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Abstract. In this paper we prove the stable manifold theorem for a class of quasi-linear
parabolic equations, and discuss an asymptotic behavior of the gradient flow of geometric
variational problems.

1. Introduction

One of the purpose of this paper is to prove existence of stable and unstable
manifolds for a class of quasi-linear parabolic equations. In the case of
semi-linear parabolic equations, some results of the stable manifold theorem
can be found in D. Henry’s monograph [9] or others (for example N. Chafee
and E. Infant [2]). Recently, C.L. Epstein and M.I. Weinstein proved a
stable manifold theorem for the curve shortening equation [6]. They treat the
curve shortening equation as a quasi-linear parabolic equation from SI to
R (c.f. M. Gage and R.S. Hamilton [8].)

In this paper, we consider, on a closed Riemannian manifold (M, g), a
class of quasi-linear parabolic equations of the following type:

where J is an elliptic operator of 2k-th order, N(u) represents the non-linear
part of the equation, and a map u: M x [0, 03C9) ~ H satisfies n o u(x, t) = x
for all x E M and t E [0, 03C9), for a vector bundle H over M With the

1980 Mathematics Subject Classification (1985 Revision). Primary 35K45, 58G11, 58E20;
Secondary 35B35, 35B40.
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finite-dimensional fiber and the projection n. Moreover J and N are sup-
posed to satisfy the following three conditions:

(CI) The zero is a stationary solution of (1.1), i.e.,

(C2)  J(u), u&#x3E;L2   u, u&#x3E;L2 for some A E R, and J is self adjoint with
respect to L2.

(C3) For m &#x3E; 12 dim M + 2k and for u, v e Hm+k (M, H) such that
~u~Hm+k, ~v~Hm+k  1 we have

and

The main result on the existence of stable and unstable manifolds, briefly
stated, is:

THEOREM A. For the stationary solution 0 of (1.1), there exist
(a) a finite codimensional stable invariant manifold whose elements are

close to 0,
(b) a finite dimensional unstable invariant manifold whose elements are

close to 0.

REMARK: In the above theorem,
(a) the codimension of the stable manifold is equal to the dimension of

negative and zero eigenspaces of J,
(b) the dimension of the unstable manifold is equal to the dimension of

negative eigenspaces of J.

Another purpose of this paper is to prove the asymptotic stability of the
gradient flow of a variational problem in geometry. In our previous papers
[13, 14], we prove that a strongly stable harmonic map is an asymptotically
stable stationary solution of Eells-Sampson equation (the equation of the
gradient flow for harmonic maps). In this paper, the above result is extended
to weakly stable or unstable harmonic maps as an application of Theorem
A. On the asymptotic behavior, the main result, briefly stated, is:
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THEOREM B. For the functional

where E is a smooth fiber bundle over (M, g), we suppose that s, is a weakly
stable critical point and that the connected component of critical set which
contains s, is non-degenerate. Then the equation of the gradient flow of .2:

has unique solution provided that Euler-Lagrange operator of 2:  is

elliptic and that SI is close to so. Moreover the solution tends to a critical point
at t ~ 00 with exponential order.

(For more precise statement, see Section 5).
In the second section, we prepare some of linear analysis: the definition

of the norm of Sobolev spaces, the spectral theory of J and some well known
inequalities. In Section 3 and 4, we prove Theorem A via a contraction
mapping argument. Finally, in Section 5, we present examples of quasi-
linear parabolic equations which originated in differential geometry and
apply our result to prove Theorem B.
Many ideas due to [6] are used in this paper.

2. Preliminaries

The operator - J is self adjoint as an operator on L2 (M, H) and is an elliptic
operator of 2k-th order. It has therefore a discrete spectrum
{03BB0, 03BB1, 03BB2,...} accumulating only at - ~. The projection operators
onto the positive, negative and zero eigenspaces will be denoted by 03C0+,
03C0- and 03C00, respectively. We will renumber the eigenvalues so that the
positive eigenvalues are {03BB1, 03BB2,..., 03BBN} and the negative eigenvalues
are {03BB-1, 03BB-2,...}. Let 03BB := min {|03BB1|, |03BB-1|}. Here we remark that

since Im(n+ + no) is finite dimensional all norms on Im(03C0+ + 03C00) are
equivalent.
The norm of the Sobolev spaces Hm(M, H) are defined by
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The norm II . II Hm is well-defined since ~ . ~Hm is equivalent to the usual
defined norm of the Sobolev space.
We define the norm on the space L2 (R+ ; Hm (M, H)) by

Let 03BC,m denote the subspace of L2(R+; Hm+k (M, H)) n L~ (R+ ; Hm (M, H))
defined by the norm:

These spaces are clearly Banach spaces. In Sections 3 and 4, a non-linear
operator will define contraction on 03BC,m for suitable data.
Some basic inequalities we needed are following lemmas.

LEMMA 2.1. Let u E L2(R+; Hm+k(M, H)), v E L2(R+; Hm-k(M, H)) and
assume that u and v satisfy

then

Proof. Multiply (2.1) by Jmlk(u) and integrate over M to obtain

Integration in t gives
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Since u e Im03C0- and u e L2(R+; Hm+k(M, H)), we can find a sequence
Tn ~ oo such that (u, Jm/k(u)&#x3E;L2(Tn) ~ 0. This gives the assertion of this
lemma.

LEMMA 2.2. If u e Hm (M, H) then
(a) e-Jt03C0_u~Hm(M, H),

and Co = 1 for t  0 and 0  03B1  1.

Proof. They are well known estimate that

and

The following estimates is called the interpolation property of Sobolev
spaces:

for w E H’" and 0  03B1  1. These three estimates imply the estimate (a).
In the similar manner of the above argument, we obtain the estimate (b).

Il

LEMMA 2.3. Under the hypothesis of Lemma 2.1, and for 0  03BC  À the

following inequality holds:

where À is the constant in Lemma 2.2.
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Proof. Similarly as proof of Lemma 2.1, we get

From Lemma 2.2, we have the estimate:

Put Il = 03BB(1 - e), and combining (2.2) and (2.3) we get

An inequality (2.4) is equivalent to

Integration in t gives

This inequality asserts this lemma. Il

The above lemma was suggested by Y. Yamada.

3. An apriori estimate for the non-linear equation

We replace non-linear parabolic equation (1.1) by an integral equation:
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In Sections 3 and 4, let m &#x3E; 2 dim M + 2k and 0  J1  03BB. Here uo is an

element in Hm(M, H). A fixed point of T is a solution of (1.1). The initial
data of the fixed point is

We will study T in Banach space 03BC,m for m &#x3E; 1 2 dim M + 2k and
003BC03BB.

In this section we will prove:

THEOREM 3.1. For m &#x3E; 1 2 dim M + 2k, 0  03BC  À and |u|03BC,m  1, there
exist constants C1 and C2 such that

Proof. We will construct 8IJl,m-estimate by separating (3.1) freely.

Step 1. The H"’-estimate.
(i) To estimate 1t- -part we apply Lemma 2.1 to

This function f (t) satisfies the equation:

Lemma 2.3 implies that

Therefore we obtain
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(ii) We will estimate

in Hm -norm. To estimate 03C0+-part we apply Lemma 2.3 to

This function f+(t) satisfies the equation:

From Lemma 2.3, it is easily shown that

(iii) Finally we will estimate in Hm -norm

This is essentially the same as (ii), we can show that

Combining (3.2), (3.4) and (3.6), we conclude that

and also

Step 2. The 111 - Illm+k-estimate.
As remarked in the previous section, there exists a constant C such that
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Using estimate (3.5), (3.6) and (3.9), and integration in t we, therefore,
obtain

To estimate 03C0- -part we apply Lemma 2.1 to

From Lemma 2.1, it follows that

Hence we obtain

Combining (3.10) and (3.11), we show that

and also

Therefore we obtain (a) by (3.7) and (3.12), and (b) by (3.8) and (3.13).
Il

Note that we have shown:

PROPOSITION 3.2. Under the conditions in Theorem 3.1, the following estimate
holds:

Theorem 3.1 implies the following corollary which is realized an apriori
estimate for the integral equation (3.1).
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COROLLARY 3.3. For m &#x3E; 2 dim M + 2k, and 0  03BC  À, there is an e &#x3E; 0

such that if ~03C0- Uo Il H- 2  8 then the 8-ball whose center is e-Jt03C0- uo in 14 Il,m is
mapped into itself by T.

4. The proof of Thèorem A

in this section, we show that if e, in Corollary 3.3, is chosen small enough
then T is contraction on 03BC,m. As in conclusion of this argument, the
existence of stable and unstable manifolds will be shown.

THEOREM 4.1. For m &#x3E; 2 dim M + 2k and 0  Il  À, iflulll,m, lvlp,m  1

then there exists a constant C such that 

Proof As before we break up the proof into two steps:

Step 1. The H"’ -estimate.
The Hm-norm of the difference of Tu(t) and Tv(t) is separated into three

parts. Each part is estimated by essentially same argument of the proof of
Theorem 3.1:

To estimate the 03C0_-part, we apply Lemma 3.3 to

This function f (t) satisfies the equation:

From Lemma 2.3, the following estimate holds:
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On the other hand, from the condition (C3) we get

Hence we get

and

Step 2. The 111 . Illm+k-estimate.
Since Im(03C0+ + 03C00) is finite dimensional, there exists a constant C such that

Therefore from (4.5-6) we obtain

To estimate 03C0--part we apply Lemma 2.1 to

From Lemma 2.1, f satisfies that

Hence we obtain
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Therefore, combining (4.4-6) and (4.8-9), we obtain (4.1).
One of the main result of this paper will follow:

COROLLARY 4.2. For m &#x3E; 1 2 dim M + 2k and 0  J1  03BB, there exists an
e &#x3E; 0 such that for every uo e Im 03C0- with

then there is a unique solution to

in 03BC,m with |u|03BC,m  B. Moreover the solution tends to zero in Hm-norm as

t - oo with exponential order.

Proof. From Corollary 3.3, there exists an e &#x3E; 0 such that if uo E Im03C0-
and |e-Jtu0|03BC,m  e, then the map T is contraction. The existence and the

uniqueness immediately follow from this fact. Proposition 3.2 implies that
the Hm -norm of the solution u(t) tends to zero as t - 00. Il

By using (3.1) one can show that the solution u(t) depends smoothly on uo
in the Hm -topology. The stable manifold as a submanifold of Hm (M, H) has
the codimension dim (Im (03C0+ + 03C00)).
To obtain an unstable manifold we use the integral equation:

As similar Corollary 4.2 one can show that T- is contraction on

Therefore we obtain:

COROLLARY 4.3. For m &#x3E; 2 dim M + 2k and 0  Il  À, there exists an
e &#x3E; 0 such that for every uo E lm 03C0+ with
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then there is a unique solution to

in -03BC,m with lul-  e. Moreover the solution tends to zero in Hm-norm as

t ~ - ~ with exponential order.

Corollary 4.3 implies that there exists a space of initial data with which the
solutions are asymptotically stable for the backwards evolution equation.
This space is called by the unstable manifold. The unstable manifolds as a
submanifolds of Hm (M, H) has the dimension dim(Im 03C0+).

5. The gradient flow equation for geometric variational problems

In this section, we present a quasi-linear parabolic equation originated in
differential geometry.

Let E be a smooth fiber bundle over (M, g) with the fiber a Riemannian
manifold (N, h). We denote by C"’ (E) the set of smooth sections of E, and
RM a trivial line bundle over M: M x R. Let J’(E) be the r-th-ordered jet
bundle of E and jr: C~ (E) ~ C~ (Jr(E)) be the jet extension map. For a
fiber bundle morphism: F: Jr(E) ~ Rm, L = F*ojr is realized as an r-th
ordered nonlinear differential operator from E to RM, where F* : C~(E) ~
C~ (Rm) is the canonical map induced by F. Now, we define a functional Y:
C~(E) ~ R by

Since L = F* ojk, this can be written as

In this section, we consider a heat equaton of ,2:
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This equation (5.3) is realized as the equation governing the gradient flow
of the functional.
The aim of this section is to prove asymptotic behavior of (5.3) near a

critical point. To do so, we rewrite (5.3) to a "linearized" equation as below.
We define a vector bundle neighborhood (abbreviated VBN) of a fiber

bundle [11, p44]. For s E C°(E), a VBN 03BE in E of s is a vector bundle over
M such that 03BE is an open subbundle of E and s E CO(ç). For s E C0(E), we
define 1:(E) as a vector bundle over M which is s*(ker(d03C0)|M), where n:
E ~ M is the projection of the bundle. Canonically, we can identify 1: (E)
as a VBN in E of s. Let (DE be a neighborhood in E which contains so(M).
It is obvious that (DE is diffeomorphic to a neighborhood (9 in 1:(E) by the
exponential map exps0(x)03C3(x). Using this diffeomorphism, we define a func-
tional 2’: C~(O) ~ R by

Since we can denote that L’s0 = F’s0*oj’k where jk is the jet extension map and
F’s0: C~(Jk(O)) ~ C~(RM),

We see that so is a critical point of 2 if and only if the zero section of (9 is
a critical point of 2’. In local coordinates, the Euler-Lagrange operator of
2 and s0 are denoted by

and

respectively. Furthermore d/dt|t=0 ’s0(03C3t) for u, = tJ is called the Jacobi
operator of ’s0 which can be written as follows:
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where A = (i1, ···, il), lAI = 1, p03B1A are local coordinates in Jk(O), DA =
~l/~xi1 ... aXil’ 1  i1, ···il  dim M, 1  a, 03B2, 03B3  dim N, and the
summention convention are used.
Here we define the ellipticity of lff 2. The Euler-Lagrange operator lff 2

is called elliptic whenever J is an elliptic operator. In this section, we assume
that lff 2 is elliptic.

PROPOSITION 5.1. For the functional ’s0, the Euler-Lagrange equation of ’s0
is

Let so E COO (E) be a critical point of 2. The index of so, denoted by Index
(so ), is the maximal dimension of negative definite subspace of COO (E ) by Js0.
The nullity of so, denoted by Null(so), is the dimension of the kernel of Jso .
We call a critical point so stable and weakly stable whenever Index(so) =
Null(so) = 0 and Index(s0) = 0, respectively.
Under the above situation, we reduce (5.3) to an evolution equation. If the

initial value s1 of (5.3) satisfies the property:

where iN denotes the injectivity radius of N, then by the above argument we
consider, instead of (5.3), the following equation:

In the similar manner of [13], the Taylor expansion of (5.9) yields a new
evolution equation. We can calculate as follows:
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and

Hence we get the evolution equation, if so is a critical point of Ef and s
satisfies the above property, instead of (5.3),

The non-linear term of (5.12) is a differential operator of the 2k-th order and
its 2k-th-ordered terms have coefficients at most k-th-ordered terms. Hence

N(6) satisfies the condition (1.2). Clearly, from the definition ’s0 the zero is
a stationary solution of (5.12) and J(O) = N(O) = 0. From the assumption
of ellipticity of tff 2, J satisfies the condition (C2). Therefore the equation
(5.12) is the quasi-linear parabolic equation of type (1.1).
Applying Theorem A to (5.9), we conclude that:

PROPOSITION 5.2. For m &#x3E; Z dim M + 2k and 0  03BC  03BB, there exists an
e &#x3E; 0 such that for every Qo E Imn- with

then there is a unique solution to
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in and the solution satisfies the estimate

for some constant C.

By the transformation s(x, t) = exps0(x)03C3(x, t), u(x, t) is the solution of (5.9)
if and only if s(x, t) is the solution of (5.3).

Therefore we have:

THEOREM 5.3. For m &#x3E; z dim M + 2k, if the initial value S1 satisfies some
condition, then the equation of the gradient flow of the functional :

has a unique global solution in some Banach space and the solution expo-
nentially tends to a critical point in Hm(E).

In the statement of Theorem 5.3, what is some condition for s1 is that

(JI (x) := (exps0)-1s1(x) satisfies the conditions for the initial value of

Proposition 5.2. In particular in the case that the critical point so is weakly
stable, we can show more precise result.
We define that the critical set S of vector field X on an infinite-dimensional

manifold A is non-degenerate if and only if S satisfies following conditions.

(D1) The set S is a smooth manifold as a submanifold in fJ4.
(D2) For each point p E S, Tp S - Ker dp X.

We call that J E Ts0(E) is a Jacobi field whenever J(u) = 0. Furthermore
Jacobi field J E Ts0(E) is called integrable if there exists a 1-parameter family
{ut} of critical points with u° - 0 such that ~us/~t|t=0 = 6 [16]. In our
case, S = the set of critical points of ’s0. The connected component of S
which contains the zero is denoted by S° . It is easily shown that if S is
non-degenerate then all Jacobi fields are integrable.
We assume that S is non-degenerate. This assumption is equivalent to that

the critical set of 2 is non-degenerate.
If the zero section of Ts0(E) is a weakly stable critical point and S° is

non-degenerate, then, for all J which is not contained in S° , 03C0_03C3 is satisfies
the conditions of Proposition 5.2.

Therefore we have:
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THEOREM 5.4. We assume that so is a weakly stable critical point of Y and the
connected component of the set of critical points which contains So is non-

degenerate. For m &#x3E; 2 dim M + 2k, the initial value SI is close to a critical
point then there exists a unique global solution of

in some Banach space and the solution tends to a critical point with exponential
order.

Here we remark that in the above statement what is some condition is that

u(x) := (exps0(x))-1S1 (x) is close to zero.

EXAMPLE. Harmonic maps and Eells-Sampson equation
In the above situation, let E = M x N and

A critical point of the functional, which is defined by F, is called a harmonic
map. The Euler-Lagrange operator of this functional is:

We denote this operator -0394f which is called by the tension field of f. The
gradient flow equation is called by Eels-Sampson equation. In this case,
Jacobi operator J is:

where Af is called the rough Laplacian on the vector bundle f - TN over M.
Therefore if N has non-positive curvature, J is a positive operator: i.e., all
harmonic maps are weakly stable.

In 1964, J. Eells and J.H. Sampson showed that if N had non-positive
curvature there exists at least one harmonic map in each homotopy class of
C~(M, N ). In their paper, they prove that, under the assumption that N has
non-positive curvature, Eells-Sampson equation has unique global solution
for arbitrary smooth initial values and the solution tends to a harmonic map
[5, 9].
Applying Theorems 5.3 and 5.4 to this example, we obtain the existence

theorem for Eells-Sampson equation, there exists a set of initial values such
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that if an initial value is contained in the set then Eells-Sampson equation
has unique global solution and the solution tends to a harmonic map.

This is the answer to Prof. J. Eells’ original question of the author.
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