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§ 1. Introduction

Let G be a connected real semisimple Lie group, with real Lie algebra Y. and
complexified Lie algebra y. In what follows we will denote a Lie group with
roman upper case letters and a Lie algebra by script lower case letters and
will use analogous notation to distinguish the real Lie algebra from its
complexification. Let K z G be a maximal compact subgroup and fix a
Cartan involution 0 so that g0 = 40 ~ p0 is the Cartan decomposition of
g0. Set

Gu = {(equivalence classes of) unitary irreducible representations of G}.
An interesting problem in representation theory is the classification of Gu .

Although the set

G = {(equivalence classes of) irreducible admissible representations of G}

has been parametrized by Langlands (1973) and Vogan (1979) independently,
it is not clear yet which subsets of these sets of parameters will classify the
unitary dual.
For example, fix a K-type p E K, Vogan’s parametrization consists on

attaching to J1 (a) a certain parabolic subalgebra qV ~ g, with quasisplit
Levi subgroup Lv ; (b) an (Lv n K)-type 1À,, which is fine, so that we have
the following (see §3). There is a bijection XLv -+ X, from irreducible
(t v’ LV n K)-modules with lowest (LV n K)-type pv onto irreducible

(,,, K)-modules with lowest K-type ,u, such that

(a) Xis the unique irreducible quotient of the Zuckerman module RqV(XLV),
(b) XL, is the Harish-Chandra module of a standard principal series repre-

sentation of Lv.

* Supported by NSF grant # DMS-8610730 (1).
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This classifies all irreducible Harish-Chandra modules of G in terms of the
classification of Harish-Chandra modules of a quasisplit subgroup, which in
turn are parametrized by ordinary parabolic induction.
As 1 said before, it is not clear which subset of parameters (1v, pv) will

determine the unitary representations. Part of the problem is that neither
ordinary induction nor cohomological parabolic induction preserve unitarity
unless we assume some hypothesis on the modules we are inducing from.
However, many examples suggest that looking for a (possible different)
parabolic subalgebra to attach to the lowest K-type of a unity representation
could lead to the solution of the classification problem.
Some progress has been made in this direction. For G = GL(n) Vogan

(1986) gave a complete parametrization of Gu in terms of unitary almost
spherical representations of certain Levi subgroup L of a parabolic
subalgebra. These are representations a E L such that there is a unitary
character j E Ê with the property that j-1 ~ 03C3 is a spherical representation.
,To a fixed K-type p he assigns a parabolic 1 containing 1v and an (L n K)-
type ,uL such that if X is unitary with lowest K type 03BC, then there is a

unitary almost spherical representation Y of L with lowest (L n K)-type
,uL and such that X is a subquotient of a module  Y, obtained from
Y by composition of ordinary and cohomological induction. Also,
any unitary almost spherical representation is in turn obtained by
ordinary induction from unitary characters and Stein complementary series
representations.
For complex classical groups Barbasch (1987) gives a similar parametriz-

ation in terms of representations containing a fundamental K-type. These
representations are either unipotent, complementary series or edges of
complementary series.
For real groups the answer is not clear yet. Let us simplify the problem.

Suppose X is a unitary representation of a real reductive Lie group with
integral infinitesimal character y. Barbasch-Vogan (1985) (def. 1.17, 5.23)
gave a definition of special unipotent representations with integral infinitesi-
mal character for complex groups. The same definition applies for real
groups. Vogan conjectured, following some ideas of Arthur (1984), that X
can be obtained by cohomological parabolic induction from a special uni-
potent representation of a subgroup. If we further assume that y is regular,
then necessarily the special unipotent representations involved are one
dimensional and the above conjecture becomes.

CONJECTURE 1.1. Suppose X is an irreducible unitary Harish-Chandra module
such that y is regular integral. Then there are a 0-stable parabolic subalgebra
q and a unitary one-dimensional character of the Levi subgroup L of 1
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such that

This is an extension of Zuckerman’s conjecture which says that the
modules A1(À) exhaust the set of unitary representations with non-vanishing
relative Lie algebra cohomology and which was proved in Vogan-Zuckerman
(1984).

Conjecture 1.1 was proved by Enright (1979) in the case when G is
complex, by Speh (1981) when G is SL (n, R) and by Baldoni Silva-Barbasch
(1983) in the real rank one case.

In this paper we give a proof of this conjecture when G is SL(n, R),
Sp(n, R) and SU( p, q). The proof for SL(n, R) is new and différent from
Speh’s original proof and we will need it for the general case.
While this paper was being considered for publication, the author studied

the case G = SO( p, q). This case is analogous to the one of G = Sp(n, R)
and is done following the algorithm suggested by the proof of this result in
this last case. See the comment at the end of this introduction.
The result that we prove is

THEOREM 1.2. Let G = SL(n, R), S U( p, q) or Sp(n, R). Suppose X is an
irreducible Harish-Chandra module with regular integral infinitesimal character
and equipped with a non-zero Hermitian form , ). Then, either

(a) X ~ A1(À) for some q and À as above;
or

(b) X is not unitary. More precisely, there are a lowest K-type Vô, and a
K-type V03B42 ~ vsl ~ p, such that

and the restriction of  , &#x3E; to the sum Vô, EB va2 is indefinite. ~

The proof is by induction on the dimension of G. Assuming that X cannot
be realized as an Aq(03BB) module and with the help of Vogan’s embedding
result we find an appropriate subgroup L c G and exhibit X as a Langlands
submodule of some derived functor module induced from an (7, L n K)-
module XL, proving non unitarity for XL and reducing the problem to L. The
reduction step is made precise in §5. The main result there is Theorem 5.7,
and §§7-9 are devoted to a case-by-case proof of this. In §5 we use Theorem
5.7 to prove Theorem 1.2 for G.
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§§2-4 are devoted to notation and the results that will be needed for the
proof. §3 deals with Vogan’s classification of Harish-Chandra modules. In
§4 we define our modules Aq(03BB) in question and give some properties needed
later. §6 gives some techniques to detect non-unitarity used to prove 1.2b).
The methods of this paper should extend in several directions. If

(y, a) a 1 for all simple roots a then, the same methods should be appli-
cable to give the same conclusion as in Conjecture 1.1. Likewise, if y is

integral, Vogan’s conjecture mentioned above should also be proved this
way.

Also, the proof in the case of Sl(n, R) and Sp(n, R) suggest an algorithm
for all simple real groups. Namely, a reduction to a special case of a proper
subgroup of the same type in Cartan’s classification and a real form of
GL (m, C).

This paper contains most of the author’s doctoral thesis, completed at
M.I.T. in 1986. She wishes to thank her advisor David Vogan for much
invaluable advice, as well as Dan Barbasch and Jeff Adams for helpful
discussions and suggestions.

§2. In this section we set up notation. For undefined terms in this section
see, for example, Vogan (1981) Chapter 0.

Let G, g0, y, K and 0 as in §1. Let U(?) = universal enveloping algebra
of y and Z(y) = center of U(g).
Although we will eventually study connected real simple linear Lie

groups, we will consider connected real reductive linear Lie groups. These

are Lie groups satisfying:
(a) G is connected
(b) 10 is a real reductive Lie algebra
(c) G has a faithful finite dimensional representation.
Fix once and for all a nondegenerate, invariant symmetric bilinear form

on qo . We will denote this form and its various complexifications, restrictions
and dualizations by (, ). We may choose it so that the Cartan decomposition
of yo is orthogonal and

Let H be a Cartan subgroup of G. Denote by A = 0394(g, 4) the roots of A
in y.

In general if j is an abelian reductive Lie subalgebra of y and V is an
ad(+)-stable subspace of 91 then 0394(V, a) is the set of weights of j in V (with
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multiplicities). For any B c 0394(V, s) let  (B) = 1 2 03A303B1~B 11. When there is no
confusion we will use 0394(V) for 0394(V, s).

If H is a 0-stable Cartan subgroup, then

and 0394(g, ~) is 0-stable.
Let W = W(9, A) be the Weyl group of £ in y and

Let 0+ - 0+ (g, 4) be a set of positive roots of £ in g, b = h + n, the
corresponding Borel subalgebra and Q = (!fI = (!(n).

Let Ic 0 (-- 4c 0 be a Cartan subalgebra. Define 4c (resp. Hc) to be the
centralizer in y (resp. G) of tg. Hc is 0-stable, so we can write

a Cartan subgroup of K.
Hc is called the fundamental or maximally compact Cartan subgroup of G.
On the other extreme, if as0 ~ Po is a maximal abelian subalgebra and

hs0 = 03C4s0 + as 0 is maximal abelian then hs0 is also a Cartan subalgebra of g0.
Its centralizer HS in G is a Cartan subgroup of G, the maximally split one.

Let (03C0, H) be a continuous complex Hilbert space representation and HK
the subset of :Yf of K-finite vectors. e, is a (fi, K) module. We call eK the
Harish-Chandra module of (03C0, H) [cfr. Harish-Chandra (1953)]. Denote by
M(g, K) the category of (g, K)-modules.

DEFINITION 2.1. Fix a Cartan subalgebra tc0 ~ 40 and x e 0
We define a 0-stable parabolic subalgebra q = q(x) = ~(x) + u(x) as

follows.
Let
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Then q = ~ + u is 03B8-stable and

and ~ = ~, with denoting complex conjugation, q n 91 ~.
Let L be the normalizer of q in G. We call L the Levi subgroup of q.

§3. In this section we consider the classification of Harish-Chandra modules
which consists of exhibiting each irreducible (g, K )-module as a submodule
of a derived functor module.
We will first consider a particular set of irreducible (g, K) modules when

G is quasisplit.
Let as0 ~ p0 be a maximal abelian subalgebra and AS the corresponding

connected subgroup of G. Let M = KA’ and Ps = MAS N £; G, a parabolic
subgroup.

DEFINITION 3.1. For a fixed representation (03B4, V03B4) of M and v E AS, set

the (normalized) induced representation of G.
Let XG(03B4 @ v) be the Harish-Chandra module of IG(03B4 ~ v).
Now suppose G is any reductive real Lie group. Let X be a (g, K) module

and ,u the highest weight of a lowest K-type of X, Vogan (1981) attaches to
,u a set of discrete 0-stable (qV, H, bv), where the Levi subgroup L, of yv is
quasisplit, H = MAS is a maximally split Cartan subgroup of Lv and
ô v E M. Write 03BBGV(X) = 03BBGV(03BC) Cil* for the weight attached to 03BC and used
to construct qV.

DEFINITION 3.2. Let q = ~ + u ~ g be a 03B8-stable parabolic subalgebra and
L ~ G its Levi subgroup. Recall from Vogan (1981), (Def. 6.3.1) the
cohomological parabolic induction functors (from (~, L n K)-modules to
(g, K)-modules)

Here is the result of the classification that we are going to use.
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PROPOSITION 3.3 ( Vogan (1981), 6.5.9 (g) and 6.5.12 (b)). Suppose X is an
irreducible (y, K) module and (qV, H, bv) a set of discrete 0-stable data
attached to X. Then there is a character Vv E Âs such that, for S =
dim a n l, the space

is one dimensional.

The 4-tuple (qV, H, bv, vv) is called a set of 0-stable data.
The following is a very technical result which will be needed in the proof

of Theorem 5.7.

PROPOSITION 3.4. Let? = t + u ~ g be a 0-stableparabolic subalgebra and
Yan (e, L n K) module. Write S = dim a n k, 03BBLV = Àv(Y), X = Rsq(Y)
and 03BBGV = 03BBGV(X). Assume 03BBLV + (u), 03B1&#x3E; &#x3E; 0; oc E 0394(u). Choose 0394+(k) =
0394+(~ n k) u 0394(u n k).

Suppose ML is the highest weight of a lowest K-type for ( for L n K) of Y
with respect to the positive system 0394+(~ n ae, te) and that we choose 0394+(~)
so that ,uL + 2~~k is dominant. Let y = ,uL + 2(u n p).

(a) If y is dominant for A+ (y), then 03BBGV(03BC) = ÂL + (u).
(b) Let 17 be the highest weight of a K-type of X. Then

(c) If equality holds in (b) then 17 = 17L + 2o(u n A)for a highest weight
17L of a lowest (L n K)-type of Y and V~ is a lowest K-type of X.

(d) Conversely, if 17 = 17L + 2O(u n jz), then V. is a lowerst K-type of X
and equality holds.

Proof. See Vogan (1981), (a) is similar to 6.5.4 and (b)-(c) is 6.5.9.

§4. The modules A1(l)

In this section we give a construction of these modules and some properties
that we will use later on.

Let G be a connected real reductive linear Lie group, y = ~ + u ~ g a
0-stable parabolic subalgebra and L the normalizer of y in G. Then

to = Lie(L).
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Let Â: e -+ C be a one-dimensional representation. Assume that

We say that Â is an admissible representation of ?.

DEFINITION 4.2. With notation as above, we define the Harish-Chandra
module Aq(03BB) by

with

Fix positive root systems

and

Then

and

are positive /-root systems for 4 and g, respectively. Choose a fundamental
Cartan subalgebra hc = Ic + ec and a positive root system 0394+(g, hc) so
that

Then
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PROPOSITION 4.3 [Vogan-Zuckerman (1984)], see also Adams (1983) and
(1987), Speh-Vogan (1980) and Vogan (1981). Regard 03BB|tc as a weight in
(tc)*. Let

(a) The (g, K) module Aq(03BB) is the unique irreducible module satisfying :
(i) As a K-representation, A,, (Â) contains the K-type with highest weight

03BC.

(ii) Z(y) acts on Aq(03BB) by the character ~03BB+: Z(g) ~ C; where

Xl+Q(Z) = (À + )(03B6(z)) and ( is the Harish-Chandra homomorphism.
(iii) Any K-type occurring in A?(À) has a highest weight of the form

(b) Moreover, 03BC is the unique lowest K-type of Aq(03BB).

By 4.1 and Theorem 1.3 in Vogan (1984), we have the following

PROPOSITION 4.4. In the above setting, the modules Aq(03BB) are unitarizable.

PROPOSITION 4.5 (Vogan). (Unpublished). Fix 0394+ (l). Let 1i = fi + ai ~ 9;
i = 1, 2 be 0-stable parabolic subalgebras such that 0394(qi) ~ 0394+(k) and Âi,
admissible one-dimensional representation of fi (Definition 4.1). Then

The proof will follow from two lemmas included here for future reference.

LEMMA 4.6. Suppose  =  + , q = ~ + u ~ g, are 0-stable and

À: t -+ C; :  ~ C, admissible characters such that

Then
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Proof. By induction by stages

Hence

This proves the lemma. Q.E.D.

By this lemma, we may assume that both 9,,i’s in Proposition 4.5 are
maximal with respect to conditions (a)-(c).

LEMMA 4.8. In the above setting

Proof. Suppose a ~ 0394+ (k, tc) is a simple root so that

We want to contradict the maximality of qi.
Breaking up 0394(ui n p) in maximal a strings
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and using representation theory of s~(2) we can conclude

and we have equality if and only if ai ~ p is invariant under the three
dimensional subalgebra g03B1 that contains the a-root vector Xrx.

But, by definition of 03BBi, 03B1, 03BBi&#x3E;  0. So, (a) and (b) imply that Ui ~ p is
invariant under y" and

Now we want to prove that

If fi E 0394+(g, hc) and 03B2|tc = a then

If fi is complex, then the non-compact root of - J31,L is not in 0394(ui n p)
so it contradicts invariance under 9(X.

Hence a is an imaginary root of 0394+ (9, hc). oc is also simple for 0394+ (9, hc).
In fact, since a is simple for 0394(k, tc), and 11 ft A(ei n 4) we can assume that
if y, ô E 0+ (g, hc) and a = y + 03B4 then

say, and y - a = - à E 0394(ui n p); contradicting invariance again.
Consider a simple factor ~0 ~ ~, not contained in e. Then e. is not

orthogonal to a. Let {03B21, 03B22,..., 03B2l} be a set of simple roots for ~0 contain-
ing a.

Say a = 03B2i0 and 03B2i0+1 is adjacent to a. Suppose ton jÍ =1= 0. Then there

is a non-compact root fi = E ni03B2i with some nlo + 1 &#x3E; 0 and such that

a + P = b is a non-compact root, and ô E 0394(ui n p). So the string through
03B4 is not complete.

Hence, e. is compact and qi(~ q) is not maximal satisfying (4.7).
This proves Lemma 4.8. Q.E.D.
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We are now able to prove Proposition 4.5. By Lemma 4.8

Hence

and

This proves Proposition 4.5. Q.E.D.

§5. Réduction step for the proof of Theorem 1.2

We are now in a position to prove the main result stated in Chapter 1. We
will argue by contradiction and reduction to a proper subgroup L ~ G.

Suppose X ~ K) is irreducible and has a Hermitian form  , &#x3E;. We
will assume X cannot be realized as an Aq(03BB) module, but will exhibit X as
a Langlands submodule of some derived functor module induced from an
(~, L n K)-module XL, proving non unitarity for XL and making sure that
this information can be carried over to G and X.
We need to keep track of the existence of Hermitian forms at different

steps of induction as well as of their signatures on some finite sets of K-types.
Recall from Vogan (1984) (Definition 2.10) the Hermitian dual of a (,,, K)

module Y
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It is clear that invariant Hermitian forms on Y are given by (g, K) maps
f: Y ~ yh such that f = f’: Y’ , Y. Moreover we have

PROPOSITION 5.1. Suppose X E K) is irreducible. Then X admits a

non-zero invariant Hermitian form if and only if

In this case the Hermitian form is non-degenerate and any two such forms
differ by multiplication by a real constant.

PROPOSITION 5.2. Let X E M(g, K) be irreducible and (qV, H, bv, v v) a set of
0-stable data attached to X, so that

(see Proposition 3.3). Let H = TA. Then X - Xh if and only if there is an
element

In this case we get a Hermitian form on X from a form on

This result is essentially due to Knapp and Zuckerman (1976). A formu-
lation close to this one is in Vogan (1984), Corollary 2.15.

COROLLARY 5.3. Let X E M(g, K) irreducible, endowed with a non-zero
Hermitian form , &#x3E;. Write f/v = qV(X). Let q = ~ + u be a 0-stable
parabolic subalgebra such that ~ ~ t v’ u c Uv and (qV, H, bv, vv), a 0-stable
data attached to X. Write

Then XL has a Hermitian form  , )L.
This is a formal consequence of Proposition 5.2.
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PROPOSITION 5.4 (Vogan). Fix y = e + u S; y, a 0-stable parabolic sub-
algebra. Suppose Y E M(~, L n K) is equipped with a (possibly degenerate)
invariant Hermitian form , )L.

Then there is a natural invariant Hermitian form , )G on

Proof. Recall from Vogan (1981) Chapter 6, Definition 6.1.5 the functors

where 0393j: M(g, L n K) - M(g, K) are the Zuckerman functors (see
Vogan (1981) Ch. 6). Set Y = Y ~ Atopu. By hypothesis, we have a map

This induces maps

By Theorem 5.3 [Enright-Wallach (1980)] in Vogan (1984) [see also Duflo-
Vergne (1987), Knapp-Vogan (*) and D. Wigner (1987)]

Let  , &#x3E;: LsqY x (LsqY)h ~ C be the natural pairing (see Vogan (1984),
Def. 2.10). Define

This gives an invariant Hermitian form on 2S(Y) [cfr. the proof of
Corollary 5.5, Vogan (1984)]. Q.E.D.
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DEFINITION 5.5. If Z E M(g, K) and l5 E K, write

Then,

If we fix a positive definite form on V03B4, Z(03B4) inherits a Hermitian form.
Suppose Z is equipped with a non-zero Hermitian form , &#x3E;. Write p(03B4)
(resp. q(b), z(03B4)), for the multiplicity of V03B4 in the subspace of Z(03B4) where
, ) is positive (resp. negative or zero).

Write the signature of  , &#x3E; on Z(03B4) as sgn(  , &#x3E; |Z(03B4)) = (p(03B4), q(03B4), z(03B4)).
Then write, formally

We will prove in the next chapters the following result.

THEOREM 5.7. Let G = SL(n, R), S U( p, q) or SP(n, R) and X E M(g, K)
irreducible, endowed with a non-zero invariant Hermitian form  , &#x3E; and
regular integral infinitesimal character.

If X ~ A?,(A’), for any q’ and A’. Then there are. a 0-stable parabolic
e + a, an (e, L n K)-module XL and (L n K)-types 03B4Li, i = 1, 2 such
that

(a) X is the unique irreducible submodule of 8l?(XL), and X occurs only once
as a composition factor of 8l?(XL).

(b) XL is endowed with a Hermitian form  , &#x3E;L ~ 0.

Write ( pL , qL , zL) for its signature. Then

(c) Choose 0394+(k) = 0394+(~ n k) ~ 0394(u ~ k). Then, if 03B4Ll has highest
weight ,uf, Mi = 03BCLi + 2Q(u n ft) is 0394+ (i) dominant.

Sections 7-9 will be devoted to the proof of this result.
The main ingredient in the proof of 5.7(a) is that Proposition 3.3 gives a

group Lv and a module XLv for which condition (a) is satisfied. Then
theorems 6.3.10 and 8.2.15 in Vogan (1981) provide many Levi subgroups
to choose from that also satisfy (a) and might satisfy (b) and (c) as well.
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Assume this for the moment. Using this result, we want to prove non-
unitarity of X. We need to check that the Hermitian form  , )G induced on
3l?(XL)h by Proposition 5.4 is a multiple of  , &#x3E; on X; that for the L n K
types satisfying (c) of Theorem 5.7, the corresponding K types occur in X
and that the signature of the form on these K-types is the same as that of
 , &#x3E;L on the bf. Here is the result that we need.

THEOREM 5.8 (Vogan). Suppose X E K) is irreducible and has a non-
zero Hermitian form  , &#x3E;. Let q = ~ + u be 0-stable and XL an (e, L n K)
module such that X is the unique irreducible submodule of RSq(XL), X occurs
only once as composition factor in Ws (XL) and XL has a non-zero Hermitian
form , )L. If bL E (L n K) is an (L n K)-type of XL with highest weight ,uL
such that y = ML + 2g(u n p) is dominant for 0394(u n ae) then if b E K has
highest weight y, X(03B4) ~ 0 and

Sign[ , &#x3E; |X(03B4)] = Sign[ , )L |XL(03B4L)]

Proo. f : Applying the appropriate definitions and results to K and e r-) 4 we
have maps

there are natural maps

These induce (k, K)-maps

Then, the following diagram is commutative
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The isomorphisms across are Theorem 5.3 in Vogan (1984) for (G, q) and
(K, q n k), respectively.
Arguing as in the Proof of Proposition 5.4 (for K) we have maps

and we have the following commutative diagram

And we have a Hermitian form on LSq~k(Y)

Since ~K = r 03BF ~G 03BF l, and by Proposition 6.10 in Vogan (1984), l is a
unitary map,

Write

and again
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The main ingredient in the Proof of Proposition 5.8 is the following result
due to T. Enright.

PROPOSITION 5.13 [Enright (1984)]. See also Vogan (1984) 6.5-6.8. Let

q = ~ + a, 0-stable parabolic.
Let 03B4L E (L n K) with highest weight ML. Set 03BC = ,uL + 2(u n p).
(a) If J1 is not 0394(u n 4)-dominant, then

ys 91 y(ôL) = 0.

(b) If 03BC is 0394(u n ae) dominant, write 03B4 E K for the representation of K with
highest weight y. Then

LEMMA 5.14. Suppose V is a module of finite length and U is irreducible.
Assume

(a) U 9 V occurs exactly once as a composition factor of V.
(b) Any non-zero W ~ V contains U.
(c) U is equipped with a Hermitian , form.

Then, up to scalars, Vh has a unique Hermitian form , )1 and

The proof of this lemma is standard. We give an outline here.
A non zero Hermitian form on Vh is a non zero map 9: Vh ~ V where

the radical of the form is the kernel of 9. Write R = image of 9. We want
to prove that R = U.

By (b), U E R. Suppose R ~ U. If Q is any irreducible quotient of R/ U,
then Q is a quotient of V h . So Qh ~ V, and by (b) again, U ç Qh .

But by (c), U £é Uh and hence Q £é U since Q is irreducible. (Note that
the Hermitian form on U is necessarily non degenerate, since U is irreducible.)

But this means that U occurs twice as a composition factor of V : once as
a submodule and once as a quotient of RI U. This contradicts (a).
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We can now prove Theorem 5.8. By Proposition 5.13 and 5.12

Apply Lemma 5.14 to

We know that (a)-(c) hold in this Lemma since they are part of our
assumptions on X. We also know that  , &#x3E;G ~ 0 by 5.15.

Hence, we have the following result:

PROPOSITION 5.16. In the setting of Theorem 5.8

So , &#x3E;G|X is nondegenerate and has signature

It is now straightforward to prove Theorem 1.2. Using Theorem 5.7, proved
in sections 7-9 for our groups in question, we have that the hypotheses in
Theorem 5.8 are true and by 5.15

and the form (, ) on X is indefinite too. Q.E.D.

§6. Methods to detect non-unitarity

To prove Theorem 5.7 we will need a few techniques that we will discuss
here. Fix a positive root system 0394+ (i).
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LEMMA 6.1 (Parthasarathy’s Dirac operator inequality. See Borel-Wallach
(1980) II. 6.1.1.). Let (03C0, Yf) be a unitary representation of G and YfK its
Harish-Chandra module.

Fix a positive 1-root system 0394+ (y) compatible with A+ (ae) and a k-type 03B4
occurring in HK with highest weight y ~ tc*. Write

Let co be the eigenvalue of the Casimir operator of q acting on YfK, and
w E W(k, t) making w(03BC - Qn) dominant for A’ (,4). Then

LEMMA 6.3. Let X E K) with a non-zero, invariant Hermitian form
 , &#x3E;. Suppose the Dirac inequality fails on a K-type ô, for some choice of
0394+ (p). Then

(a) There is a k-type V~ occurring in V, ~ p such that

 , &#x3E;|V03B4~V~
is indefinite.

(b) Suppose GIK is Hermitian symmetric with a one-dimensional compact
center, so that we can choose z E i,40 with the property that y =: 4 ~ /Í + EB /Í-
is the decomposition of y into the eigenspaces 0, + 1, -1 of z, respectively.

Set ±n = (0394( p±). Then, if the Diract inequality fails on ô for ±n, there
is a 4-type V~~ occurring in V. ~ p~ such that

is indefinite.
Proof. Recall from Borel-Wallach (1980), II §6, the definition of (y, S(V)),

the space of spinors of a finite dimensional vector space V defined over R,
with a positive definite inner product (, &#x3E;. Write (, &#x3E;S for the unitary
structure on S(V) such that
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Recall also, the definition of the Dirac operator

for (03C0, H) a unitary (g0, 4,)-module and S = S(llo).

Since

(where m = 2[dimac/2]) (cfr. Borel-Wallach (1984) II §6) then w(03BC - (ln) is the
highest weight of a k-representation occurring in % ~ Vn ~ H ~ S.

Let 03BE = v 0 s be a weight vector for w(,u - on).
Write also  , &#x3E;D for the tensor product inner product on H (8) S; then the

proof of Lemma 6.1 shows that

So D03BE ~ 0 and

This gives a non-zero map

So Homk(p 0 V03B4, H) ~ 0. Let E = lm a. Since  , &#x3E;S is positive definite
this means that  , &#x3E; is indefinite on V03B4 ~ E.

This proves (a) of the lemma.
For (b) simply observe that 03BC - -n = 03BC + +n; +n = (p+) and fi+ is

a representation of 4. Hence if fi E 0394(k)
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So V, is one-dimensional. Since on + a is not a weight of S, for

a E 0394(p+), V+ is killed by 03B3(X03B1) and 6.4 becomes, for 03BE E v 0 V-

LEMMA 6.5 (Vogan). Let G be a connected, reductive linear Lie group. Assume
that G is equal rank. Then, any representation with real infinitesimal character
has a Hermitian form.

Proof. By Proposition 5.2 it is enough to prove the lemma for G quasisplit
and a Langlands subrepresentation of a principal series I(fJ 0 v) with 03B4 0 v
a character of a maximally split Cartan subgroup HS - TsAs.

Since G is equal rank there is a subset B = {03B11, ..., 03B1k} of strongly
orthogonal simple real roots such that, since HS is the maximally split
Cartan subgroup of G, then B spans ocs 0 = Lie(AS).
Hence if w = sal ... s03B1k is the product of simple reflections s03B1l, w acts by

- 1 on AS and by the identity on Ts0.
Recall from (Vogan (1981) page 172) the maps 0,,,: dt(2, R) ~ m03B10. Con-

sider the exponentiated map

set

Then, since G is connected, TS is generated by Ts ~ {m03B1|03B1 real}. Let w E
M’/M - W, then there is a E M’ such that

and
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Hence w03B4 = 03B4. Since I(03B4 ~ v) is assumed to have real infinitesimal character,
v is real.

Also since w|A = -1 then w · v = -v = - v.
This is the condition of Proposition 5.2 for the existence of a Hermitian

form. Q.E.D.

§7. Proof of Theorem 5.7 for G = SL(n, R)

To fix notation consider G = SL(2n, R); the odd case is similar. The

maximal compact subgroup K of G is

If 0 is the Cartan involution defined by 03B8(A) = -tX, then

The maximal compact Cartan subgroup of G is H’ = T’A’, where

and
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Then the roots of Ic in k, p and g are, respectively

The multiplicity of + (e) ± ek ) as a root in y in 2. K can be identified with
the set

Let ,u = (al , a2, ... , an ) E itri be the highest weight of a lowest K type
of a Harish-Chandra module X. After conjugating by an outer automorphism
of K we may assume that an  0.

PROPOSITION 7.1 [see Vogan (1986)]. Let r be the largest integer such that
ar  2. Then the subgroup Lv (called Lcl in that paper) attached to 03BC as in §3 is
isomorphic to SL(p1, C) x SL( p2, C) X - - - x SL(p,,, C) x SL(2(n - r), R),
where 03A0r = ( pl , r2, ... , ps) is the coarsest ordered partition of r such that
J1 is constant on SL(pl, C). That is

Proof. To obtain ~V(X) = ~V(X) = as in Vogan (1981), we need:

Let 0394+(g, hc) be a 0-stable positive system making ,u + 2Qc dominant.
The restriction of A+ (,, hc) to Ic is A+ (,, tC). Write ~(g, tc) for the set of
simple roots restricted to tc. Then
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and

We can form an array with the coordinates of 03BC + 2c by grouping them
into maximal blocks of elements decreasing by 2. That is, suppose

where xi &#x3E; x2 &#x3E; ··· xt &#x3E; 0. (Note that if xt = 1, then t = s + 1).
Then, since the coordinates of 2c decrease by two, the array would look

like

where Âj = xj - 1 (in particular, if xt = 1, then 03BBt = 0). This is easily
verified by following the algorithm of Proposition 5.3.3 in Vogan (1981).
Simply observe that 03BC, 2ej&#x3E;  0 only for j &#x3E; r.

Moreover, the subset of simple roots orthogonal to 03BBV(03BC) spans the root
system (cf. 2.1)

since the roots ei - ej are restrictions of complex roots and therefore occur
twice in 0394(g, Ic). Now the proposition is clear. Q.E.D.

We will now obtain some criteria to determine when a representation of K
is the lowest K-type of some (g, K) module Aq(03BB).

Recall from 2.1 that to construct a 0-stable parabolic subalgebra
fi = t + u we need a weight x E itri. Suppose
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where

Write q = q(x) = tex) + a(x) for the parabolic defined by x as in 2.1.
Clearly

PROPOSITION 7.4. Let 03BC be as in (7.2) and suppose it is the highest weight of
a representation of K. Then V03BC is the LKT of a (g, K)-module Aq(03BB) if and only
if

and

Proof. Suppose V03BC is the LKT of an Aq(03BB). Then 03BC = 03BB + 2Q (ee n /Í) and
03BB is the weight of a one-dimensional character of L satisfying 4.1 (a) and (b).
Hence is orthogonal to the roots of lc in e and it is positive in the tc-roots
in 03BC. That is,

and
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Then

and

proving (a) and (b).
Conversely, suppose y is a weight satisfying (a) and (b) then we can define

Then ,u will be the LKT of Aq(03BB). Q.E.D.

We are now ready to prove Theorem 5.7 for G = SL(n, R).
Suppose X is as in Theorem 5.7 with infinitesimal character y E (AC)* and

03BC ~ (itc0)* the highest weight of a lowest K-type of X. Write ,u as in 7.2.
Considering what the weights in V03BC ~ p look like, we will study 2 cases:

1. 2R + pt + 1 &#x3E; xt.
2. xt  2R + pt + 1.

By the conditions given in 7.4 if V03BC is the lowest K-type of an A? (À), then
03BC is in case 2.

Therefore, the first thing we must do is verify that, in case 1, X is not

unitary:

Case 1. We will use the following result.

LEMMA 7.5. Let p be as in 7.2 and suppose x,  2 R + p, + 1. Suppose
that xl - xi+1 = 1. Then Dirac operator inequality fails on y for
n = (n, n - 1, ..., 1).

Proof. The hypotheses on ,u imply that

Note that 1  x  2R + pt implies that
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Now

By (*), the sequence of integers

overlaps the sequence R, R - 1, R - 2, ..., - R + 1, - R.
Clearly, the first n - R coordinates of on - 03BC decrease by steps of at most

one. So if W E WK is such that 03C9(03BC - on) is dominant, then the coordinates
of w(/l - on) will be a sequence of integers decreasing by at most one,
ending in 0 or + 1 and in the latter case, there must be repetitions in the
sequence.

Since

it follows that

Hence

Now to prove non-unitarity for case 1, take io to be the minimal integer in
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Then ~ ~ ~V and by Proposition 3.3, X is the Langlands quotient of some
module

and if we set

then, by induction by stages (see Zuckerman (1977) or Vogan (1981),
6.3.10), X is the Langlands quotient of

and (a) of Theorem 5.7 holds.

Clearly

and, by Lemma 7.5, the Dirac inequality fails on ,u2. By Lemma 6. 3 (a) there
is a K type v,,2 in V03BC2 ~ (e2 n ft) that makes the Hermitian form  , &#x3E;L
indefinite.
The roots in 0394(~2 ~ p) are

It is clear that if 172 = 03BC2 + 03B2 is dominant for some f3 E 0394(~2 ~ p) then,
since ai, 

- ai0+1  2 the K-type ,u + f3 is also dominant for 0394(u n ae).
Hence by Theorem 5.8 X(,u + f3) =1= 0, and Theorem 5.7 follows for this
case.

For case 2, suppose (7.4)(b) holds and that there is io  t such that
(7.4)(a) does not hold for j = pi + p2 + ··· + py. Set
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and

Again ~ = ~1 ~ ~2 ~ ~V and arguing as in the preceding case we can find
XL such that (a) in Theorem 5.7 holds.

Write XL as XL1 Q XL2 , where XLl is an (~i, Li n K)-module.
By Theorem 6.1 in Enright (1979), and especially its proof (pp. 518-523),

if XL1 is not an Aq, (03BB’) then Dirac inequality fails precisely on the lowest
K-type. Write ML = ,u - 2(u n p) and

By Lemma 6.3 (a) again, there is an (L, n K)-type V, with 171 = III + 03B2
for fi E A(e, n fi). If for all i ~ io

Then y + p is dominant.
Otherwise take k’ = LiER Pi with

Then apply Enright’s result to the rest. Q.E.D.

§8. Proof of Theorem 5.7 for G = SU( p, q)

Let n = p + q. Write Im for the identity matrix in GL(m, C) and A* for thE
conjugate transpose of the matrix A, then

Then the maximal contact subgroup K of G is
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If 0 is the Cartan involution defined by 03B8(X) = -X*, and

then

The compact Cartan subgroup of G is

K can be identified with the space

If we denote by ej E R*,j = 1,..., n, the elements of the dual basis in Rn,
then the roots of / in y correspond to the set

Also

the compact imaginary roots of / in 1, and

the noncompact imaginary roots of t in p.
Let li = (al , a2, ..., ap|b1, b2 , ... , bq ) be the highest weight of a lowest

K-type of X. Fix the positive system A+ (i) so that

Having in mind the construction of the quasisplit subgroup Lv, write



282

We can form an array of two rows with the coordinates of y + 2Q, so that
they are aligned in decreasing order from left to right as follows: the xi are
in the first rows; the yj are in the second; and terms decrease from left to right
in the array. For example, if we have

the array would look like:

This array gives a choice of positive roots 0+ - 0394+ (g, /), compatible
with 0+ (k). That is, the simple roots are given by the arrows. In the preceding
çxample, they would be

Because the terms in each row decrease by at least 2, the entire array is a
union of blocks of the following five types.
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From now on we will drop the arrows in the pictures, since the ordering
of the roots is clear from the arrangement of the coordinates of y + 2f2c’
provided we agree on choosing the order prescribed in block 1.

Using the picture of 03BC + 2f2c’ we can split the coordinates of y as follows

where ri is the number of p-coordinates and si the number of q-coordinates
making up the i-th block of the array of y + 2c, and

PROPOSITION 8.2. Letu be as in 8.1 and X a (y, K)-module with lowest K-type
y. Then

and

an admissible unitary character



284

where

Proof. This is immediate from Proposition 8.2 and Proposition 3.4(a).
We simply need to note that if say pi  qi then the picture for ,uL + 2~~k
(cfr. 3.4) in the u(pi, qi ) factor looks like

We want to obtain now, necessary and sufficient conditions for a representa-
tion of K to be the lowest K-type of a (g, K) module Aq(03BB).

Let M - 1(/j)* be the highest weight of a representation of K.
Write
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By Proposition 4.4 and Lemmas 4.6, 4.8 we may assume that y determines
q’ ~ k and 03BC’ determines q’ (note that q(03BC) ~ q(03BC’) but their compact parts
coïncide).

Write

where 03A0p = (kl, k2, ... , kt) and n, = (l1, l2,..., lt) are the coarsest

partition of p and q, respectively, such that

Then, an easy argument shows that

The proof is straightforward if we use the conditions on A and y given in 4.1
and 4.3.

We proceed now to the proof of Theorem 5.7. Suppose X E K) is
as in Theorem 5.7 with infinitesimal character y E (hc)*, and let 03BC E i(tc0)* be
the highest weight of a lowest K type of X.

Let us consider a slightly différent splitting of the coordinates of ,u than
that of 8.1. Write

so that

but here p; , qj &#x3E; 0, that is, this splitting is not necessarily compatible with
the blocks given by 03BC + 2c.
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It is convenient to draw a picture of the coordinates of ,u with the same
blocks obtained from li + 2c. We are going to study what happens around
the first pl coordinates of 03BC.
We may assume that either

or

otherwise we can interchange p and q.
If p1  p we can have the following configurations for ,u

or

where

with
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The blocks in these pictures are some of the simple factors of ~V(X).
Because of Corollary 8.4, if y is the lowest K-type of an Aq(03BB) module we

must be in case one. Therefore, for this case we need to find a reductive
subgroup L ~ G so that X is a Langlands quotient of a Zuckerman module
coming from a representation of L and

(a) in the case when we have an A1(À) for L, the derived functor preserves
the signature of the form,

(b) otherwise, (a)-(c) of Theorem 5.7 hold.
On the other hand, for cases 2-5 we need to prove non-unitarity. In each

case a group L will be found as in 1, making sure that (a)-(c) of Theorem
5.7 hold.

All this will reduce the problem to the case pl = p.
In this case we have two configurations

Case 6 can be included in either 2 or 3 and case 7 will be dealt with in a
similar fashion.
Note that as soon as we have shown that (a) of Theorem 5.7 holds, then

by Lemma 6.5 the representation of L in question, as well as its Hermitian
dual, have a Hermitian form.
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For 1, let ~ = s(u(p1, qa) ~ u ( p - p1, q - qa)), here qa is either ql or 0.
For 2, choose

For 3, let

In cases 1 and 2, ~ ~ ~V. Hence, by induction by stages, arguing as in §7,
there is some (e, L n K)-module XL such that X is the Langlands quotient
of

In case 3, ~ ~ t v. However, Proposition 8.2.15 of vogan (1981) gives the
same result, even if q ~ qV.

Cases 4 and 5 are solved the same way as 2 and 3, so we not discuss them
in detail.
Now for case 1, assume that XL ~ A?l (03BB). Define e2 by U2 = U + a, and

Then

(by induction by stages again).
To see that Rgq2(C03BB) is a module Aq2(C03BB) amounts to checking that

03BB, 03B1&#x3E;  0 for all a E 0394(u2). This can be done using 3.4(a).
Set 03BCL = 03BC - 2Q(m n p). By Proposition 3.4 ,uL is the highest weight of

a lowest L n K-type of the module XL.
Since pl  p then L ~ G and dim L  dim G. Assume ML is not the

lowest K-type of a module Aq(03BB). Hence, by induction, there exists an
L n K type V 17 L in V03BCL ~ (e n p) such that, on V Il L (9 V~L the Hermitian
form is indefinite. 
A highest weight of an L n K-type in V03BCL 0 (e n p) is then of the form

03BCL + 03B2 for some 03B2 E A(e n p).
It is straightforward to check that if ML + fi is a highest weight, then

,u + fi is k-dominant and hence, Theorem 5.8 gives (c) of Theorem 5.7.
For cases 2 and 3 we need the following
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LEMMA 8.8. Let

be a weight in /*.
If p = q or p = q + 1 then Dirac operator inequality fails on p for

(see 6.1).
Proof. Write y as y, + ,us with y, E (center g)* and y, E [y, e]. We need

to prove that (6.2) does not hold. Note that 6.2 is equal to

If X is a (q, K)-module with infinitesimal character y, then

Hence it is enough to show that

This can be computed explicitly. Q.E.D.

We can prove now 5.7(c) for cases 2 and 3. Recall that for 2,

and for 3,

An easy calculation shows that in both cases

or
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Hence, by Lemma 8.8 and (b) of Lemma 6.3 there is 03B2 E 0394(u(r, r) ~ p-)
or 0394(u(r + 1, r) ~ p-) such that the Hermitian form  , &#x3E;L on

V03BCL ~ V03BCL+03B2 is indefinite. Now if 03BCL + 03B2 is dominant, necessarily

03B2 = (0 ... 0 - 1|1, 0, ... 0).

Also y + 03B2 = (x1, Xl’ ... , x1, x1 - 1, x2,...|...yi-1, yi + 1, Yi’ ...)
is 4-dominant and Theorem 5.8 gives again 5.7(c).

4 and 5 are solved in exactly the same way as 2 and 3, using Qn and p+.
So 1 have reduced the problem to the case

6 can be included in either 2 or 3.
For 7 write 03BC = (a a ... a/bl ... bl, b2 ... b2 ... bt ... b,) the picture

for 03BC is

with

Note that if qi = 0 for all i &#x3E; 1 this is case 1. So assume t  2.

As before, 1 want to find a group L to which 1 can apply some reduction
argument.
Suppose rt+1 &#x3E; rl set s - rl + ql + El + r2 .
Then let L = U(s, ql ) x U( p - s, q - ql ). Note that

LV = U(1)r1 X U(q1 + El, ql )  U(1)r2 X ... x U (q + t; l’ qt)  U(1)rt+1.

So L ~ Lv, and arguing as in the preceding cases we can verify (a) of
Theorem 5.7.
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By Proposition 3.4, if y = (03BBV, v) is the infinitesimal character of Bl?(XL),
then yL = (03BBV - (u), v) is the infinitesimal character of XL. In fact, by
definition of 0394(uV),

Write L1 = U(s, q1).
We want to contradict Theorem 6.1. For some values of rl , r2 it could be

possible to prove the failure of Dirac inequality as we have done before; that
is, by simply using the minimal value of the restriction of v to the split part
of the Cartan of L, that makes 03B3L|L1 regular integral.
However, this is not possible for all values of rl , r2 . Therefore, we need to

involve all of v instead. This is done by a lengthy and explicit but straight-
forward calculation. The idea is that it is enough to prove the failure of
Dirac operator inequality on

That is, if 03B31 = y - (u)|L1 and w e WK makes w03B31 dominant, it is enough
to prove

Now if rj &#x3E; rt+1, we choose

and repeat the same argument for this case.
We next observe that (*) will also hold if ri = rt+1 and some ei &#x3E; 0 or

some rj &#x3E; 0; 1  j, i  t.

So this reduces to the case
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But by symmetry, using the case ri &#x3E; rt+1, we can conclude that e, = 0.
But then we have

With which we have dealt before. This is solved in the same way as case
1 for Pl  p.
This proves Theorem 5.7 for G = SU(p, q). Q.E.D.

§9. Proof of Theorem 5.7 for G = SP(n, R)

Let Im be the identity matrix in GL(m, C). We define

The maximal compact subgroup K of G is

K can be identified with the space

The roots of / in y are

also
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the compact imaginary roots of te in 9.

the non-compact imaginary roots of tc in g.
As for the preceding cases, fix a positive root system A+ (4) so that if

then y is A+ (,4)-dominant and

Let ,u + 2c = (x1, x2 , ..., x,,).
Choosing a positive Weyl Chamber for 0394(g, hc), given byy + 2(!c corre-

sponds to forming an array of two rows with the absolute value of the
coordinates of y + 2,oc so that they are aligned in decreasing order as
follows:

If x1  x2  ···  xr  0 &#x3E; xr+1  ···  xn then xl , ... , X, are in
the first row - xn, - xn-1,..., -xr+1 in the ’second and they ait decrease
from left to right in the array.
For example, if we have

the array would look like

As for the case of SU( p, q), the choice of arrows gives a positive root
system A+ = 0394+(g, tC), compatible with 0+ (l).

Again, the entire array is a union of blocks of the following types.
1-5 all blocks of the five types discussed for SU( p, q) not containing

1 or 0.
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(10 is a particular case of 9).
Again, using the picture, split the coordinates of y by the blocks that

p + 2Qc determines as follows.
If y + 2Q c gives

with B a block of some type 6-10, set

where m is the total number of coordinates composing the block B.



295

PROPOSITION 9.2. If y E i(t8)* gives figure 9.1 then

with

Now suppose 03BC is the highest weight of a representation of K. We want an
analogue of Proposition 8.6.
By Proposition 4.5 we may use y to determine a compact parabolic subalgebra

PROPOSITION 9.3. In the above setting, set ni = ri + si then ,u is the lowest

K-type of some A?(À)

and

This also follows from 4.1 and 4.3.
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We proceed to the proof of Theorem 5.7 for this case. Let X as in Theorem
5.7, with infinitesimal character y E (hc)*, 03BC E i(tc)*, the highest weight
of a lowest K-type of X. Suppose X is not a module Aq(03BB). Let

t v = ~V(X) = (-(pl, q1) ~ -(P2, q2) ~ ··· ~ u(pt, qr)) O sp(m, R)
(cfr. 9.2) and p = E pi, q = X q,. Set

then

Define zo z Uv by uV = u + (av ~ ~).
Then q ~ qV and by Induction by Stages, (a) of Theorem 5.7 holds.
Now let XL be an (e, L n K)-module such that X occurs only once as

composition factor of Rq(XL). We can see XL as the exterior tensor product
XL = XL1 ~ XL2 with XLl an (ti, Li n K)-module.
That XL has a Hermitian form  , &#x3E;L follows from Lemma 6.5. Set

03BCL = 03BC - 2(u n IÀ’ = 03BCL|Li.

LEMMA 9.4. XL1 ~ Aq0(03BB0), for some q0 ~ LI; 03BB0: to - C.
Proof. By Theorem 5.7(b) and (c) (proved for SU( p, q)) and Theorem 5.8

if XL1 ~ Aq(03BB) then there is fi E 0394(~1 n fi) such that  , )L is indefinite on
the sum

it is clear that if 03BC1 + 03B2 is dominant for 0394(~1 ~ k), then ,u + 03B2 is dominant
for 0394+(k), unless xp = xp+ 1 Or xp+m = x,+.+ 1.
Suppose then that x. = xp+1.
Note that JlLvIL2 = ,u2 and hence Jl2 is fine and XL2 is a principal series.
So Jl2 ~ {(0 ... 0); (1 ... 1, 0 ... 0); (0, ... , 0, -1, -1 ... -1)}.
If Jl2 is trivial it is easy to see (looking at the pictures 6-7 givèn by

p + 2(!c) that xp - xp+ 1 &#x3E; 0, as well as xp+m - xp+m+1 &#x3E; 0.

Note that, by Frobenius reciprocity, both
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should occur in the same principal series. So if y’ is a non-trivial fine K-type
call 172 the corresponding other non-trivial fine K-type. Then ~ = Pl +
172 + 2Q(a n p) is a lowest K-type of X. This implies that

So, since

for any fi E 0394(~1 n p), then either y + fi or y + fi is,4-dominant proving
5.7(c). Q.E.D.

LEMMA 9.5. In the above setting, assume that XL1 ~ Aq0(03BB0) for some q0 ~ e 1
and À : ~0 ~ C03BB0.

Then, Theorem 5.7 is true if we assume that

Proof. Suppose first that

Then if

an easy calculation shows

By (b) in Lemma 6.3, there is a

making V03BC2 ~ V03BC2+03B2 into a space on which  , &#x3E;L is indefinite.
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Moreover p + 03B2 is A+ (k)-dominant, by (9.6). Similarly if

then

Now, if J.l2 = (0 ... 0) then the Dirac operator inequality fails for any
choice of n = (0394+(~2 ~ p)), unless 03B3|~2 = (!t2 in particular, if

and, obviously, 03BC + 03B2 is also dominant for 03B2 ~ 0394 (p- n (2).
Now if yltz = ~2 , then, the Langlands subquotient of XL2 is the trivial

representation. (In fact, the representation XL2 = I(03B4L2V Q vL2V) is a principal
séries and 03B4L2V = trivial; 1 = 1 = vL2V.)
Hence the Langlands submodule of

is

By induction by stages, X is an Aq(03BB), contradicting our assumptions on X.
This proves the lemma. Q.E.D.

To finish the proof of Theorem 5.7, suppose now that xp - xp+1  1.

LEMMA 9.7. Under the hypothesis of Lemma 9.5 if xp - xp+ 1 = 1 and

xp+m - xp+m+1  2, then Theorem 5.7 is true.
Proof. The assumptions on the coordinates of y imply that the picture of

,u + 2Qc around the coordinates involved is either
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where x - m = 1 or 2, or

Observe that 03BCLV = 03BC - 2(uV n p) is fine and that the fine K-type that
gives the picture

is ,u2 = (1, 1, ... , 1, 0 ... 0); and the fine K type that gives

is 03BC2 = (0...0).
Arguing as in the proof of Lemma 9.5 we can find, in both cases

as we want. Q.E.D.

LEMMA 9.8. Under the hypothesis of Lemma 9.5, assume now that

Then the infinitesimal character y of X is not regular integral.
Proof We want to contradict the assumption that the infinitesimal

character y is regular and integral. Since we have an Aq(03BB)-module for
Li = U( p, q), we have some control on y.
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Recall that L = U( p, q) x SP(m, R) and

We may assume pt  qt. By Corollary 8.4, either

or

and

Inside SP(n, R) this gives

If y is regular integral
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Claim. If y satisfies (9.9) then 03BBt - s  1.

Proof. The picture for ,u + 2c around these coordinates can be of the
following types.

So we either have (considering that 5 and 2, and 3 and 1 are symmetric)

and

with
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In both cases we get (see Vogan (1981) Proposition 5.3.3)

This proves the claim.
This reduces to the case when q, = 0. But then, ,u + 2Q, gives, at worst,

Because if qi = 0, pi = 1, since U(pi, qi) is quasisplit. So, we have

xp+m - xp+m+1  2!

This concludes the proof of Theorem 5.7. Q.E.D.
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