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Introduction

Global moduli spaces in algebraic geometry exist only in very special
situations. Indeed, to handle the set of isomorphism classes of objects of a
given kind, the first thing one generally tries is to decompose it into a

(generally infinite) disjoint union of "quotients" of certain algebraic schemes
by certain "algebraic" equivalence relations. But even if such a decompo-
sition into "quotients" is available, the corresponding "quotients" generally
do not exist as algebraic schemes (or as algebraic spaces); this is the case for
instance with the polarized nonsingular projective varieties where the ruled
ones spoil the picture [17]. On the other hand it may happen that no such
decomposition into "quotients" is available at all: this seems to be the case
(at least apriori) with: a) finitely presented algebras, b) complete local
algebras, c) linear algebraic groups, a.s.o.
To remedy the lack of global moduli spaces there are at least two changes

of viewpoint which can be made: first one can adopt a "local" viewpoint on
moduli (in the sense of Kodaira-Spencer, Schlessinger, ... ); secondly one
can adopt a "birational" viewpoint on moduli (as suggested by work of
Matsusaka, Shimura, Koizumi [16, 17, 24]).

It is the birational viewpoint which we follow in this paper. It consists in
associating to each isomorphism class 03BE of objects of a given kind a field k(03BE)
which should play the role of "residue field at 03BE" on a global moduli space.
In [17] Matsusaka proved the existence of the fields k(03BE) for nonsingular
polarized projective varieties and called them "fields of moduli"; his strategy
was geometric, via "quotients", hence does not seem to apply to cases a),
b), c) above.
The aim of this paper is to introduce a new method by which we prove

the existence of the fields k(03BE) for large classes of objects (possibly equipped
with certain additional structures) belonging to classes a), b), c) above. For
precise statements, see Section 2. Our method is of purely algebraic nature;
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it is of independent interest since it is based on killing nonabelian cocycles
of certain nonprofinite groups.

Rather than speaking about "fields of modulü" we will speak in our paper
about "coarse representability" of certain functors of fields; as we shall see
"coarse representability" is "essentially equivalent" to the existence of
"fields of moduli" (cf. assertion (5) in Theorem (1.5)).
The paper is divided into two parts. In part 1 we prove an abstract

criterion of "coarse representability" for functors of fields (assertion (6) in
Theorem (1.5)), we consider some basic examples of such functors and state
our main Theorem (2.10) which asserts that most our functors are "coarsely
representable" in characteristic zero. In part II we use nonabelian cohom-
ology to split algebras over skew group algebras in order to check that
our functors satisfy the axioms appearing in our criterion of coarse rep-
resentability.
As a concluding remark note that there are remarkable cases where the

"local moduli theory" is trivial whereas the "birational moduli theory" is
not (e.g., the case of smooth affine varieties, which have no nontrivial
infinitesimal deformations but lots of global deformations "depending effec-
tively on a certain number of moduli "). On the other hand there are cases
when there is no satisfactory "local moduli theory" whereas there is a

satisfactory "birational moduli theory" (e.g. the case of nonnecessary
isolated singularities). Both cases above will be discussed in our paper.

PART 1: FUNCTORS OF FIELDS

1. Abstract theory

(1.1) Let Ba c B c Be be categories (here " c " means "subcategory") and
let C : B ~ S ( = category of sets) be a contravariant functor. For any object
X E Be define the functor hX:B ~ S by hx(Y) = HomBe (Y, X) for all

Y~B.

We say that an object X E Be coarsely represents C if there is a morphism
ç : C ~ hx satisfying the following properties

there is a unique morphism f E Hom., (X, X’) such that ~’ = hlo ~ (where
hf:hx’ ~ hX is the morphism naturally induced by f ).
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Clearly (m2) uniquely determines X up to a "canonical" isomorphism in
Be.

The prototype for the definition above is Mumford’s concept of coarse
moduli space (in that case the objects of B are locally noetherian schemes,
those of Be are also schemes or more generally algebraic spaces while the
objects of Ba are the spectra of algebraically closed fields).

(1.2) From now on we shall fix a ground field k; all objects and maps will
be "over k". Throughout the paper we assume that B is the dual of the
category of fields, Ba is the full subcategory of B whose objects are the
algebraically closed fields while Be is the category which we shall now
describe. Given a set X, by a birational structure on it we mean a family of
fields {k(x); x E X}; a set together with a birational structure on it will
be called a birational set. By a morphism between two birational sets X
and Y we mean a map f: X - Y together with field homomorphisms
fx* : k(f(x)) ~ k(x) for all x E X. Birational sets form a category which we
denote by Be . B is viewed as a subcategory of Be by letting a field K be
identified with the birational set X = {x}, k(x) = K. A birational set X is
called of finitely generated type if k(x) is a finitely generated extension of k
for all x E X. A birational set X coarsely representing a functor C : B ~ S
will be called a birational moduli set for C.

Intuitively the field k(x) should be viewed as the "residue field" of X at x.
Moreover note that if X E Be and K E B then

so hX is a "birational analogue" of the "functor of points" of a scheme in
algbraic geometry.

(1.3) What we do next is to give a criterion for a functor C : B ~ S to possess
a birational moduli set of finitely generated type; our criterion will involve
(and was motivated by) concepts introduced by Matsusaka, Shimura,
Koizumi (especially their concepts of "fields of moduli").

First we fix some notations. If K/Ko is a field extension, g(K/Ko ) will
denote the group of Ko-automorphisms of K and we write g(K) instead of
g(K/k). If g c g(K) is a sub-group then Kg will denote the subfield of K of
elements fixed by g; g is called Galois-closed if g - g(K/Kg).
Now given a functor C : B - S, K a field and 03BE E C(K) we say that a

subfield Ko of K is a field of definition for 03BE if 03BE E Im (C(K0) ~ C(K)).
Denote by D(ç) = D(03BE, C) the set of those subfields of K which are fields
of definition for 03BE. Moreover note that g(K) acts on C(K) on the right by the
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formula ç(1 = C(03C3-1)(03BE) for 6 E g(K), 03BE E C(K) ; let

be the isotropy of 03BE under this action. Finally define

If K is algebraically closed then some easy remarks are in order (cf. [16]
[24]):

1) If Ko E D(03BE) then g(K/Ko) c g(03BE), in particular we have K03BE c Kr.
2) g(1) acts on D(03BE) hence globally invariates Kr; so if g(03BE) is Galois-

closed and K/K~03BE is not algebraic then K~03BE/K03BE is an algebraic normal
extension.

3) It is not reasonable to expect that K, E D(03BE); this fails in very nice
situations (e.g., k = Q, C(K) = set of isomorphism classes of non-singular
projective curves over K [24]).

(1.4) A field will be called universal if it is algebraically closed and has
uncoutable transcendence degree over k. We denote by Bu the full sub-
category of B consisting of universal fields and by B03C9 the full subcategory
of B consisting of those fields which are countably generated over k; so
Bu = BaBBw. A field extension K/Ko is called regular if Ko is seperably closed
in K.

Let C : B ~ S be a functor, 03BE E C(K) and consider the following
properties:

(g, ) g(03BE) is Galois-closed

(g2) K~03BE = K03BE

(g3) K~03BE/K03BE is purely inseparable

(d, ) D(03BE) contains an algebraic extension of K03BE

(dz) D(03BE) contains a regular extension of K03BE belonging to Blo

(d3) D(03BE) contains a finitely generated extension of k.
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A functor C : B - S will be said to have property (gi) or (di) for some
1  i  3 if for all K e Bu and all 03BE E C(K), 03BE has the corresponding
property. Consider also the following properties which make sense for any
functor C : B ~ S.

(w) For any K E B we have C(K) = ~ C(E) where E runs through the
set of all subfields of K belonging to B03C9.

(s) For any extension K’/K, K, K’ E B’ the map C(K) ~ C(K’) is injective.
(m) C has a birational moduli set of finitely generated type.
Note that (g,) + (g2) + (g3) implies the fact that 03BE has a "field of

moduli" in Koizumi’s sense [16] while (g,) says that 03BE has a "field of moduli"
in Shimura’s sense [24]. Note also that in our applications property (s) will
be essentially a "specialisation" property.

It will be convenient to consider the following variations of (dl) and (d2)
(making sense for any functor C : B - S):

(03B41) For all K E Bu and all 03BE E C(K) there exists an extension KIK such
that D(Z) contains an algebraic extension of K03BE (where 03BE is the image off
via C(K) ~ C(K)).

(Ô2) For all K E Ba . Bffl and all 03BE E C(K) there exists an extension K/K
with k E B" such that D(Z) contains a regular extension of Kl .
The following result summarizes the relevant implications between the

above properties (the last implication being the key one in our approach):

(1.5) THEOREM. For a functor C: B ~ S the following hold:

REMARKS.

a) Implication 6) is a formal consequence of 1)-5)
b) Implication 4) is contained in [16]
c) The equivalence 5) is a characterisation of coarse representability

(under the hypothesis (03C9) + (d3)).
d) Implication 2) plays a key role in our approach.
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Proof. 1) is standard and we omit proof.
2) For any subfield L of a field K E Bu and for any 03BE E C(K) put g(j /L) =

g(03BE) n g(K/L).

CLAIM 1. If L e Bw then g(03BE/L) is Galois-closed.

Indeed, by (dl) ç = C(j)(03BE0) where j is the natural inclusion of Ko, the
algebraic closure of Kg(03BE/L), into K and ÇO E C(Ko). Now Ko E Bu hence by (d3)
there is a finite Galois extension K1 of Kg(03BE/L) contained in Ko with KI E D(03BE).
We have g(K/K1) c g(ç/L) c g(K/Kg(03BE/L)). Upon letting H to be the image
of g(03BE/L) under the projection g(K/Kg(03BE/L) ~ g(K1/Kg(03BE/L)) we have by
Galois theory that H = g(K1/(K1)H) hence g(03BE/L) = g(K/(KI)H) which
easily implies our claim.
Now let’s prove that g(03BE) = g(K/Kg(03BE)). We will make a "reduction to the

uncountable case". Let k’ be a purely transcendental extension of k having
uncountable transcendence degree over k, let K’ = Q(K ~k k’) be the
quotient field of K ~k k’, F an algebraic closure of K’ and 03BEF be the image
of 03BE via C(K) ~ C(F). By our claim 1 we have g(çF/k’) = g(F/Fg(03BEF/k’)).
Now take Q E g(K/Kg(f.)), let u’ E g(K’/k’) be its unique extension and let
 E g(F/k’) be any extension of Q’.

CLAIM 2. 6 E g(F/Fg(03B6F/k’))

Assuming this for a moment we get that  E g(çF/k’) so ÇF = (03BEF) = (03BE03C3)F
and we conclude by (s) that 03BE = 03BE03C3 i.e., that J E g(03BE). So 2) will be proved
if we prove Claim 2. Let

Clearly there is a surjective homomorphism g ~ g’ where

and the kernel of g ~ g’ is g(F/K’). So we have

where the index "i" means "perfect closure" and the last equality is a

consequence of a remark made in [27] pp. 405-406. Now our Claim 2 follows
because or is the identity on Q(Kg(03BE) Qk k’).

3) Let K E Bu, 03BE E C(K) and let Ko be the algebraic closure of K03BE in K. By
(03C9), Ko E B-. By (dl ) there exists some Ço E C(Ko ) whose image in C(K)
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is 03BE. Applying (Ô2) to Ko and jo there is an extension K/K° such that K E B"
and D(Z) contains a regular extension of Kô° (03BE = image of 03BE0 in C(K)).
Now there exists a Ko-isomorphism u of k onto a subfield K1 of K. With
Çl = image of 03BE in C(K1) = image of jo in C(KI ), clearly we have that D(03BE1)
contains a regular extension of Kô° contained in Kl . We shall be done if we
prove that !Go = K03BE. But this is easily checked through property (s).

4) Let x E KBK03BE; it is sufficient to find a perfect field E E D(03BE) with x e E.
By (d2 ) there exists F~ D(03BE) n B03C9 with F a regular extension of K03BE. Let F
be the perfect closure of F in K; since K03BE is perfect, K03BE is algebraically closed
in F . So one can find J E g(K/KÇ) such that ax e F . By (g1), 03C3 E g(03BE) hence
x e 03C3-1 Fi E D(03BE).

5) To prove implication from left to right we need the following definition.
Given a subcategory B° of B a morphism 9’: CIBo - hxlBO is said to have
property (m, ) if it induces isomorphisms on all objects of Ba n B° . Then we
proceed in several steps:

STEP 1. Let K E B’ and denote by BK the subcategory of B whose objects are
the subfields of K and whose morphisms are defined by

Define a birational set as follows. Put X = C(K)/g(K), let s: X - C(K)
be any section of the projection p : C(K) - X and put k(x) = K,(x) for all
x E X (k(x)/k is finitely generated by (d3)). We construct a morphism
~K: C|BK ~ hxlBK having property (m, ) as follows. For any subfield E of K
and any 03BEE E C(E) let 03BE = 03BEK be the image of 03BEE in C(K) ; we have s(p(ç)) =
Ça for some 6 E g(K) and we put ~K(E)(03BEE) = (xç, uç ) where x03BE = p(03BE) and
u03BE : k(x,) --+ E is defined as the composition

Note that by (g2 ) + (g3)UÇ does not depend on the choice of a. Moreover
if E is algebraically closed ~K(E) is injective due to properties (s) + (g1) +
(g2 ) + (g3) and surjective due to properties (cv) + (dl ) + (g2 ) + (g3).

STEP 2. Let K and ~K be as in STEP 1. We can construct a functor 03B2: B" - pK
with the property that for any E E Be’ we have an isomorphism P E : E rr
03B2(E) in B and for each arrow u : E ~ E’ in B" we have 03B2(u)° 03B2E = 03B2E, ° u.
Define a morphism ~03C9: C|B03C9 - hX|B03C9 as follows for any E e BW let ~03C9(E) be
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defined by the commutative diagram:

STEP 3. Using axiom (co) qJOJ can be extended to a morphism ç : C ~ h,
which will still have property (m, ).

STEP 4. We claim that ç has also property (m2). To check this take any
morphism (p’: C - hx, choose K E Bu and consider the g(K)-equivariant
maps of sets qJ(K) : C(K) ..:::+ hx(K), qJ’(K) = C(K) ~ hX’(K). Taking orbits
we get maps (p: C(K)/g(K) ~ hX(K)/g(K) ~ X and ~’: C(K)/g(K) ~
hx,(K)/g(K) and define f : X ~ X’ by f = no (P’ 0 (p-l 1 where n: hX’(K)/
g(K) ~ X’ is the natural projection. Moreover if ~(K)(03BE) = (xç, uç) and
~’(K)(03BE) = (x’03BE, u’03BE) for 03BE E C(K) then by functoriality of cp’ we have
u’03BE(k(x’03BE)) ~ Kç while by the very construction of X we have uç(k(xç)) = Kç
consequently we get field homomorphisms f*x : k(f(x)) ~ k(x) hence a
morphism f:X ~ X’ unique with the property hf°~ = qJ’.
The other implication in 5) is proved along the same lines; it will not be

used in the sequel and we omit details.
As already noted 6) follows from the preceeding implications.

(1.6) The following general situation will often occur in what follows. Let’s
make the following definition: a morphism C’ ~ C between functors from
B to S will be called a full embedding if the map C’(K) ~ C(K) is injective
for all K E B and

for any field extension j:K ~ K’.
Now if C’ ~ C is a full embedding and 03BE E C(K) for some K E B then

clearly D(03BE, C) = D(03BE, C’), g(03BE, C) = g(03BE, C’). Consequently if C has one
of the properties (g;), (d;), (03B4i), (03C9), (s) the same holds for C’.

(1.7) The following construction will play a role later. Suppose C : B - S is
a functor. An element 03BE E C(K) is called bounded if there exists a field
extension K’/K, a subfield ICo of K’ finitely generated over k and an element
03BE0 E C(Ko) such that 03BE and Ço have the same image in C(K’). For any K E B
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let Cb (K) denote the set of all bounded elements in C(K). Then K H Cb(K)
defines a functor Cb : B - S fully embedded into C.

2. Some remarkable functors. Main result

(2.1) The typical examples of functors from B to S which we are going to
consider are the "moduli functors" associated to suitable fibred categories
over B. More precisely let C be a fibred category over B; by this we mean
that for any K E B we are given a category CK, for any field homomorphism
u : K ~ K’ we are given a "base change" functor Cu : CK ~ CK, and for any
pair of field homomorphisms K ~ K’ ~ K" we are given a functorial
isomorphism Cu,v:CvoCu ~ Cvu , all these data being subject to same

natural compatibility conditions [10]. Given C as above one can define the
"moduli functor" (still denoted by C) from B to S by the formula

C(K) = CKI’SO (= set of isomorphism classes of objects in CK). If A E CK
and 03BEA is its image in C(K) we put D(A) = D(03BEA) and g(A) = g(ÇA).

(2.2) The functors PAL, PALF, HAL. By a K-algebra (K a field) we under-
stand either an associative unitary (not necessarily commutative) K-algebra
or a Lie K-algebra. By a polarization on a K-algebra A we mean a finite
dimensional K-linear subspace P of A which generates A as a K-algebra. By
a polarized K-algebra we mean a K-algebra A with a given polarization PA
on it. A polarized K-algebra is of course finitely generated; it is called finitely
presented (respectively homogeneous) if the kernel of KPA&#x3E; ~ A is a

finitely generated (respectively finitely generated and homogeneous) ideal of
KPA&#x3E; = free (associative or Lie) K-algebra on PA. The polarized (respect-
ively polarized finitely presented, respectively homogeneous) K-algebras
form a category which we call PALK (respectively PALK, HALx); a mor-
phism is by definition a K-algebra map f : A ~ B such that f(PA) c PB. For
any field homomorphism K ~ K’ we define base change functors PALK ~
PALK, by A H A’ = K’ OK A, PA. = K’ QK PA (and analogously for

PALK, HALK) ; the resulting fibred category and moduli functor are denoted
by PAL (respectively PALf, HAL).

Finite dimensional K-algebras A have a natural structure of polarized
finitely presented K-algebras via PA = A. Another remarkable example of
algebras which carry a natural polarization will be given below (cf. (2.4) and
(2.8)).

(2.3) The functors CLA, CLS. A complete local K-algebra will always be
assumed commutative, noetherian, with residue field K. Denote by CLAK
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the category of complete local K-algebras. Define the base change functors
CLAK ~ CLAK. by A H K’ QK A (@ = completed tensor product) and
denote by CLA the resulting fibred category and moduli functor. As we shall
see below the functor CLA’ of bounded complete local algebras (cf. (1.7))
will prove itself to have good moduli theoretic properties. Note for instance
that any A E CLAK which is algebraisable in the sense of [1] is bounded. It
seems to be an open problem whether any complete local algebra is bounded
(cf. the end of [2]).
For technical reasons it is convenient to consider also a "relative" situ-

ation. Namely, for a fixed integer N  1 let K[[X]] = K[[X1, ..., XN]] be
the power series algebra over K and let CLSK be the category of complete
local K-algebras A equipped with a local algebra homomorphism K[[X]] ~
A (the morphisms in CLSK being assumed to agree with the maps K[[X]] ~
A). These CLSK define a fibred category and a moduli functor CLS.

(2.4) The functors AFF, AFF+. By an affine K-algebra we mean a finitely
generated, commutative, geometrically reduced K-algebra. Denote by AFFK
the category of affine K-algebras (which is antiequivalent to the category of
affine K-varieties) and by AFF the resulting fibred category and moduli
functor. We say that A E AFFK has non-negative Kodaira dimension (com-
pare with [21]) if it is geometrically integral and there exists a smooth com-
pletion X of Veg (= regular locus of V = Spec(A)) such that Sm (X, D) :=
H0 (X, 03C9~m ((m - 1)D)) ~ 0 for some m  1 (where D is the reduced

divisor XBVreg assumed to have normal crossings and 03C9X is the canonical
bundle on X). If char(k) = 0 then by [4] [21] Sm (X, D) (viewed as a subspace
of the space of regular m-uple n-forms on Vreg, where n = dim (A)) does not
depend on the choice of the completion of Vreg; if K = C, Sm (X, D) can be
interpreted as the space of regular m-uple n-forms on Vreg with finite
"volume". Denote by AFFK the full subcategory of AFFK of all algebras
having a non-negative Kodaira dimension and by AFF+ the resulting fibred
category and moduli functor.

(2.5) The functor COH. For any field K let COHK denote the category of
finitely generated K[[X]]-modules (X = (X1, ..., XN)). Define base change
functors COHK ~ COHK- by E H E ~K[[x]] K’[[X]] = K’ êK E. We get a
fibred category and a moduli functor COH.

(2.6) The functor LFS. Fix a complete local k-algebra R with prof(R)  2
and for any field K let LFS(K) be the set of isomorphism classes of locally
free coherent sheaves on the punctured spectrum YK = Spec (RK)B{M(RK)}
where RK = K Qk R and M(RK) is the maximal ideal of RK. We defined a
functor LFS : B ~ S.
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(2.7) The functors AHA, AHAP, AHA Let AHA, denote the category of
affine Hopf K-algebras (which is anti-equivalent to the category of linear
algebraic K-group [12]). With obvious base change functors we get a fibred
category and hence a moduli functor AHA.
A reductive algebraic K-group P (char(K) = 0) will be called pure if:

Aut(P)/Int(P) is finite. If K is algebraically closed P is pure if and only if its
center has dimension  1 ([12] p. 218 and [7], p. 409). An affine Hopf
K-algebra A(Char(K) = 0) will be called pure if, upon letting L = Spec(A),
U = Ru(L) = unipotent radical of L we have that LIU is pure (L/U exists
and is reductive by [12] pp. 80 and 117). Let AHAK be the full subcategory
of AHA, of pure Hopf algebras and AHAP the resulting fibred category and
moduli functor.

Suppose A E AHAK, char(K) = 0. By a rigidification on A (or on
L = Spec(A)) we mean the giving of the isomorphism class V of a faithful
representation V of L/U (where once again U = Ru(L)). Since L/U is
reductive the set of all possible rigidifications on a given A is a "discrete" set
(i.e., it does not increase by base change K ~ K’, K, K’ E B a). By a rigidified
affine Hopf K-algebra we mean a pair consisting of an object A E AHAK and
a rigidification V on it. Rigidified affine Hopf K-algebras form a groupoid
which we call AHArK; we obtain a fibred groupoid and a moduli functor
AHA’ .

(2.8) PROPOSITION. There exist full embeddings:

where for a, y, ô we assume char(k) = 0.
Proof. The only non-obvious arrows are a, fi, y.
To construct a the key point is that any A E AFFI has a canonical

polarization PA. It is constructed as follows. Let V = Spec(A), (X, D) a
smooth normal crossing completion of Veg and let m  1 be the smallest

integer such that Sm (X, D) ~ 0. Then consider for each integer n  1 the

K-linear subspace of A :
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Clearly dimKA"  oo for all n  1 and A = ~n1 An. Let N be the
smallest integer such that AN generates A as a K-algebra and define a
polarization PA = AN. Note that if u : A ~ A’ is a K-isomorphism and
V’ = Spec(A’), (X’, D’) a smooth normal crossing completion of (V’)reg
then by [4, 21] the map u* : (V’)reg ~ Veg induces K-isomorphisms
Sm(X, D) ~ Sm (X’, D’) hence u induces K-isomorphisms An ~ An for all
n  1; in particular u(PA) = PA., so we have a correctly defined morphism
AFF+ ~ PALf which obviously is a full embedding.
To construct 03B2 write R = k[[X]]/I and send a bounded locally free

sheaf F on YK into the K[[X]]-module F’ = H0(Yx, F). By a theorem of
Grothendieck [10] F’ is finitely generated. Now f3 is a full embedding by the
yoga in [10].

Finally, to construct y we proceed as follows. To any K[[X]]-module E
which is bounded and finitely generated we associate the local complete
K-algebra K[[X]] Q E (E 2 = 0) equipped with the obvious inclusion map
K[[X]] ~ K[[X]] ~ E; this will be an element of CLSb(K). To check that y
is a full embedding one has to prove that if L/K is a field extension, A is a
bounded complete local K[[X]]-algebra and L K A - L[[X]] ~ E is
an isomorphism of L[[X]]-algebras (with E a finitely generated bounded
L[[X]]-module) then A - K[[X]] ~ Eo for some bounded finitely generated
K[[X]]-module Eo. It is sufficient to show that (nil(A))2 = 0 and the natural
map u : K[[X]] ~ Alea = A/nil(A) is an isomorphism. The condition on nil
is clear while for the second condition the formula (L êK A)red = L K
(Ared) (which holds by separability of L/K) shows that 1 é u : L K
K[[X]]~ L K (Ared) is an isomorphism which implies that so is u (look at
the associated graded rings).

(2.9) It is an easy exercise to check that the functors PALF, AHA, AHA’,
AFF have properties (co) (d3) (s). Clearly CLS has property (03C9). Moreover
CLSb has property (d3) (use the fact that if a system of algebraic equations
with coefficients in a universal field K involving at most countably many
unknowns has a solution in a field extension of K, then it has a solution in
K; we would like to stress the following technical point: here the universality
of K is essential and this justifies both our definition of property (d3) and the
somewhat boring "reduction to the uncountable case" in the proof of 2) in
(1.5)). Finally note that by a result of Seidenberg [22] CLA has property (s);
same arguments as in [22] show that in fact CLS has (s).
The main effect of our theory will be the following:

(2.10) THEOREM. Suppose char(k) = 0. Then the functors
a) HAL, AFF+, PALF; b) CLAb, COHn, LFSI; c) AHAP, AHA’ have

property (m).
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In view of 6) in Theorem (1.5) together (1.6), (2.8), (2.9) the statement
above will be proved if we prove the following.

(2.11) THEOREM. The functors PAL and CLS satisfy (03B41) and (Ô2)’ Moreover
if char(k) = 0, AHA satisfies (03B41), AHAP satisfies (Ô2) and AHA’ satisfies (03B41)
and (03B42).
As a Corollary of Theorem (2.11) we get that if char(k) = 0 then AHA

has property (g, ).
Theorem (2.11) gives significant information also in characteristic p &#x3E; 0.

Indeed together with (1.5), (1.6), (2.8), (2.9) it shows that in arbitrary
characteristic PAL! and CLA’ have the properties (gl), (g2)’ (dl), (d2). A
typical corollary in characteristic p &#x3E; 0 concerns the Frobenius auto-

morphism 9. Indeed if k is the prime field Fp and A is a bounded local

complete K-algebra (or a polarized finitely presented K-algebra) with K
universal such that A - A9" for some n  1 then A is defined over the

algebraic closure of Fp.
An example of remarkable functor having property (m) in arbitrary

characteristic (cf. [16]) is the functor CRV : B - S CRV(K) = set of iso-
morphism classes of smooth projective curves over K.
The proof of Theorem (2.11) will be done in Part II of our paper (cf.

Corollaries (4.3), (5.3), (6.4), (6.9), (6.10)) using a purely algebraic strategy
from our book [5].

(2.12). Note that one could try to prove (03B41) in a "geometric" way as follows.
If C is one of the fibred categories under consideration then each object
A E CK (K universal) should be viewed intuitively as a "family" over the
parameter space Spec(K). Then one could try to replace Spec(K) by
a Ko-variety Spec(S) (Ko = KA, Ko c S c K) on which g(A) acts by
birational automorphisms and then try to use representability of the functor
of isomorphisms between objects in spec(s) where ë is an extension of C to
the category SCH of schemes (over k). There are serious difficulties with this
approach (indeed although one can find by property (d3) a field definition
Ki for A which is finitely generated over Ko one cannot find apriori such a
K, which in addition is stable under g(A) (in fact if K, /Ko is transcendental
then K, is never stable under g(A)!).
Note also that one could try to prove (03B41) by extending the method of

Chow points due to Matsusaka and Shimura. There are difîiculties also with
this approach. Indeed in their method it is essential that the moduli functor
takes the form
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with Hi certain quasi-projective k-schemes (appearing as locally closed
pieces of certain Chow varieties or Hilbert schemes) and Ri certain

"algebraic" (nonnecessary closed) equivalence relations on Hi. But it is not
clear (at least apriori) that this holds for the functors under consideration:
to see this one would probably need a theory of Chow coordinates (or a
"Hilbert scheme") for the corresponding fibred categories (e.g., for complete
local algebras or for polarized finitely presented algebras!).

(2.13) Let’s close by making some remarks on automorphisms in a fibred
category C over B. Let K E Ba, A ~ CK; there exists an exact sequence

where AutK(A) is the automorphism group of A as an object in CK and
G(A) = G(A, C) is the group defined as follows. Its elements are pairs
s = (03C3, v) with 0" e g(A) and v: A ~ Aa := Ca-l (A) an isomorphism in CK;
the multiplication is defined by

where v" = C03C4-1(03BD) E Hom (A!, (A03C3)03C4) and C03C3,03C4 t = C -1 -1 (A) E Hom ((A03C3)03C4,
A03C303C4). Note that G (A) acts on K via g(A). A key point in our method will be
to kill cocycles of G (A) with values in general linear groups GLn (K).
As an example, if C = CLA and if we view K as a subset of A E CLAK

then G (A) identifies with the group of all k-automorphisms of A sending K
onto K.

The following relation between our setting and Weil’s Galois descent
worths being noted (although won’t be used later). Let Ko be a subfield of
K and A ~ CK. If Ko E D(A) then one can find a group homomorphism
s : g(K/K0) ~ G(A) which composed with the projection G(A) ~ g(A)
yields the natural inclusion g(K/Ko ) c g(A). Conversely if such a "section"
s exists one can ask whether Ko E D(A). Upon letting s(o) = (03C3, SCT) for
6 E g(K/Ko ) with SCT: A ~ A6 we see that we have

for all 6, i.e., the family {s03C3; 03C3 E g(K/K0)} satisfies a condition analogue to
Weil’s cocycle condition [26]. So if K/Ko was a Galois extension, we would
get for "reasonable" C’s that Weil’s discent works and Ko E D(A). In our
situation; however, K is universal while Ko is the algebraic closure of KA so
K/Ko is always transcendental; moreover we do not dispose apriori of a
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"section" s as above. So Weil’s Galois descent cannot be applied to deal with
property (dl )!

PART II: ALGEBRAS OVER SKEW GROUP ALGEBRAS

3. Killing nonabelian cocycles

(3.1) We place ourselves in the setting of [3], section 1. So let G be a

group (not assumed to be profinite!); by a G-field (respectively G-group,
G-ring, ... ) we will understand a field (respectively group, ring, ... )
together with a G-action on it by field (respectively group, ring, ... ) auto-
morphisms. If K is a G-field and L is a linear algebraic K°-group then L(K),
the group of K-points of L, is a G-group.

Recall that if r is a G-group one defines the set Z’ (G, F) of 1-cocycles as
the set of all maps f : G - 0393 satisfyingf(st) = f(s)s(f(t)) for all s, t E G. A

cocycle f is called a coboundary if there exists x E 0393 such thatf(s) = x-’sx
for all s E G.

(3.2) We make two definitions. An extension E/K of G-fields will be called
constrained if the extension EG/KG is algebraic (terminology is inspired from
differential algebra [14]); note that if E/K is constrained and K is algebraic-
ally’closed then K’ = E°.
Moreover a subgroup GI of G is called cofinite if there exists a sequence

of subgroups G, = G2 ce ... c Gm = G such that G, is normal of finite
index in Gi+1 for 1  i  m - 1. Clearly the extension KG1/KG is then
necessarily finite.

(3.3) THEOREM. Let K be a G-field, L a linear algebraic K°-group and
f E Z’ (G, L(K)) a cocycle. Then: 

a) There exists a cofinite subgroup G, of G and a finitely generated con-
strained extension of G, -fields KI /K such the image of f via Zl (G,
L(K)) ~ Z1(G1, L(K1)) is a coboundary.

b) If L is geometrically irreducible there exists a finitely generated regular
extension of G-fields KI /K such that the image of f via Zl (G, L(K»
Z1(G, L(K, )) is a coboundary.

Proof. Embed L into GL, for some N and suppose L is defined in
KG[X]d by an ideal 1 where X = (Xij) and d = det (X). There is a unique
G-action on K[X] ] which agrees with our G-action on K and such that
sXij = E Xip(f(s))pj where f(s) E L(K) is viewed as an element in GLN(K).
Since sd = (det f (s))d the action above extends to a G-action on K[X]d;
clearly J = IK[X]d is globally G-invariant. To prove b) note that the radical
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r(J) of J is a prime ideal in K[X]d and clearly is globally G-invariant.
Then we put K1 = Q(K[X]d/r(J)) and let x E L(K1) be the K1-point of L
corresponding to the map K’[Xldl, --+ Kl ; clearlyf(s) = x-’sx for all s E G
and b) is proved.
To prove a) let S be the set of all ideals J’in K[X]d satisfying the following

properties:

1) J’ contains J

2) J’ is G’-invariant for some cofinite subgroup G’ of G.

Let J, be a maximal member in S and let G1 be the corresponding cofinite
group from condition 2). We claim JI is a prime ideal. Indeed let M =

{P1, ..., Pm} be the set of primes in K[X]d minimal over Jl . Then G2 =
Ker (G1 ~ Aut (M)) is still cofinite so Pi E S hence by maximality JI = P1.
Let KI = Q(K[X]d/J1) and x E L(K1) as in the proof of b). We are left to
prove that KG11/KG is algebraic. It is sufficient to check that any element
a E Jil’ is algebraic over K; indeed if an + bl an-1 + ... + bn = 0 with
bi E K is an equation of minimal degree satisfied by a then for any s E GI we
have (bl - sbl )an-1 + ... + (bn - sbn ) = 0, hence by minimality sbl =
hi for all i and s E G1; so a is algebraic over el which in its turn is finite over
KG.
Assume there exists a E Kf’ transcendental over K and look for a con-

tradiction. By Chevalley’s constructibility theorem there exists g E K[a],
g =1= 0 such that the image of the map Spec (RI [a] ~ Spec (K[a]) contains
Spec (K[a]g) (where RI = K[XIDIJ, and RI [a] is the RI -subalgebra of KI
generated by a). We claim there exists a cofinite subgroup G2 of G and a
G2 -invariant prime ideal P =1- 0 in K[a] not containing g. If KG1 is infinite
this is clear. To prove the claim in general note that there exists at least
one polynomial h E KG1 [a] none of whosé prime factors hl, ... , hn in
K[a] divides g. Clearly G, acts on K[a] and also on the set of ideals F =

{h1K[a], ..., hmK[a]}. Then the claim follows, by taking G2 = Ker (G1 ~
Aut (F)). With P at hand consider the set E = {Q1,..., Qs} of minimal
primes in the fibre of Spec (RI [a]) - Spec (K[a]) at P; clearly G2 acts on
R1[a] and also on E. Then if we let G3 = Ker (G2 ~ Aut (E )) we get that
Q = Q1 is G3-invariant hence so will be Q n R1, hence so will be the inverse
image of Q n R1 in K[X]d which we call J3. Now Q ~ 0 hence Q n R1 ~ 0
(because Q(R1) = Q(RI ([a])) so J3 strictly contains Yi. Since G3 is cofinite in
G this contradicts the maximality of JI and the Theorem is proved.

(3.4) Let K be a G-field. Denote by K[G] the skew group K-algebra on G;
recall that as a K-linear space, K[G has a basis consisting of the elements
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of G, while the multiplication is defined by (C1S1)(C2S2) = (c1s1(c2)) (SI S2) for
all C1, C2 E K, si, s2 c- G. We shall be interested in the category of K[G]-
modules (note that the (G, K)-spaces from [15] are K[G]-modules while the
converse is not true since we do not assume - and this will be important -
that the action map G ~ g(K) is injective). If M is a K[G]-module then
s(cx) = (sc) (sx) for all s E G, c E K, x E M. When we say a K[G]-module is
finite dimensional we mean it has finite dimension over K. The field K is a

K[G]-module in a natural way.
For any K[G]-module M put MG = {~ E M; sx = x for all s E G}; MG

is a K°-linear space and we have a natural injective map

We will often identify K ~ KG (MG) with the image of the above map. If this
map is surjective we say that M is a split K[G]-module; clearly M is split if
and only if it has a K-basis contained in MG. Moreover one easily checks
that any sub-K[G]-module of a split K[G]-module is split (use an argument
similar to that in [5] p. 55). If KI IK is an extension of G-fields and if M is
a K[G]-module then KI (DK M has a natural structure of K, [G]-module
defined by s(c Q x) = sc Qx sx for s E G, c E K, , x E M.

(3.5) A useful remark is that if M is a split K[G]-module, G, is a subgroup
of G and K, /K is an extension of Gi -fields then the following hold:

1) K1 ~K M is a split K, [G1]-module and

2) the natural map

is an isomorphism.
The first assertion is clear since K, (8) K M has a K1 -basis consisting of

G-invariant elements in M. To prove the second assertion it is sufficient to
check that , f ’ becomes an isomorphism after tensorization with K1 over K71.
But after tensorization both the source and the target of f naturally identify
with K, QK M so we are done.
Now exactly as in [15] our Theorem (3.3) on killing cocycles (applied to

L = GLN) leads to "existence of invariant bases" so we get.

(3.6) COROLLARY. Let K be a G-field, M a K[G]-module of finite dimension.
Then:
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a) There exist a cofinite subgroup G, of G and a finitely generated con-
strained extension K1/K of G1-fields such that KI ~K M is a split KI [G1]-
module.

b) There exists a finitely generated regular extension K, /K of G-fields such
that KI ~K M is a split KI [G]-module.

4. Polarized K(G)-algebras

(4.1) Let K be a G-field. Following [19] p. 952, by a K[G]-algebra we mean
a K-algebra A which is also a K[G]-module such that the multiplication map
A Qx A ~ A and the unit K - A (if there is any) are K[G]-module maps
(here A QK A is a K[G]-module via s(a1 Qx a2) = sa, Qx saz for s E G1, a1,
a2 E A). By a polarized K[G]-algebra we will mean a polarized K-algebra A
which is also a K[G]-algebra such that PA is a K[G]-submodule of A.

Following [19] p. 957 we say that the (polarized) K[G]-algebra A is split
if there is an isomorphism of (polarized) K[G]-algebras A ~ K ~KG (AO) for
some (polarized) K G -algebra A° where K ~KG (AO) is given the structure of
K[G]-algebra defined by s(c ~ x) = sc Qx x for s E G, c E K, x E A°.

(4.2) THEOREM. Let A be a polarized K[G]-algebra. Then:
1) There exists cofinite subgroup G, of G and a finitely generated con-

strained extension KI /K of G, -fields such that KI ~K A is a split
polarized KI [G ]-algebra.

2) There exists a finitely generated regular extension of G-fields KI /K such
that KI ~K A is a split polarized KI [G]-algebra.

Proof. Let 03C0:K~P~ ~ A be the natural surjection, P = PA and

J = Ker (n). To prove assertion 1), by part a) in (3.6) there exists a cofinite
subgroup G, of G and a finitely generated constrained extension of G, -fields.
KI IK such that Pl := Kl ~K P is a split KI [G1]-module. Consequently
KI(PI) is a split KI [G1]-algebra. Since KI ~K J is a K, [G, ]-submodule of
K, (Pj ) it is split; this immediately implies that K1 ~K A is split polarized
K1[G1]-algebra. The proof of 2) is similar using part b) in (3.3) instead of
part a).

(4.3) COROLLARY. The functor PAL has properties (03B41) and (ô2).
Proof. Any polarized K-algebra A has a structure of polarized K[G]-

algebra with G = G(A, PAL) (see (2.13)): for any s = (03C3, v) E G,
Q E g(A, PAL), v : A - A" and any a E A we put sa = p03C3(03BD(a)) where
p03C3:03C3 ~ lA: AU = K° ~K A ~ A = K ~K A (where KU is K itself viewed as
a K-algebra via 03C3-1: K ~ K). We conclude by (4.2).
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5. Complète local K[[X]] [G]-algebras

(5.1) Let K be a G-field. By a complete local K[G]-algebra we mean a
complete local K-algebra which is also a K[G]-algebra. If X = (Xl , ... ,
XN ) by a complete local K[[X]] [G]-algebra we mean a complete local K[G]-
algebra together with a local algebra homomorphism u : K[[X]] ~ A such
that u(Xi) E AGf or 1  1 K N.

Let A be a complete local K[[X]][G]-algebra; it is called split if there
is a K[[X]]-algebra isomorphism A ~ K KG (A°) with A° a complete
local KG[[X]]-algebra such that for the induced K[G ]-algebra structure on
K KG (A0) we have s(c @ x) = sc ê x for all s E G, c E K, x E A° .

(5.2) THEOREM. Let A be complete local K[[X]][G]-algebra. Then:
1) There exists a field extension KIK such that D(K êK A, CLS) contains

an algebraic extension of KG.
2) There exists a countably generated regular extension of G-fields /K

such that K QK A is a split complete local K[[X]][G]-algebra.
Proof. We shall prove 1) and 2) simultaneously refering to them as to case

1) and 2). For all n  2, An = AIMN is a finite dimensional K[G]-module
(M = M(A)). By (3.6) one can construct inductively a sequence G = G1 ~
G’2 =3 G3 ~ ··· of subgroups of G and a sequence K = KI c K2 c
K3 ce ... of fields such that for all n  2 the following conditions are
satisfied:

a) Kn is a Gn -field
b) KnlKn-1 1 is a finitely generated extension of Gn -fields which is con-

strained in case 1) and regular in case 2).
c) Gn is a cofinite subgroup of Gn-l in case 1) and Gn = Gn-l in case 2).
d) Kn QK An is a split Kn[Gn]-module (call it Bn). Now put

Note that fi KG is algebraic in case 1) and KI K is regular in case 2); moreover
in case 2) K = KG. Clearly A0n is a k-subalgebra of K (8) K An and we have
K(8)f(An) = K ~K An . Since the natural maps fn : Bn+1 ~ Kn+ 1 Qxn Bn are
maps of Kn+1 [Gn+1]-modules we get by (3.5):

Consequently the maps K px An+1 ~  Qx An send A0n+1 onto A0n. We
claim that with thèse data one can construct a complete local [[X]]-algebra
A° and a [[X]]-isomorphism f = K  A0 ~  K A. Moreover we may
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assume in case 2) that the G-action induced via f on K  A° is the "split"
action; clearly this will close the proof of the theorem.
Now the claim above can be proved by using an argument from [5] p. 80;

we reproduce it for convenience. If s is the embedding dimension of A and
Y = (Y1,..., YS ) are indeterminates one can find surjective maps pn :
[[Y]] ~ A° which agree with the projections A0n+1 ~ A’ . Upon letting
Jn = ker (Pn) we have K-isomorphisms

which are compatible with the projections obtained by "passing from n + 1

to n". Put Jo = ~ Jn and AO = [[Y]]/J0. We have isomorphisms:

Indeed to see that a is an isomorphism we use the fact that ~(Jn[[Y]]) =
JoK[[Y]] which is proved as follows. Upon letting In = J,,IJO (-- C =

[[Y]]/J0 and B = [[Y]]/J0[[Y]] we are reduced to proving that for any
extension C c B of local noetherian rings with C complete and for any
sequence of ideals (In)n1 in C with ~ In = 0 we have n(InB) = 0. Now by
[18] p. 103 there is a function m: N ~ N such that In(,,) c (M(C))" for all
n  1 hence nn (Im(n)B) c nn (M(B))n = 0 and we are done. To check that
j8 is an isomorphism one uses the standard fact that any complete local ring
is complete in any separated linear topology on it.
On the other hand if we denote by Xin the image of à§ in An then xi,, E A°"

hence we get k-algebra homomorphisms Un: [[X]] ~ k[[Y]]/Jn which
agree with the projections [[Y]]/Jn+1 - k[[Y]/Jn. Since [[Y]]/J0 =
lim [[Y]]/Jn, un yield a k-algebra map [[X]] ~ A°. It is easy to see that the
-isomorphism   A0 ~   A constructed above is in fact a K[[X]]-
algebra map and our Theorem is proved.

(5.3) COROLLARY. The functor CLS has properties (03B41) and (Ô2).
Proof. Any local complete K[[X]]-algebra A has a natural structure of

K[[X]][G]-algebra with G = G(A, CLS) (exactly as in (4.3)) and we con-
clude by (5.2).
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6. Hopf K[G]-algebras

(6.1) Throughout this section we shall often identify an affine Hopf K-
algebra A with the linear algebraic K-group L = Spec (A) and we write
A = r(L) ; moreover if K is algebraically closed we shall sometimes use the
letter L to denote also the group L(K) of K-points of L.

Following [19] p. 952 by a Hopf K[G]-algebra we mean a Hopf K-algebra
[13, 15] which is also a K[G]-algebra such that the comultiplication A ~
A Qx x A and the counit A - K are K[G]-module maps. A Hopf K[G]-
algebra A is called split if there is a Hopf K-algebra isomorphism
A - K OKG (A°) with A° Hopf K’-algebra such that the induced K[G]-
module structure on K ~KG (A°) is given by s(c Qx x) = sc (D x for all
sEG,cEK,xEA°.

(6.2) THEOREM. Let K be algebraically closed of characteristic zero and let A
be an affine Hopf K[G]-algebra. then D(A, AHA) contains an algebraic
extension of KG.

The key point in proving (6.2) is the following:

(6.3) THEOREM. Let K/K0 be an extension of algebraically closed fields of
characteristic zero and L a linear algebraic K-group with unipotent radical
U = Ru(L). Then Ko E D(L, AHA) if and only if Ko E D(Lie (U), PAL),
where Lie (U) is the Lie algebra of U viewed as a polarized K-algebra via
PLie(U) = Lie (U).

(6.4) COROLLARY. If char (k) = 0 the functor AHA has property (03B41).

(6.5). Proof of Theorem (6.3). If L = Lo QKO K with Lo a linear algebraic
Ko -group then U = U° ~K0 K where U° is the unipotent radical of U hence
Ko is a field of definition for U, in particular for Lie (U). Conversely, if Ko
is a field of definition for Lie (U) then so it will be for U because U is iso-
morphic as an affine variety with the spectrum of the symmetric algebra on
Lie (U), the isomorphism being given by "exp" while the multiplication on
U is defined by the Campbell-Hausdorff formula which involves only rational
coefficients [12] p. 228. So we may write U ~ U° 04 K for some unipotent
Ko -group U°. Now by [12], p. 117 L is a semidirect product of U with some
linearly reductive subgroup P c L. P is then reductive and in particular
P = Po ~K0 Kfor some reductive Ko -group P° [7].By [3] the group Aut (U)
of algebraic group automorphisms of U is an algebraic K-group; more-
over we must have Aut (U) = Aut (U0) ~K0 K. Furthermore the group
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homomorphism g: P - Aut (U) defined by O(p)u = p-’up (p E P, u E U)
is also algebraic. We claim there is a K-point Q of Aut (U) and a morphism
of algebraic Ko-groups O0: P0 ~ Aut (U°) such that O0 ~ 1K = Inn, - Q
where Inn, E Aut (Aut ( U)) is defined by Inna(L) = 03C3-1 °03C4°03C3. Indeed since
P is linearly reductive, by [8] p. 194 we have in particular H1(P, Lie
(Aut (U)) = 0 (with P acting on Lie (Aut (U)) via Q and the adjoint
representation of Aut (U)). By [9] p. 116 the above cohomology group
identifies with the space of "first order deformations" of g modulo the "first
order deformations arising from infinitesimal inner automorphisms of
Aut (U)". Now the existence of O° and 6 follows for instance from [6] (2.11)
plus an obvious specialisation argument. With O° and Q at hand we may
define an isomorphism of algebraic K-groups

by the formula cp(u, p) = (a -’(u), p) where U x . P is set theoretically
U x P with multiplication given by (u1, P1) (u2, P2) = ((O(p2)u1)u2, PIP2)
and U x , P is defined similarly with r = o° Qx 1 K instead of g. But U x , 
P = (U° x eo P°) (Do K and Theorem (6.3) is proved.

(6.6) Proof of Theorem (6.2). A is the coordinate Hopf algebra of an
algebraic K-group L. Let U be the unipotent radical of L and J the defining
prime ideal of U in A. We claim that s(J) = J for all s E G. Indeed upon
letting u to be the image of s in g(K) it is sufficient to prove that the natural
map p03C3 : L03C3 ~ L given in some matrix representation by (xij) ~ (03C3xij)
carries the unipotent radical of L7 onto the unipotent radical of L (here of
course L7 = Spec (A7). But this follows from the fact that the map p, is an
abstract group isomorphism (of course not an algebraic K-group iso-

morphism !), it takes Zariski closed sets into Zariski closed sets and takes
unipotent matrices into unipotent matrices, so our claim follows. We deduce
that the coordinate Hopf algebra B = A/J of U has an induced structure of
Hopf K[G]-algebra. Then one easily checks that Lie (U) also has a (natu-
rally induced) structure of Lie K[G]-algebra (use for instance the K[G]-
algebra structure on the convolution algebra B* = (HomK(B, K), *) and
the description of Lie (U) as a Lie subalgebra of the Lie algebra (B*, [, ]),
[ f; g] = f*g - g * f cf. [13]). Now if Ko is the algebraic closure of KG in K
by (4.2) and property (s) we have Ko E D(Lie (U), PAL) hence by (6.3)
Ko E D(L, AHA) and we are done.

(6.7) Let’s discuss rigidified and pure affine Hopf algebras. Suppose K is
algebraically closed of characteristic zero, A is an affine Hopf K[G]-algebra,



197

L = Spec (A), U = Ru(L). The arguments in (6.6) show that U and hence
also L/U have on their coordinate Hopf algebras natural structures of Hopf
K[G]-algebras. Let now B be an affine Hopf K[G]-algebra; by a K[G]-
representation V of B (or of Spec (B)) we mean a finite dimensional K[G]-
module V together with a Hopf K[G]-algebra map r(GL(V)) ~ B; V is
called faithfull if the above map is surjective. Here 0393(GL(V)) has the
structure of Hopf K[G]-algebra induced by that of V via the following
formulae: if e, , ..., en is a K-basis of V, e is the column vector with entries

e, , ... , en and se = a(s)e where s E G, a(s) E GLn(K) and if X = (Xij) is a
matrix of indeterminates which are coordinates on GL(V) then we put
sX = a(s)-’ Xa(s) (product of matrices).

(6.8) THEOREM. Let K be algebraically closed of characteristic zero, A an affine
Hopf K[G]-algebra, L = Spec (A), U = Ru(L) and let V be a faithful K[G]-
representation of L/U. Assume there is a maximal reductive subgroup P of L
whose ideal in A is G-globally invariant. Then:

1) There exists a cofinite subgroup G of G and a finitely generated con-
strained extension /K of G-fields such that K (8) K A and K (8) K r(LI U) are
split Hopf K[G]-algebras and K (8)K V is a split K[G]-module.

2) There exists a finitely generated regular extension of G-fields /K such
that K (8)K A, K (8)K 0393(L/U) are split Hopf K[G]-algebras and K (8)K V is a
split K[G]-module.

(6.9) COROLLARY. If char (k) = 0, AHA’ has properties (03B41) and (03B42).
Proof. Let L E AHAK, U = Ru(L) and Q: L/ U - GL(V) a rigidification.

Let H be the group of all triples s = (03C3, Ua, Va) where Q E g(K), u,: L ~ L’
and Va: V ~ va are isomorphisms and the following diagram is com-

mutative :

where ù, is deduced from u03C3 while GL(v03C3)(x) = 03BD03C3-1 ~03BD03C3. Write L = Uxa P
for some a: P ~ Aut ( U) and let G be the subgroup of H consisting of all
(03C3, u03C3, vu ) for which uu(P) = pu. By (6.8) we shall be done if we prove that
G and H have the same image in g(K). Now if (03C3, uu, vu ) E H, by the
conjugacy of maximal reductive groups in L03C3([12] p. 117) there exists a

K-point x E U such that x-1(u03C3(P))x = pu. Put Wu = Intxouu. Then
03C3 = u03C3 and consequently (03C3, w03C3, vu ) E G which ends our proof.
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(6.10) COROLLARY. If char (k) = 0, AHAP has property (03B42).
Proof. Let K be algebraically closed, A E AHAK, L = Spec (A), U =

Ru(L), P = LIU. By (6.9) and the fact that k E D(P, AHA) [7] it is sufficient
to construct a faithful representation Q: P ~ GL(V) such that for any
cp E Aut (P) there exists 1/1 E GL(V) such that o 03BF ~ = Inty03C8 03BF O. Start with
any faithful representation e: P - GL(W), select a (finite) set i, , ... ,

iN E Aut (P) of representatives modulo Int (P) and let Wi be the represen-
tations of P defined by the composition P  P  GL(W). Then we are
done by putting

(6.11). Proof of (6.8). We prove 1) and 2) simultaneously. Once again write
L = U 03B1 P with a: P ~ Aut (U) and let g: L/U - GL(V) define our
representation. Composing with the isomorphism P ~ L ~ L/ U we get a
representation e: P ~ GL(V). By (3.6) there exist finitely generated exten-
sions K c Kl c K2 and subgroups G ~ G, =) G2 such that KI IK is a
G1-extension, K2/K1 is a G2-extension, K1 ~K V is a split KI [G1]-module,
K2 OK Lie ( U) is a split K2[G2]-module (hence a split Lie K2[G2]-algebra)
and moreover

a) in case 1) G1, G2 are cofinite in G and K1/K, K2/K1 are constrained,
b) in case 2) G = G, = G2 and K1/K, K2/K1 are regular.

We claim that r(Aut ( U)) has a natural structure of Hopf K[G ]-algebra
induced by that of r( U); this can be seen by taking the embedding
Aut ( U)  Aut (Lie (U)) ~ GL(Lie ( U)). Moreover the splitting of

K2 QK Lie ( U) as a Lie K2[G2]-algebra yields (via the exponential map) a
splitting

of Hopf K2[G2]-algebras, hence a splitting

as Hopf K2[G2]-algebras.
We claim that a: P ~ Aut (U) yields a map of Hopf K[G]-algebras

between the corresponding coordinate algebras. This can be seen as follows:
the action of G on A = r(L) = F(U x x P) yields for any s E G a K-
isomorphism
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where a = s/K such that cp(V) = va, cp(P) = P7 (the latter follows from
our condition that the ideal of P in A is G-invariant). For any u E U, p E P
we have

This gives the commutativity of the diagram

where C~(f) = ~03BFf03BF~-1 hence our claim is proved.
To conclude note that we have two Hopf K2[G2]-algebra maps:

Since r(GL(K2 0, V)) is split, ker (8*) is split; since 8* is surjective,
r(K2 QK P) is split. Since8* and a* take G2 -invariants into G2 -invariants we
get 8 = K2 ~K0 (03B50), a - K2 OK,, (03B10) where K0 = K2 and

which closes our proof.

7. Remarks and open questions

(7.1) Let K be algebraically closed (of characteristic zero, to fix ideas) and
A an affine K[G]-algebra (respectively an affine Hopf K[G]-algebra). One
could ask whether there exist a cofinite subgroup G, of G and an extension
KI IK of G, -fields such that K1 Qx A is a split K1 [G1 ]-algebra (respectively a
split Hopf KI [GI ]-algebra). By out theory this is easily seen to be true if A
has non negative Kodaira dimension (respectively if A is pure). But it fails
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in general. Here is an example. Let A = k[tl , t2, t1-1, t2-1 ] = 0393(Gm x Gm)
and let G be the infinite cyclic group with generator s act on A via k-auto-
morphisms by the formulae

where m is a fixed integer. This makes A into an affine Hopf K[G]-algebra.
Suppose there exists G, and K1 as above. Upon modifying m we may assume
G, = G. Let M be the Kl -linear subspace of K1 QK A spanned by (ep)PEZ
where ep = 11 t;p. We have sep = ep+ 1 hence M is a KI [G ]-submodule of
K1 (DK A hence it is split. In particular there exists f E MG, f =1= 0; write
f = L apep with ap E Kl . We get f = sf = E (sap)ep+l hence sap - ap+ for
all p E E hence ap =1= 0 for all p E Z, contradiction.

(7.2) There are very natural "moduli functors" from B to S which are not
coarsely representable. We give here an example. For any field K let ALGK
denote the category of K-algebras; for any field extension K ~ K’, the base
change functors ALGK ~ ALGK, A H K’ QK A yield a fibred category and
a moduli functor ALG; moreover denote by ALGC the subfunctor of ALG
(fully embedded into ALG) of commutative associative unitary algebras.
Since ALG, ALGC have no finiteness properties it is not reasonable to expect
that they have property (m); but one might still hope that they are coarsely
representable (by some birational set not necessarily of finitely generated
type). The fact is that neither ALG nor ALGC are coarsely representable.
Indeed coarse representability implies property (dl ); on the other hand we
can show that ALG’ (and hence also ALG) does not have this property. Just
take k to be arbitrary, K E Bu arbitrary, A = K(T) = field rational func-
tions in the indeterminate T and 03BE E ALGc(K) be the isomorphism class of
A. Clearly K03BE/k is algebraic. On the other hand if E E D(03BE) and AE is an
E-algebra such that A ~ K (DE AE then K (DE AE is a field which may
happen only if K/E is algebraic hence only if E/K is transcendental; con-
sequently ALGC does not have property (d1).

(7.3) Here are some questions for which we would like to have a positive
answer.

1) Do AFF or AHA have property (m) (at least if char (k) = 0)?
2) Do the functors in Theorem (2.10) have property (m) in characteristic

p &#x3E; 0?

3) Are CLA, COH, LFS coarsely representable (by a birational set not
necessarily of finitely generated type)?

Concerning 1) it would sufHcc for AFF to have properties (03B41), (03B42) and
for AHA to have property (03B42).
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Concerning 2) what would be missing for PALf and CLAb is property (g3).
Concerning 3) note that CLA satisfies (dl ) and (d2 ) (unlike ALG or ALGc,

for instance).
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