there are no non reflexive
curves of degree less than p = chark.

If H is a general tangent hyperplane of a non reflexive curve Z, that is, a
hyperplane corresponding to a general point of Z’, then (2.1) implies that

where P1, ... , P03C0’s are the points at which H touches Z.
Taking degrees in the above equality, we get

The above inequality is trivially true when Z is reflexive.
A curve Z will be called extremal if we have an equality in (2.2). Such

curves will be studied in Section 7.
For the rest of this section we will assume that

is an irreducible plane curve. In this case 03C0 is birational hence it induces a
rational map

where Gi is the partial derivative of G with respect to Xi.
If Z is given in aflîne coordinates by f(x, y) = 0, with x a separating

transcendental of K(Z ), then it is easy to see that the map cp is given by
cp(P) = 1(Y’x - y)(P); -y’(P); 1], where y’ = -fX(x, y)/fY(x, y).
When Z is reflexive, it follows that 03C0’ is also birational, hence the map cp

is birational and its inverse is the map

obtained in the same way as 9.
The converse of the statement that if, Z is reflexive, then (Z’)’ - Z, is

false as we may see in the following known example

(2.3) EXAMPLE. Let chark = p &#x3E; 0 and let q be a power of p. Define Z by
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Since Z is smooth, the rational map 9: Z - Z’ is defined everywhere on Z
and it is the restriction of the Frobenius map of order q of the projective plane:

Denoting by [Y0; Y1; Y2] the coordinates of (P2k)*, it is clear that the

equation of Z’ is

Applying the same procedure to Z’, it follows that (Z’)’ - Z.
Now, the image of [xo ; xl ; x2 ~ Z by cp’ 0 cp is the point 0 1 xq22]

which is, in general, different from [xo; xl ; x2], hence cp’ 0 cp ~ Id, and
therefore Z is not reflexive.

Since we are going to work locally on curves we will introduce some
notation and establish some technical results about parametrizations.
A parametrization of the curve Z centered at the point [ao; al ; a2] E Z is

a point

not rational over k, such that P(O) = [ao; a,; a2] and G(P(t)) = 0.
P(t) will be called primitive if it is not rational over k«tP)).

(2.4) LEMMA. Let P(t) = [Po(t); Pl (t); P2 (t)] be a point in p2 k«’» . Then we have
(i) P(t) is rational over k((tp)) if, and only if, P(J) and P’(t) are linearly

dependent over k((t)).
(ii) Suppose that P(t) is not rational over k«tP)) and let Q(t) E p2 Then

P(t). Q(t) = 0 and P’(t).Q(t) = 0 if, and only if, 

Proof. (i) If P(t) is rational over k((tp)), then

with,

hence W) and P’(t) are linearly dependent over k(t)).
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Conversely, if P(J) and P’(t) are linearly dependent over k((t)), then for
all i, j = 0, 1, 2,

Since some of the Pi(t) is non zero, by symmetry we may assume that
P2(t) ~ 0. It follows that for i = 0, 1,

hence, for i = 0, 1,

therefore P(t) is rational over k((tp)).
(ii) This follows from (i) and the fact that the right hand side of (2.5) is

the point of P2k((t)) corresponding to P(J) x lî7(-t).

(2.6) REMARK. Let P(t) be a primitive parametrization of Z centered at a
smooth point, then [G0(P(t)); G, (P(t)); G2(P(t))] makes sense as a point of
P2k((k)) and it is equal to the right hand side of (2.5).

Indeed, differentiating the equality G(P(t)) = 0 we get

From Euler’s identity for homogeneous polynomials we get

Since P(t) is primitive, then P(t) and Q(t) = [G0(P(t)); G1(P(t));
G2(P(t))] satisfy the conditions of Lemma 2.4 (ii), from which the result
follows.
The number n’ may be characterized in terms of parametrizations as

follows.

(2.7) If P(t) is a primitive parametrization centered at a general point of Z,
then [Go(P(t)); G, (P(t)); G2(P(t))] is rational over k((t03C0’t)) but not rational
over k((tp03C0’i)).
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It follows immediately from this that Z is not reflexive if, and only if,
[Go(P(t)); G1(P(t)); G2(P(t))] is rational over k«tP)).

3. Hasse differential calculus

Let A be a unitary commutative k-algebra. A Hasse family of differential
operators on A or, briefly a Hasse family on A, is a family

of k-vector space endomorphisms of A satisfying the following conditions:

where,

If n = (0, ... , v, ... , 0), where v is the ith entry, then Dn will be
denoted by Dvi.

It is easy to verify that for each i, (Dvi, 03BD E N) is a Hasse family on A.
Conversely, given r Hasse families (Di , v ~ N), i = 1,..., r, on A, then

define a Hasse family -9 = (Dn, n E Nr) on A.

(3.1) EXAMPLE. Let A = k[t] = k[t1, ... , tr]. Put tm = tm11 ··· tm’ and

The family.9 = (Dn, n EN’), where Dv has been extended by linearity on
A in a Hasse family on A.

This definition is taken in order that, if P(tl, ... , t,) E A, then

DvP(tl, ... , t, ) is the coefficient of y’ is the expansion of P(t1 + u1,...,
tr + ur ) as a polynomial in u. This was what motivated Hasse to introduce
such operators (see [Ha]).
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Condition (iii) for a Hasse family -9 implies that

and that

where

So, if chark = 0, we have that

where

Therefore, in characteristic zero, the whole family -9 is determined by the
first order operators D1r, ... , D11.

If chark = p &#x3E; 0, then the picture is quite different as we will see in (3.7).
It is well known and easy to prove that if p is a prime number, n and m

are integers with n  0, then

From this it follows easily that if m = 03A3si=0 mipi, n = 03A3si=0 nipi, where
the mi and ni are integers, with ni  0, i = 0, ... , s, then

This in turn implies that if also m a 0, then

(3.6) C;:) 1= 0 (modp) if, and only if, m is p-adically bigger than or equal to n.
These are classical results in elementary number theory. (3.4) and (3.5) can

already be found in [Lu], while (3.6) is usually credited to F.K. Schmidt.
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Condition (iii) of the definition of a Hasse family together with (3.5) imply
easily the following result due to Dieudonné [D].

Let n = Xo njpj with 0 :::s; nj  p, j = 0, ..., s, then we have

It follows that for each i, the family (Dni, n e N) is determined by the
operators

The following is an easy consequence of (3.7).

(3.8) If Dji a = 0 for some a E A and j ~ N, then Dra = 0 for all m

p-adically bigger than or equal to j.
In particular, we have

(3.9) LEMMA. Let X and T be indeterminates and q be a power of p. If
f(T) E k[T], then

where DnX, (respectively DT) is the operator Dn of Example (3.1) defined on k[X] 
(respectively on k[T]).

Proo, f : Let f(T) = Z’ 0 ai Ti. Then DnXf(Xq) = Y-- 0 (iqn)aiXiq-n, from
which the result follows in view of (3.4) and (3.6).

The following is a higher order generalization of Euler’s identity for
homogeneous polynomials.

(3.10) PROPOSITION. Let Pj(T1, ..., Tr) and Qj(T1, ..., T,) be polynomials
in k[TI’ ..., Tr], j = 1, ... , s, such that the Pj are homogeneous of degree
n and the Qj have no indeterminate raised to a power bigger than or equal to
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a power of q of p. If

then

Proof. Using condition (iv) of the definition of a Hasse family together
with (3.9), we get that

Now, this together with Euler’s identity for homogeneous polynomials
imply the result.

(3.11) LEMMA. Let B be a commutative ring and (Dn, n E N) a family of
mappings from B into B satisfying condition (iv) of a Hasse family. Then for
any b E B and n, m  1, we have

Proof By induction on n and m.

(3.12) PROPOSITION. Let A be a k-algebra with a Hasse family D =
(Dn, n E N) on it. Let B = A[ y], where y satisfies a polynomial relation
P( y) = 0 with coefficients in A such that P’( y) is not nilpotent in B.

Then -q extends uniquely to a Hasse family on Bp’(y) = S-l B, where S =
{1 P’(y), (P 1 ( y))2, ...}.

Proof. Let P( y) = ao + aly + ... + a,y’. The only way to define Djy
is by using the relation P(y) = 0 and (3.11), which imply that
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Using (3.11) to define Dlym for m &#x3E; 1, we get

Again the relation P(y) = 0 and (3.11) allow us to define D2 y as an
element of Bp’(y). So, inductively we have that (3.11) and the previously
computed elements determine D2ym for all m &#x3E; 1. Now proceed inductively
again to define Dn ym, for n, m  1, as elements of BP’(y). It is easy to extend
the definition of Dn on BP’(y).

It remains to prove that what we get in this way is actually a Hasse family
on BP’(y). This will be omitted since it is a long and tedious chain of
verifications.

(3.13) COROLLARY. Let Z:f(x1,..., xr+1) = 0 be an affine irreducible

hypersurface defined over k, with Xl’ ..., x,, separating transcendentals. Let

be the k-algebra of regular functions on Z. Then there is a Hasse family
D = (Dn, n e Nr) on Bfr+1, where fr+1 is the derivative of f with respect to
Xr+1, uniquely determined by the conditions

It is easy to prove that Hasse families behave well under the formation of

rings of fractions and under completions. The precise statements are the
following:

(3.14) (Hironaka [Hi]). Let D = (Dv, 1) ~ Nr) be a Hasse family on A. Let
S be a multiplicative subset of A and 1 an ideal of A. Then D extends uniquely
to Hasse families on S-’ A and on the I-adic completion of A.

So the Hasse family of Example (3.1) extends uniquely to a Hasse family on
k[[t]]. Also in this case, DvP(tl, ... , t,) is the coefficient of ue in the

expansion of P(t + u) as a power series in u.
Let the notation be as in (3.13). Suppose that Z is an irreducible hyper-

surface and let K(Z) be its field of rational functions. By (3.14) D extends
uniquely on K(Z). If h E K(Z) is regular at P E Zsm, and x; - x;(P),
i = 1, ... , r, are local parameters of Z at P, then in Z,P we have
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It follows from (3.13) and (3.14) that we have a Hasse family on the
function field of any algebraic variety Z in a number of variables equal to
the dimension of Z.

4. Local theory for plane curves

Let

be an irreducible plane curve, and let P be a smooth point of Z. By
a convenient choice of the coordinates of P2k we may assume that

P = [1 ; ao ; bo and that t = x - ao is a local parameter of Z at P, where
x = X1/X0.
Hence a primitive parametrization of Z centered at P may be given by

where for

From Remark (2.6) we have that

which are the power series expansions in (ftz,p of the components of

From (4.1 ) we get immediately the following remarks:
(4.3) No non linear curve in characteristic two is reflexive.
(4.4) Let x be a separating transcendental of K(Z), then the following are
equivalent.
(a) Z is reflective (b) chark ~ 2 and D2xy ~ 0 (c) y" ~ 0.

Assertion (4.3) was first observed for any curve by N. Katz in [Ka], while
(4.4) is Wallace’s Hessian Criterion given in [Wa] (see also [He-Kl, 2]).
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Note that (4.4) implies that
(4.5) Z is reflexive if and only if, chark e 2 and for a general point P E Z
we have

If Z is not reflexive and x is a separating transcendental of K(Z), then
chark = 2 or D2xy = 0. Hence from (3.8.1 ) and (3.8.2), it follows that there
exists q = pe such that for any smooth point P of Z, where x - x(P) is a
uniformizing parameter, a primitive parametrization of Z at P may be given
by

such that bq, as a rational function on Z, is not identically zero.
From (4.1 ) we get

Since at a general point P E Z, we have bq =1= 0, then either bq+1 =1 0 or

a0bq+1 - bq ~ 0, so from (4.6) and (4.7) we get that

This is the Generic Order of Contact Theorem for plane curves.
A point P E Zsm is called a flex if I(P, Z. TpZ) &#x3E; 03C0’i.
A flex is called ordinary if I(P, Z. TPZ) = n’ + 1, otherwise it is called

a higher flex.
At finite distance, a flex is a smooth point for which

therefore any non linear curve has at most finitely many flexes.
The following result gives a peculiar property of non reflexive curves.

(4.8) PROPOSITION. Let Z be a non reflexive curve and P(t) a place centered
at a point P which is not a higher flex. Then the image of P(t) by cp is a non
singular branch of Z’ at cp(P).
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Proof Indeed, the condition on P implies that bq =1= 0 or bq+1 ~ 0 at P,
the result now follows immediately from (4.7).

(4.9) COROLLARY. Let Z be a smooth non reflexive curve of degree  3, then
chark = 2 and Z’ is smooth.

Proof From (2.2) we have that 03C0’i.03C0’s  deg Z  3. Since Z is not

reflexive, then 03C0’i = 2 or 3 and = 1.

Since Z has no bitangent lines (by Bézout’s theorem), it follows that at all
points of Z’ there is only one branch; and since Z has no higher flexes, it
follows from (4.8) that all branches of Z’ are non singular, hence Z’ is
smooth.

Now, since cp is purely inseparable, Z and Z’ have the same genus.
If deg Z = 2, and since the degree of a non reflexive curve is at least equal

to chark, it follows that chark = 2.
If deg Z = 3, then deg Z’ = 3. From Plücker’s formula, see [KI, 1], we

have

It then follows that deg 03C0’ = 2 and therefore chark = 2.

(4.10) COROLLARY. If Z is a smooth non reflexive curve of degree q + 1 such
that 03C0’i = q, then Z’ is smooth of degree q + 1 and 03C0’ is purely inseparable.
Proof The hypotheses, together with the Generic Order of Contact

Theorem and Bézout’s Theorem imply that Z has no bitangent lines, nor
higher flexes. Hence by (4.8) Z’ is mooth.
Now, from Plücker’s formula,

and from (2.2), it follows that deg Z’  deg Z - 1.

On the other hand, by the Riemann-Hurwitz formula, it follows that

deg Z’  deg Z.
Therefore, either deg Z’ = q, in which case deg 03C0’ = q + 1 which is

impossible because p| deg 03C0’, or deg Z’ = q + 1.

Hence deg Z’ = q + 1 and deg 03C0’ = q = 03C0’i.

(4.11 ) REMARK. It is possible to show that the curves in (4.10) are projectively
equivalent to the curve of Example (2.3) (cf. Pardini [Pa], where it is proved
for q = p. When q &#x3E; p the proof is similar).
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(4.12) PROPOSITION. Let Z: G(X0, X1, X2) = 0 be an irreducible plane curve
of degree at least two. Z is not reflexive if, and only if, for all i, j = 0, 1, 2,
the following equalities are satisfied on Z.

Proof. Since Z is not a line, then Z n {X0 ~ 01 is not empty. Let

Suppose that x is a separating transcendental of K(Z) (if not, y is and the
proof is similar).
By implicit differentiation of the relation f(x, y) = 0 we get

from which we get

From (4.4) we have that Z is not reflexive if, and only if y" = 0, hence

which gives one of the equations (4.13). The other relations are obtained in
a similar way.

5. Equations for non-reflexive plane curves

In this section Z will be a plane irreducible curve defined over k by an
equation

Z: G(X0, X1, X2) = 0.

We will give explicit forms for the polynomial G when Z is non reflexive
and satisfies some regularity condition.
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Let P be a point of Z. Define ep as the multiplicity of the jacobian ideal
of Z at P, that is,

(5.1 ) THEOREM. Let chark &#x3E; 2 and Z be such that LPEZ e p  (1/2) deg Z.
Then Z is not reflexive if, and only if, Gij = 0 for all i, j = 0, 1, 2.

Proof. Suppose that X is not reflexive, then (4.13) holds for i, j = 0, 1, 2.
For fixed i, it follows, for all j = 0, 1, 2 and all P E Z, that

This implies that

Suppose that Gii =1= 0. Then Gi ~ 0, deg Gii = deg G - 2 and deg Gi =
deg G - 1.

From Bézout’s theorem it follows after summation of (5.2) over all the
points of Z, that

Hence 03A3P~Z eP  (1/2) deg Z, a contradiction. So Gii = 0.
Now, from (4.13) it follows that 2GiGjGij = 0 on Z. Since chark ~ 2 and

Z is irreducible, it follows that either Gi = 0, Gj = 0 or Gij = 0 on Z. Any
one of these conditions implies immediately that Gij = 0.
The converse is trivially true in view of Proposition (4.12).

(5.3) REMARKS:
This theorem, for nonsingular curves, was first obtained by R. Pardini

in [Pa].
The hypothesis that chark &#x3E; 2 is essential in the theorem, since every non

linear curve in characteristic two is non reflexive.
Some sufficient condition such as 03A3P~Z ep  (1/2) deg Z is also essential

as we see in the following example.
Let chark = 3 and Z: XoXI + X2 = 0. Z is not reflexive since it is strange.

The conclusion of the theorem does not hold because G01 = 2X1 ~ 0. In
this case, 3 = 03A3P~Z eP  (1/2) deg Z = 3/2.

( 4) COROLLARY. Let chark = p &#x3E; 2 and let Z be such that 03A3P~Z ep 
( 2) deg Z. If Z is not reflexive, then chark|(deg Z - 1) and there exist
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homogeneous polynomials Pi, i = 0, 1, 2, of the same degree such that

Proof. From Euler’s identity and (5.1) we have that

Since not all the Gj are zero, it follows that chark|(deg X - 1).
Now, using Euler’s identity again, we have that

2

with Gij = 0 for all i, j = 0, 1, 2, hence Gi = Pi(Xp0, Xpl, Xp2) for some
homogeneous polynomials Pi.

It follows immediately from (5.4) that if chark &#x3E; 2, then the general curve
of any fixed degree n is reflexive (In [He-KI, 2] the reader may find more
general results with this flavour).

(5.5) THEOREM. Let chark = p and let Z: G = 0 be a curve such that

and Gij = 0 for all i, j = 0, 1, 2. Then n; = pe with e  2 if, and only if,
Dr G = 0 for all i = 0, 1, 2 and all m = 1,..., e - 1. 

Proof By induction on e. Let 

Suppose that e = 2. The condition that Gij = 0 implies that the Taylor
expansion of G(1, x1, x2) at Q = (1, al , a2 ) E Z° is given by

Now, a straightforward computation, using Euler’s identity for homo-
geneous polynomials, shows that
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Now, since Gij = 0 for all i, j = 0, 1, 2, then G has the form described in
(5.4), so from (3.10) we have that

where xo - 1.

Since by hypothesis we have that I(Q, Z. TQZ)  03C0’i &#x3E; p, it follows that

This implies that

Hence (5.7) is verified on Z; so for any P E Z we have, for all i, j = 0, 1, 2,
that

This implies that

Suppose that DpiG ~ 0.
It follows that Gi =1= 0, because otherwise from (5.7) we would have

Gj = 0 for j = 0, 1, 2 which is impossible. So we have

After summation of (5.8) over Z, we get by Bézout’s theorem that

hence

a contradiction. Hence Dp G = 0 for all i, j = 0, 1, 2.
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Suppose now that the results hold for e - 1 and that 03C0’i  pe.
By the inductive assumption we have that

From this it follows that

So the Taylor expansion of

On the other hand, (5.9) also implies that

hence by (3.10) we have that

Now, the same kind of reasoning as in the case e = 2 allows us to
conclude that Dpei G = 0 for i = 0, 1, 2. So one direction of the theorem is

proved.
The converse is clear since the conditions that Dpmi G = 0 and GiJ = 0 for

all i, j = 0, 1, 2 and m = 1,..., e - 1, imply that the Taylor expansion
of G(1, x1, x2) at Q ~ Z0 starts with the term y2= Dpei G(Q)(xi - ai)pe after
the linear term, so I(Q, Z. TQZ)  pe for a general point Q, hence by the
Generic Order of Contact Theorem we get that 03C0’i  pe.

REMARK. Some sufficient condition such as 03A3P~Z ep  (1 - 1/p) (deg Z)2 is
needed in the theorem as we see in the following example.

Let chark = 3 and let

It is easy to check that Gij = 0 for all i, j. It is also easy to verify that the
relations (5.7) are satisfied for all Q E Z° ; this implies that 03C0’i &#x3E; 3, so it must
be 9.
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On the other hand we have that

which is not zero on Z, hence the conclusion of the theorem does not hold.
The explanation for this is that

(5.10) COROLLARY. Let chark = p &#x3E; 2 and let Z be a curve such that

03A3P~Z ep  (1/2) deg Z. If 03C0’i &#x3E; pe . q with e  1, then the equation of Z is
of the form

where the P, are homogeneous polynomials.
Proof. This follows from (5.1) and (5.5).

This answers a question posed by Kleiman in [Kl, 3].
It remains to prove a result similar to (5.10) when chark = 2.
Any curve in characteristic two falls into one of the following types

according to its degree:
a) If deg Z is odd, then the equation of Z is of type

b) If deg Z is even, then the equation of Z is of type

(5.11) THEOREM. Let chark = 2 and let Z: G = 0 be a curve such that

03A3P~Z eP  (1/2) deg Z. Then 03C0’l  2e with e  2 if, and only if, Gu = 0 and
D2ml G = 0 for all i, j = 0, 1, 2 and m = 1, ..., e - 1.

Proof If GiJ = 0 and D2mi G = 0 for all i, j = 0, 1, 2 and m = 1,...,
e - 1, then clearly 03C0’i  2 because the Taylor expansion of G(1, x1, X2) at
Q e Z° will start after the linear term with the term
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To prove the converse, in view of Theorem 5.5, we have only to prove that

Gij = 0 for all i, j = 0, 1, 2.
The second order term of the Taylor expansion of G(1, x1, x2) at Q E Z° is

If deg Z is odd we cannot apply (3.10) directly to G since the degree of P3
is not equal to the degree of Pi, i = 0, 1, 2. But if we use (3.10) separately

. on each summand, it is easy to check that

Using this relation and playing with Euler’s identity, we get that (5.12) is
equal to

where x° - 1.

Now, the condition that 03C0’i  2e with e  2 implies that the polynomial
12= Gi(Q)xi divides the polynomial in (5.13), so we get, for Q E Z° and for
i, j = 0, 1, 2, the following relations

These relations, as in the proof of Theorem (5.1), imply that D¡G(Q) = 0
for i = 0, 1, 2, and consequently that Gij = 0 for all i, j = 0, 1, 2.

If deg Z is even, then by (3.10), Euler’s identity, and the relation

which comes from the equation type of Z, we get that (5.12) is equal to

Since the above polynomial is divisible by 03A32i=0 xiGi(Q), we get the same
relations as in (5.14) and the proof proceeds as above.
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(5.16) COROLLARY. Let chark = 2 and let Z be such that EP~Z ep 
(1/2) deg Z. If 03C0’i  2e with e  2, then the equation of Z is of the form

where the Pi’s are homogeneous polynomials.

REMARK. It follows from (5.16) that every smooth curve of even degree in
characteristic two is such that = 2.

So far we have only met two types of non reflexive plane curves in
zharacteristicp &#x3E; 2, namely the strange curves and curves of type Pn,q, that
is curves of degree n with equations

where q is a power of p.
The curves of type Pn,q only occur in degree n = mq + 1 and all smooth

non reflexive curves, when p &#x3E; 2, are of this type. These curves are

parametrized by a linear space in the projective space PN, N = n(n + 3)/2,
which parametrizes all plane curves of degree n.
Now we give an example of a family of non reflexive curves which are not

strange nor of type Pn,q.
Let chark = p and n = rp, with r &#x3E; 1. Let Fn be the family of curves of

degree n of the following type:

where am , bm E k, arbr-1 ~ 0.
It is easy to check that these curves are not strange and since y" - 0, they

are non-reflexive.
It is still an open problem to describe all non reflective curves.

6. Plane curves with non-reflexive duals

In this section we are going to study curves with non reflexive duals. It has
been observed in Section 2 that such curves are necessarily non reflexive.
We give here necessary and sufficient conditions for the non reflexivity of
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the dual of a curve in terms of the vanishing of certain rational functions on
the curve.

Since we are interested here in curves with no reflexive duals, we exclude
the lines and the strange curves from our considerations.

Let Z be a non reflexive curve with n-’ i = q. Then, as we saw in Section 4,
at a general point P, Z may be parametrized by

with bq not identically zero on Z. So from (4.7) we have that a primitive
image of the parametrization P(t) by cp is given by

Now, applying Remark 2.6, we get the following parametrization, not
necessarily primitive, of Z".

Now, by (2.7) we have that Z’ is non reflexive if, and only if, [R0; R1; R2]
is rational over k«tP)). This, in view of (2.4, i), is equivalent to the conditions
R’iRi - RiR’j = 0 for /J = 0, 1, 2.
To prove the main result of this section we will need the following lemmas

(6.3) LEMMA. The power series R0(tq)R’1(tq) - R’0(tq)R1(tq) and R’0(tq)R2(tq) -
R0(tq)R’2(tq) are the power series expansions at P of rational functions on Z.

Proof. It is enough to prove that individually each of the power series
Ri(tq) and R’i(tq), i = 0, 1, 2, is the power series expansion at P of a rational
function on Z.

Recall from Section 2 that Q0(tq), Q1 (tq), Q2(tq) are, respectively, the
power series expansions at P of the rational functions xy’ - y, - y’
and 1.

Now using the relation Dt(f(tq)) = f’(tq) which was established in (3.9),
we get that

which is the power series expansion at P of the rational function Dqxy’.
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Since R¿(tq) = D%Ro(tq), then it is the power series expansion at P of the
rational function DqxDqxy’ = 2D2qxy’.

In a similar way we obtain that RI (tq), R’1(tq), R2(tq), R’2(tq) are the power
series expansions at P of the rational functions D%(xy’ - y),2D;q(xy’ - y),
yDq (xy’ - y) - (xy’ - y)Dxqy" and Dqx[y’Dqx(xy’ - y) - (xy’ - y)Dqxy’].

(6.4) LEMMA. The power series (R0R’1 - R’0R1)(t) is zero at a general point P
of Z if, and only if, 2(b2q+lbq - b2qbq+l) = 0 on Z.

Proof By a straightforward computation we find that the coefficient of to
of the power series R0R’1 - R¿R1 is

Now, the vanishing of the above power series implies the vanishing of (6.5).
Conversely, the vanishing of (6.5) at a general point P implies that the

rational function of which R0R’1 - R’0R1 is the power series expansion at P
has value zero on Z, so it is the zero function and consequently the power
series in zero at every general point P of Z.

(6.6) PROPOSITION. Z’ is not reflexive i, f and only if, we have on Z

Proof. One direction, namely (~), was already proved in (6.4).
For the converse, note that the coefficient of t° in the power series

&#x26; R2 - R¿R2 is

Since by hypothesis this is zero at a general point of Z, it follows that the
rational function of which the above power series, after replacing t by tq, is
the power series expansion at P, is identically zero. So at a general point P
of Z, the above power series is zero.
Now since by (6.4) we have that Ro R1 - R’0R1 = 0 and we proved that

RoR2 - R¿R2 = 0, it follows that R1R’2 - R’1R2 = 0. Hence RT() and R (t)
are linearly dependent over k((t)), and therefore Z’ is not reflexive.

(6.7) REMARKS:
(6.7.1) It is possible to prove the following result:

Let Z be such that 03C0’i(Z) = q. Then 03C0’i(Z’)  pr if, and only if, we have
for i = 0, ... , r - 1, on Z
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(6.7.2) These results show that the set of points Z of PNk, N = n(n + 3)/2,
representing curves such that 03C0’i(Z’)  pr is a closed set.

(6.7.3.) If chark = p &#x3E; 2 and q is a power of p, then the general curve of
the family Pn,q with n = mq + 1 and m  2 has a reflexive dual.
To prove this it is enough to show that for each m  2, there is a curve

in the set Pn,q such that b2q+1bq - b2qbq+1 ~ 0.

In affine coordinates, let

with deg f = m and deg g  m. From (3.9) and the property (iv) of Hasse
families, we get that

and

In this case,

Choosing g(x) of degree 1 and f(x) of degree m such that f"(x) ~ 0, we
get the curve we wanted.

(6.7.4) It follows from the above remark that a general curve Z of type
03A32i=0 XiPi(Xq0, Yq1, Xq2) = 0, with deg Pi  2, is such that (Z’)’ ~ Z. This
is because Ae genzral curve of the above type is such that Z’ is reflexive,
hence (Z’)’ is reflexive, therefore différent from Z which is not reflexive.
The only smooth non reflexive curves Z such that (Z/)’ = Z we know, are

curves of type 03A32i=0 XiLi(Xq0,xq1,Xq2) = 0 with deg Li = 1. Are there other
such curves?

(6.7.5) If chark = p &#x3E; 2, then the general member Z of the family Fn has
a reflexive dual.
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In fact, let n = mp, and let

We have

which is not identically zero on Z.
Here again, the general curve Z of Fn is such that (Z’)’ ~ Z.

7. Extremal curves

Our goal in this section is to characterize all extremal curvves, that is curves
Z in any projective space, with deg 03C0’ = deg Z.
The problem is easily reduced by projection to plane curves, since:

a) A curve is strange if, and only if, a generic projection of it is strange.
b) 03C0’1, 03C0’s, deg 03C0’ and the degree of the curve are invariant by generic
projections.

Let Z be a plane curve given in affine coordinates by the equation

where we assume that x is a separating transcendental. We saw iii Section 2
that the rational map cp is given in affine coordinates by [- 03B2; - 03B1; 1], where

and

So we have that

and that
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Now, the equation of the curve and the relation y = ax + 03B2, determine
a polynomial

such that 03C8(x) = 0. So 03C8(T) is a multiple of the minimal polynomial of x
over K(Z’). In a moment we are going to see that this polynomial, in the
relevant cases, is not identically zero.
The following statements are clearly satisfied,

(7.2.1 ) Z is a strange curve if, and only if, 1, Y, and 03B2 are linearly dependent
over k.

(7.2.2) If oc or fl is constant, then Z is a strange curve.
(7.2.3) a and are constant if, and only if, Z is a line.

(7.3) LEMMA. Let g(X, Y) = Xnhn(Y) + Xn-1hn-1(Y) + ... + ho(Y) be
a polynomial in k[X, Y]. If oc and fi are indeterminates, then the following
identity holds:

Proof. The result follows by using the Taylor expansions:

(7.5) PROPOSITION. Z is such that 03C8(T) is identically zero if, and only if, Z is
a line.

Proof. Write

Since f (X, Y) is irreducible, we must have ho(Y) :0 0. By (7.4) the vanish-
ing of 03C8(T) implies the following equalities:



29

The first equality implies that 03B2 E k. Suppose that 03B1 ~ k. Hence h1(f3) = 0,
i - 0, 1, ..., n, so Y - fi divides hl(Y), i = 0, ... , n. This contradicts
the fact thatf (X, Y) is irreducible. Therefore, oc E k, so by (7.2.3) Z is a line.
The converse is trivially satisfied.

Since fv(x, y) + Y1Y(x, y) = 0, it follows that x is a root of the poly-
nomial.

It is clear that tjJ’(T) = ~(T). Our task now is to characterize those
curves for which ~(T) is identically zero.

(7.7) LEMMA. Let g(X, Y) = Y-’ m =0 gm(X, Y), where gm(X, Y), for
m = 0, 1, ... , r, is a homogeneous polynomial of degree m in k[X, Y]. If oc
and fi are indeterminates, then

Proo, f : Let gm(X, Y) = Ymi=0 aiXm-lYl. By the binomial expansion we
get that the coefficient of Xm-i in gm (X, aX + fi) is

From this the result follows easily.

Write

where gl (X, Y), i = 0,..., r, is a homogeneous polynomial of degree i.
From (7.7) we have that

so,
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(7.9) LEMMA. Let f(X, Y) = fi (XP, YP) + g(X, Y) E k[X, Y], with

g(X, Y) =1= 0 and no monomial of g(X, Y) in k[XP, YP] - {0}. Let T be an
indeterminate, oc a transcendental over k and 13 = (aa + 6)/(ca + d) with
a, b, c, d E k and c =1= 0. If ~(T) = fX(T, 03B1T + 03B2) + 03B1fY(T, 03B1T + 03B2) is the
zero polynomial in k(03B1)[T], then p divides deg (g(X, Y)) and X divides
g (X, Y).

Proof. Write g(X, Y) = g,(X, Y) +... + g, (X, Y), where each

gi(X, Y) is a homogeneous polynomial of degree i with no monomials in

k[Xp, Yp] - {0}, and g,(X, Y) =1= 0.

The vanishing of ~(T) implies by (7.8) that for j = 0, ... , r - 1,

When j = 0, we get

Since gr(X, Y) ~ 0 and a is transcendental over k, it follows that p|r.
If p 1 j, then the coefficient of Yr-j in gr-j(X, Y) is zero because no one of

its monomials is in k[XP, Yp] - {0} and p|r. This holds in particular for
j = 0.
To conclude the proof we have to show that the coefficient of Yr-j in

gr-j(X, Y) is zero for j = 1, ... , r - 1. This will be proved by induction
on j. Our inductive assumption is the following:
The coefficient of Yr-i in gr-i(X, Y ) is zero for i = 0, ..., j - 1.

If p|j, the result follows from the above remark.
Suppose that prj. From (7.10) we have that

From our inductive assumption, it follows that each Dj-iYr-i(1, 03B1), for
i = 0, ..., j - 1, is a polynomial in 03B1 of degree at most r - j - 1.

Now, replace fi by (aa + b)l(cy + d ) in (7.11) and clear denominators.
Since c ~ 0, we get a polynomial in a with leading coefficients ci times the
coefficient of Yr-j in gr-j(X, Y), which is zero, hence the coefficient of Yr-j
in gr-j(X, Y) is zero.

(7.12) REMARK. The first part of the above proof shows that if a is not

constant and deg 4J(T)  deg Z - 1, then pl deg Z. Hence we have the
following result:
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If p,tdeg Z, then either deg ~(T) = deg Z - 1, or Z is a strange curve
with its center at infinity.
The following is the main result of this section.

(7.13) THEOREM. Let Z:f(x, y) = 0 be an irreducible plane curve with x a
separating transcendental over k. If the polynomial ~(T) of (7.6) is zero in

k(oc, 03B2)[T], then Z is a strange curve.
Proof. If either oc or fi belong to k, then by (7.2.2) Z is strange, and

there is nothing to prove. So we may assume that a and pare transcendental
over k.

Write

where each g;(X, Y) is either zero or homogeneous of degree i with no
monomials in k[XP, YP] - {0} and g,(X, Y) ~ 0.

If 0 (T) = 0, then from the first part of the proof of (7.9) we have that
p 1 r, and (7.10) holds.
From (7.10) for j = 1, we have that

We claim that D1Ygr(1, 03B1) ~ 0, because otherwise, writing

we would have

This implies that either, ai = 0 whenever pi, this is not admissible since
gr(X, Y) e k[XP, Yp]; or a is algebraic over k, which we have already
excluded.

So

Now, write
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where s  0, hs(Y) ~ 0 and each hi(Y) is such that no monomial of

Xlhi(Y) is in k[XP, YP] - {0}.
If s = 0, then by taking the derivative of (7.4) with respect to X, we have

that the coefficient of T° in ~(T) is

The vanishing of this coefficient implies that either

or D1Yh0(03B2) = 0. This second possibility is ruled out, because otherwise, 03B2
being transcendental over k, we would have D1Yh0(Y) = 0 so X0h0(Y)
would lie in k[XP, YP], and this has been excluded.

Suppose now that s  1. The coefficient of TS-1 in ~(T) is, by (7.4),
shs(03B2).

Since hs(Y) ~ 0 and fi is transcendental over k, the vanishing of this
coefficient implies that pis.
Now, the coefficient of TS in ~(T) is, again by (7.4),

The vanishing of this coefficient implies that either

or D1Yhs(03B2) = 0. This second possibility is ruled out for the same reason as
above.

In conclusion we have that in any case, pis and a e k(f3).
This together with (7.14) yield

Hence there exist a, b, c, d E k with ad - bic * 0 such that

We are now going to prove that c = 0; this in view of (7.2.1) will imply
that Z is strange.

Suppose that c ~ 0. Then from (7.9) we show that X divides
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hence s  1. Therefore,

with, X  h(X, Y) and no monomial of h(X, Y) is in k[XP, YP] - {0}.
Now, from (7.15) we have that

so,

Applying Lemma (7.9) to h(X, Y) in place of f(X, Y), it follows that X
divides h(X, Y), contradiction. Therefore, c = 0.

(7.16) COROLLARY. If Z is an extremal projective curve, then Z is strange.
Proof. We have already observed that the question may be reduced to

plane curves, so we assume that Z is a plane curve.
If deg 03C0’ = deg Z, then the minimal polynomial of K(Z) over K(Z’) has

degree equal to deg Z and since it divides ~(T), which is of degree less than
or equal to deg Z - 1, it follows that ~(T) is zero. The result now follows
from (7.13).

In particular it follows that if, deg Z = p and Z is not reflexive, then Z is
a strange curve. More generally if the curve has degree equal to nï, then it
is an extremal and therefore, it is strange. It is possible to derive from this
Theorem 3.4 of Homma’s paper [Ho], we will do this elsewhere since it

requires some extra knowledge about strange curves.

(7.17) COROLLARY (Homma [Ho]). Any smooth and extremal curve is a conic
in characteristic two.

(7.18) COROLLARY ([He-Kl, 1] and [Ho]). Let Z be a smooth plane curve such
that Z’ is smooth.

(i) If Z is reflexive, then it is a conic.
(ii) If Z is not reflexive, then cp: Z ~ Z’ is purely inseparable.

Proof.
(i) If Z is reflexive, then cp: Z Z’ is birational, hence Z - Z’, so

deg Z = deg Z’. By Plücker’s formula we have,

This implies that deg Z = 2.
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(ii) Let Z be non reflexive. If Z is a conic, then chark = 2 and ç is purely
inseparable.

Suppose that Z is not a conic. From Hurwitz’s formula we have that

hence

where n = deg Z and n’ - deg Z’.
Since no smooth curve of degree bigger than 2 is extremal, it follows from

Plücker’s formula that

so n’  n. From (7.19) it follows that if n * 3, then 03C0’s = 1.

Now, for n = 3, we have from the inequality deg ~  n - 1 = 2, that
cp must be purely inseparable.

(7.20) COROLLARY (Homma [Ho]). Let Z be a nonreflexive smooth plane
curve.

(i) Let deg Z a 4. Then Z’ is smooth if, and only if, Z is projectively
equivalent to the curve Xq+10 1 + Xq+ 1 + Xq+12 = 0, where q = n;.

(ii) Let deg Z  3. Then chark = 2 and Z’ is smooth.
Proof (i) Let deg Z a 4. If Z’ is smooth, then from (7.18), 9 is purely

inseparable, hence g(Z) = g(Z’), and therefore deg Z = deg Z’.
From Plücker’s formula we have that

hence

so

Now, from (5.10) and (5.16) it follows that Z’ has an equation of the form
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where q = 03C0’i and the Li are linear homogeneous polynomials. By a straight-
forward generalization of a result of Pardini, [Pa] Proposition 3.7, such curves
are all projectively equivalent to each other. From this, the result follows.
The converse of this statement follows from Example (2.3).
(ii) This was already proved in (4.9). We give here another proof.
If deg Z  3, then deg cp  3. From (7.17) deg 9  3, hence deg cp = 2,

so chark = 2 and ç are purely inseparable.
If deg Z = 3, then from Plücker’s formula deg Z’ = 3. Since g(Z’) =

g(Z) = 1, it follows that Z’ is smooth.
If deg Z = 2, then Z’ is a line, hence smooth.
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