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0. Introduction

The purpose of the present paper is to derive estimates for the degree of the
L-function associated with a certain type of exponential sum defined over a
finite field Fq of characteristic p. Let V be an affine variety defined by the
vanishing of polynomials {hi(X)}ri=1 ~ Fq[X1, ... , 1; let f and {gi}si=1
be regular functions on V induced by polynomials f (X), {gi(X)}si=1 ~
Fq [X1 , ... , Xn]. Let 03C8 be a non-trivial additive character of Fq, and {Xi}si=1
a collection of non-trivial multiplicative characters of F*, extended to func-
tions on Fq by setting xl (0) = 0. Then the exponential sums of interest in this
paper are

where V(Fqm) dénotes the Fqm-rational points on V, and 03C8(m) = 03C8° TrFqm/Fq,
Xi(m) = ~i03BFNFqm/Fq· Associated to this collection of exponential sums is an
L-function

known from the work of Dwork and Grothendieck to be a rational function
of T with coefficients in the field Q (03BEp, (q-l) (where the symbol (m denotes
an arbitrary choice of primitive mth root of 1 for all m  1).

* Partially supported by NSF Grant No. DMS-8401723.
** Partially supported by NSF Grant No. DMS-8301453.
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It has been known for some time that the pre-cohomological part of
Dwork’s theory can be used to estimate the degree of L(T) as rational func-
tion ( = Euler characteristic of L = degree numerator - degree denomi-
nator) and the "total" degree of L(T) (= degree numerator + degree
denominator). The Euler characteristic appears in the functional equation
for L, and when L is a polynomial gives the actual degree of L. The total
degree of L, when combined with information concerning the archimedean
size of the reciprocal zeros and poles of L gives estimates for the absolute
value of the exponential sum Km , often an important ingredient in calcula-
tions in analytic number theory. These invariants also appear in the recent
work of Fried and Jarden [9, 10]. The basic work in estimating these two
types of degrees of L-functions is due to Bombieri [4, 5], in the case of an
exponential sum involving only an additive character. (Dwork has an alter-
native approach involving the use of cohomology in simple non-singular
cases, and then "deforming" to handle the general case.) In a series of papers
[1, 2, 13], the authors have exploited Bombieri’s approach to give improved
estimates in many cases, and to extend the applicability of the results to
more general character sums, in particular, allowing multiplicative charac-
ters. In the present paper, we continue this approach, utilizing an idea of
Dwork on how to reduce character sums such as Km above to additive
character sums (see (1.2) below). We then study the particular character sum
that so arises first by using Adolphson’s trace formula [3] to obtain estimates
for the Frobenius matrix; then using Bombieri’s approach in this particular
case, we derive the desired estimates.
One of the main results in this paper is Theorem (5.21 ) which gives a sharp

estimate for the degree as rational function of the L-function associated with
a certain type of character sum. From this result, we can extract at once the
following estimate for degree of L as rational function (Theorem (5.23)):

where Ho is the coordinate hypersurface defined by equation Xl X2 ... Xn = 0,
where do = deg f(X), di = deg gi (X) and where Dn(d0, dl , ... , ds ) denotes
the sum of all monomials in do, dl , ... , ds of degree n.
Another result that follows from (5.23) is the more general estimate

(Theorem 5.27):



127

where here v is defined over Fq by the simultaneous vanishing of {hj (X)}tJ =1 ~
Fq [X1, ... , X,, ] of respective degrees given by {deg hj (X ) = dJ}tJ=1, and
where as before f and {gi}ki=t+ 1 are regular functions on V induced by
polynomials f(X) and gi(X) of respective degrees do and {di)ki=t+1. In terms
of total degree, we derive (Theorem (6.12)) (where the given multiplicative
characters xl have the form ~i(0) 03BF NFq/Fq, for suitable multiplicative characters
~i(0) of F*p)

where D = max {di}ki=0.
In the case when the multiplicative characters have exponent pa’ 2013 1, the

same estimate holds with D replaced by a’D. In the case, where no multipli-
cative characters are present at all, we derive the estimate (6.13):

This result may be compared with [5, Theorem 2] where the exponent that
appears (when V is a closed subset of An which is not equal to anFq itself) is
2n + 1 rather than n. 
We thank B. Dwork for his encouragement and helpful comments.

1. Definitions

Let p be a prime number, q . pa, and let F q, denote the finite field of qm
elements. Let Up denote the p-adic number field, and let Q be the completion
of an algebraic closure of p . Let Ka denote the unique unramified extension
of Op in Q of degree a over Qp. The residue class field of Ka is Fq. The
Frobenius automorphism x - xP, the canonical generator of Gal (Fq/Fp),
lifts to a generator i of Gal (Ka/Qp). If 03BEq-1 is a (q - 1)st root of 1 in

Ka, a so-called Teichmuller unit, then !(q-l 1 = 03BEpq-1. Let 00 = Ka(03BEp),
03A91 = Qp(03BEp), and let (Do and (Dl be their respective ring of integers. Denote
by "ord" the additive valuation on Q normalized so that ord p - 1 and

denote by "ordq" the additive valuation normalized so that ord,, q = 1.

Let V be an algebraic variety defined over Fq. Let {~i}si=1 be a collection
of non-trivial multiplicative characters of Fg with values in Q (all such in fact
have values in Ka). We extend Xi to all of Fq by setting x;(0) = 0. For
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the trivial multiplicative character xo , we define ~0(0) = 1. Let t/1 be
a non-trivial additive character of Fq. Let f ’, {gi}si=1 be regular functions
on V. Associated with this data is the family of mixed or twisted exponential
sums

where V(Fqm) denotes the Fqm rational points of V, the characters t/1(m) (resp
~i(m) of F, (resp F*) are obtained from 03C8 (resp Xi) by composition with the
trace (resp norm) so that 03C8(m) = 03C8 · TrFqm/Fq, ~i(m)= x.. 1 NFqm/Fq.
Our aproach to the study of (1.1) will involve exponential sums of the

following type. Let 03C9: F*q~ Q be the Teichmüller character, the canonical
generator of the cyclic group F:. Let F(X , {Hi(X)}bi=1 ~ Fq [X1, ... , Xn].
Let {ji}bi=1 ~ Z,0  ji  q - 2. Set

We now assume V is affine and defined by the simultaneous vanishing of
polynomials {hi(X)}ti=1 ~ Fq [X1, ... , Xn]. We also assume that f and
{gi}si=1 are induced by polynomials f(X), {gi(X)}si=1 ~ Fq[X1, 1 ... Xn].
Finally let xl 1 = 03C9ji. Then the relation of (1.1) and (1.2) is given by the
following lemma.

(1.3) LEMMA. If V is affine as above and the notation above is used then

Here the notation G,(X, 03C8) denotes the negative of the Gauss sum deter-
mined by a non-trivial multiplicative and additive character of Fq (x and t/1
respectively):
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Proof. By (1.2), we may write

and since ~i(m)-1 (0) = 0 for all i = 1, ..., s we obtain same result from the
sum on the right if we sum only over (x, , z) E Fnqm x (F*qm)s x Ftqm. Then by
orthogonality of characters

Note that if x E V(Fqm) such that gi(x) = 0 for some i, then

since ~i(m)-1 is a non-trivial character of F*qm. On the other hand, if x e V(Fqm)
is fixed such that gi(x) ~ 0, then the change of variables i = wigi(x)-1
yields

from which the desired conclusion now follows using the Hasse-Davenport
relation;

Associated with the collections of elements in Qo given by 03BBm = Km(V; f, ’,
1/1; {Xi, gi}si=1) as in (1.1) or by 03BBm = Sm (F, 03C8; {ji, Hi}bi=1) as in (1.2) is an
L-function
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which is known to be a rational function of T with coefficients in a «,, 03BEq-1).
Similarly if Àm = Sm (F, 03C8; {ji, H}bi=1) denotes the right-side of (1.2) but
where the sum runs only over (x, ) ~ (F*qm)n +b, then (1.4) defines an asso-
ciated L-function which again belongs to 0 «,, (q-l) (T). Finally, if V is
affine/Fq with coordinate ring Fq [X1, ... , Xn ]/I (where I is an ideal in
Fq[X1, ... , Xn]), we can define V*, the complement in V of the coordinate
hypersurface Ho having equation X1X2 ... Xn = 0. Thus the collection
03BBm = Km (V*;f, 03C8; {gi, ~i}bi=1) also defines via (1.4) an element of Q(03BEp,
03BEq-1)(T), the associated L-function.
The proof of the following remark is identical with the proof of Lemma

(1.3).

REMARK (1.5). Let the hypotheses and notations be the same as those in
Lemma (1.3). Then

Finally, (1.3) and (1.5) admit the following L-function formulations:

COROLLARY (1.6). Let the hypotheses and notations be the same as those in
Lemma (1.3). Then

and

The importance of this result for the present study is that properties of the
L-functions associated with exponential sums (1.1) may be established by
studying the L-functions associated with sums of the type (1.2).
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2. Trace formula

Our approach will utilize the basic framework of Dwork’s theory; in par-
ticular we will need Adolphson’s form of the trace formula [3]. We review
here the major features of the theory that will be used in subsequent sections.

Let 7 = (7i, ..., jk) be an ordered k-tuple of integers satisfying
0  ji  q - 2. We define a p-adic Banach space of formal series in

integral powers of one set of variables {Xi}ni=1 and fractional powers of
another set of variables {Yi}ki=1. More precisely let

We will write XR YM to denote 03A0ni=1 XRii. 03A0kj=1 YjMj. In the notation of (1.2),
let do = deg F(X), di = deg Hi(X). In terms of these quantities, we can
define a weight function on 0393(j)

where we employ for brevity the usual dot product and the notation
1 R | = 03A3ni=1 Ri for ordered tuples. This weight function takes values in
(q - 1)-1 Z0 and satisfies the following properties:

(iii) there exists positive constants 81 and 82 such that

We define an O0 -module of formal series for b, c E R, b &#x3E; 0.

and an S2o-vector space
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In fact L(j) (b) is a p-adic Banach space of b(r(j))-type in Serre’s notation [12].
We now define a completely continuous 03A90 -linear operator a acting on

L(j)(b). Let 03C8q act by

Observe that (R, M) E 0393(j) if and only if (qR, qM) E 0393(j). Clearly,
03C8q(L(j)(b, c» 9 L(j)(qb, c).

Let E(X) = exp (03A3~i=0 Xpl/pi) be the Artin-Hasse exponential series;
let y E Q be a root of 03A3~j=0 Xpl/pi = 0 with ord y = 1/(p - 1). Then
0,,,(x) = E(03B3x) is a splitting function in the terminology of [7]; if we write
03B8~(X) = 03A3~m=0 BmXm, it is a consequence of the p-adic integrality of the
coefficients of the Artin-Hasse series that

Suppose now that we write

where A (i) is a finite set of ordered n-tuples of non-negative integers for each
i e {0, 1, ... , k} and where  ~ Fq. Let A(iw(i) denote the
Teichmüller lifting of (i)w(i), so that (A(i)w(i))q = A(i)w(i), and 03C4(A(i)w(i)) = (A(i) )p
Consider

If we write F(X, Y) = 03A3(R,M)~0393(0) F(R, M)X’ YM then from (2.6)

where the sum runs over ordered 1-tuples (1 = 03A3ki=0 card (i)), ({mw(0) }w(0)~(0),
..., {mw(k)}(k)~A(k)), of non-negative integers satisfying
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Thus using (2.5)

where the infimum runs over all 1-tuples of non-negative integers satisfying
(2.7).
Hence

where the infimum is taken over the same set. Combining the equalities in
(2.7) with the inequalities |w(i)|  d; , we obtain

Thus

which yields the estimate

so that

Let

then
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In fact multiplication by Fo(X, Y) defines via (2.3) an endomorphism of
L(j))(P/q(P- 1)). If

denotes inclusion, then i and a = 03C8q 03BF F0(X, Y) 03BF i are completely con-
tinuous endomorphisms of L(j)(P/(P - 1)) in the sense of Serre [12]. Fur-
thermore the trace formula of Adolphson [3] yields

For a completely continuous endomorphism a, Tr (ocm) and the Fredholm
determinant det (I - Ta) are well-defined, independent of choice of ortho-
normal basis, and are related by

Let £5 denote the operator

Then (2.9) is equivalent by (2.10) to

3. Reduction step

Our method gives significantly better estimates for the Newton polygon of
det (I - Ta) in the case when all the x; have exponent p - 1, i.e. all the j;
are divisible by (q - 1)/(p - 1) = 1 + p + ... + pa-1. If

with 0 vi  p - 2, we may define
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an 03A91 (= Qp(03BEp))-linear completely continuous endomorphism of

L(j)(p/(p - 1)). We have the relationship

and the relationship of Fredholm determinants given by

where the product is taken over all roots 03BE of (a = 1. This establishes the

following result.

THEOREM (3.4). Under the hypothesis (3.1), a point (x, y) E R2 is a vertex

of the Newton polygon of det (I - T03B1) computed with respect to the valuation

"ordq" if and only if (ax, ay) is a vertex of the Newton polygon of
detol (I - Tao) computed with respect to the valuation "ord".

We are thus reduced in the case (3.1) to estimating the Newton polygon
of detol (1 - Tao). In the other cases we estimate the Newton polygon of
det (I - T03B1) directly and use the somewhat weaker results.

4. Estimates for Frobenius; Newton polygon

Let {03BE1,... , 03BEa} be an integral basis for Qo over QI that has the property
of p-adic directness [7, §3c], i.e., for any {03B21,..., Pal 9 f2l,

An orthonormal basis for L(j)(p/p - 1) as an 03A91-linear space can then be
obtained from the set

by multiplying each i E I by a suitable constant y, e S2o . We obtain first
estimates for the Frobenius matrix with respect to I(j). In order to do so, it
is convenient to rewrite F(X, Y ) in terms of I(j); in particular, if
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then ord (F(R, M, l))  w(R, M)/(p - 1) d0, and

If we write

then ord u(l, ; l’)  0. Furthermore, if i = 03BE1 XRYM, i’ = ç/,XR’ YM’
belong to I(j) and we write

then

and with the given notation we obtain

using the properties (2.3).
If we write

then (-1)m cm is the sum of all m x m principal minors of the matrix of ao
with respect to an orthonormal basis. Since lU) differs from an orthonormal
basis only by scalar multiples, it is easy to see that (-1)m cm is also the sum
of the m x m principal minors of the matrix (A(i, i’))i,i’~I(J). Thus
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where the infimum is taken over all collections {i(r) = (R(r),M(r),l(r)}r=1,2, ...m
of m distinct elements in I(j), and over all u E permutations on m letters. As
a consequence of (4.1), we obtain from (4.2)

in which the infimum is taken over all collections of m distinct elements from

I(j) -
For each K ~ Z0, we define

Summarizing our above result (4.3) we have

THEOREM (4.5). Suppose the integers {ji 1 i k= , are all divisible by (q - 1)/(p - 1).
Then the Newton polygon of det (I - Ta) is contained in the convex closure
in R2 of the points (0, 0) and

It remains to compute W(K). This will be done in the next theorem. We
employ the following notation:

THEOREM (4.6). If K  |v| d0, then W(K) = 0. Assume K a |v| d0. Let
K0 = K - |v| d0 = Qdo(p - 1) + r with 0 , Q, 0  r  do(p - 1).

Case (i). r ~ 0: If, in addition, Ko + v d ~ 0 mod ( p - 1), then

W(K) = 0. If Ko + v d = Q’ (p - 1) then

where N = (NI, ... , Nk ) E (Z0)k and the sum is taken over all such N

satisfying 0  |N| 1  Q.
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Proof. Let

Then

and all terms involved are rational integers. Clearly if K0 is not a multiple
of do(p - 1) a solution (R, M) of (4.7) must have positive max term on
the left. But then K0 + v - d - 0 mod (p - 1). On the other hand, if

Ko + v - d = Q’(p - 1), the solutions (R, M) of (4.7) are those for which

which completes the case (i).
If r = 0 and (R, M) is a solution of (4.7) then |M|  Q and
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If v. d ~ 0 mod p - 1, then the only solutions of (4.8) arise when

Q = 1 MI | and

On the other hand if v - d = E(p - 1) one obtains other solutions to
(4.8) in addition to the solutions of the inequality (4.9) when 1 MI | = Q. In
particular 1 M 1  Q and

yield the additional solutions.
This completes the proof of case (ii) and the theorem.

5. Degree of the L-function

It is known that L({S*m(F, 03C8, tji Hi}ki=1)}, T) is a rational function of T
with coefficients in Q(03BEp, 03BEq-1). (It follows again from (2.11) and the Dwork
rationality criterion [6].) We write

so that the degree of L({S*m}, T)(-1)n+k+1 as a rational function is r1 - r2.
Inverting (2.11) and solving for the Fredholm determinant of a yields

where
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LEMMA (5.2) [4, Corollary to Lemma 3]. If L({S*m (F, 03C8, {ji,Hi)ki=1)}, T)(-1)n+k
is written as in (5.1), then

where the sums X’ are over all m such that the summands are positive. D

By a well-known formula (Knopp, Infinite Series, Ch. 14), for 1  1

This yields at once that

as x - +00. Since ordq(qmQ) = m + ord,(Q), (5.5) implies that the left
side of (5.3) equals

It is our intention next to estimate the asymptotic behavior of the right-
side of (5.3). It will be useful to establish a lemma first. Let {di}ki=0 and r
be for the present arbitrary positive integers. Let Dr(d0, ... , dk) denote the
sum of all monomials in the {di}ki=0 of degree r

Let

where the outer sum runs over all k + 1 tuples (No,..., Nk ) of non-

negative integers satisfying 03A3ki=0 N = 03BB.
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LEMMA (5.9). Assume {di}ki=0 and r are arbitrary positive integers. Then

Proof. We proceed by induction on k. The case k = 0 is immediate. We
assume the result now for k and consider

(using the induction hypothesis)

x (dr-1k+1Dl(d0,d1,..., dk)) + O(03BBr+k) (summing over j and using (5.4)).
(5.10)

Now we assert
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for the left side is equal to

by the usual beta function evaluation.
Substituting (5.11) into the last expression in (5.10) yields finally

Of course,

which completes the induction proof of Lemma 5.9. D

Note that in the notation of Theorem (4.6), if we view Q, Q’, and E as
functions of K, then

LEMMA (5.13). Consider K such that do(p - 1) does not divide K - |v do
(case (i) in the language of Theorem (4.6)). Then

(i) W(K) = 0, if p - 1 does not divide K - 1 v do + v d.
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Proof of (ii). Clearly (5.12) implies

If we set No = Q - |N|, then

so that

where the sum runs over ordered k + 1-tuples of non-negative integers
(No, ... , Nk) satisfying L7=0 N¡ = Q. Using (5.4) and lemma (5.9) with
r = n - 1, Â = Q we obtain immediately the desired conclusion. 1:1

In precisely the same way we prove the following result.

LEMMA (5.14). Consider K such that do( p - 1) does divide K - 1 v do (case
(ii) in the language of Theorem (4.6)).

(i) If p - 1 does not divide v - d, then
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THEOREM (5.15). The right side of (5.3) equals

Proof. The calculation will depend on whether or not v · d ~ 0

mod ( p - 1). Assume first that v · d ~ 0 mod ( p - 1). Consider the
contribution to the right-side of (5.3) coming from those K for which
Ko =1= 0 mod (do(p - 1); more particularly, those K for which Ko +
v - d ~ 0 mod (p - 1). Using the notation of (4.6) we may write

K = Q’ ( p - 1) + |v|d0 - v · d and re-express the right-side of (5.3) in
terms of Q’, namely

where co is a fixed constant (co = (v · d - |v|d0)/(p - 1)) independent of
Q’, and where we have used the estimates of (5.13). This yields a contribu-
tion to the right side of (5.3) equal to

The contribution from those K for which do( p - 1) divides Ko is obtained
in similar fashion writing K = Qd0 (p - 1) + |v| d0 and re-expressing the
right-side of (5.3) in terms of Q. This yields a contribution to the right side
of (5.3) equal to

Since

this completes the proof of the theorem when v d ~ 0 mod (p - 1).
On the other hand, if v d ~ 0 mod (p - 1), then the two cases Ko +

v · d ~ 0 mod p - 1 (i.e. K0 ~ 0 mod p - 1) and K0 ~ 0 mod (do(p - 1))
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are not independent. When Ko - 0 (mod p - 1) in all cases (whether or
not K0~0 mod do( p - 1)) there is a contribution to the right side of (5.3)
equal to

When Ko ~ 0 mod do(p - 1), there is an additional contribution to the
right-side of (5.3) equal to

This completes the proof of the theorem.

THEOREM (5.16). If

then

Proof. The right-most inequality follows from a comparison of (5.6) and
(5.15) as x ~ + oo. The inequality on the left is a consequence via (2.11) of
the following lemma provided by the referee.

LEMMA (5.11). Let f be a rational function, f(0) = 1 such that for some
m E N, f(1-~)-m is an entire function (where f (t)~ = f(qt) so that b = 1 - ~).
Then degree f  0.

Proof. Write f = 03A0si=1 (1 - ÀitYB ei = + 1. We let the cyclic multiplica-
tive group ~q~ act on Q by multiplication. The intersection of the orbits
under this action with {03BB1, ... , 03BBs} partitions this set. For each equivalence
class, we choose so that = qm03C4 (for some m  0) for every in the class.
Then f = II)=1 (1 - 03C4jt)hJ(~) where each hj(~) ~ Z [~] and J =1= J’ implies
03C4j/03C4j, ~ ~q~. Thus (1 - 03C4jt)hJ(~)(1-~)-m has no factor in common with

(1  As a consequence, (1 - Li t)hj(~)(1 - q»-m is entire, and we
may assume f = (1 - rt)1(9). Now
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so we may write h(x) = (1 - x)’ 03A3n0 anxn. Thus h(x)  0 for x in the
interval [0, 1), so that h(1) a 0. But h(1) = degree f.

REMARK 1. We also wish to treat the case in which F(x) = 0 identically. (Or
what is almost the same thing, for our purposes, do = 0). We revise the
discussion in preceding sections as follows. Let

In terms of these, we define

where we have preserved the notation for Hi from Section 2. Furthermore,
let

so that
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and

If j = (q - 1)v/( p - 1), we define as in §3, 03B1’n = 03C8p03BF03C4-103BFF’(X Y) and
obtain the analogous result to Theorem (3.4) for 03B1’0 and a’.
The argument is now clear: The Newton polygon of det (1 - Ta’) may be

estimated as follows:

THEOREM (4.5)/. Suppose F(x) = 0 identically. Suppose j = (q - 1)v/
(p - 1). Then the Newton polygon of det (1 - Ta’) is contained in the
convex closure in 1R2 of the points (0, 0) and

where

We prove the following in the same way as (4.6).

where the sum on the right is taken over k-tuples N = (NI, ... , Nk) of
non-negative integers satisfying 1 N 1 = Q’.

This result leads to the following theorem in the same way as (5.16) was
proved.

THEOREM (5.16)’. If j = (q - 1)v/( p - 1) where v = (VI ... , 03BDk) E
(Z0)k, then
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REMARK 2. In the case ji # 0 for all i = 1, ... , k then as we have shown
in Section 1

where the latter uses the notation of [2]. However, since Dn (d1, ... , dk) 
(L7=1 di)n (and this is a strict inequality unless n = 1 or k = 1) the upper
estimate of (5.16)’ is an improvement on the upper estimate of [2, Theorem 4],
which we believed then to be best possible and generically attained. The
argument we used in [2] involved estimating degree Z(X, T) where X is the
complement in An of the hypersurface defined by the vanishing of
the polynomial Xl X2 ... Xn Hl H2 ... Hk and then utilizing the known
relationship

However our method of estimating degree Z(X, T) treated H =

H1 H2 ... Hk as it would a generic polynomial of degree 03A3ki=1 di and did not
make use of the special feature of H namely its reducibility to improve the
estimate to Dn (dl , ... , dk).

REMARK 3. We believe the estimates of (5.16) and (5.16)’ are generically
attained. We note that in the case of (5.16)’ if

and if

are in general position in the sense that no three of them intersect in Pi, then

where here again X is the complement in A2Fq of the hypersurface defined by
the vanishing of the polynomial X1X2 II7=ql Hi. Using (5.18), (5.19) and
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(5.20), we obtain

which is the upper estimate in (5.16)’ when n = 2 and d1 = ... = dk = 1.

It does not seem difficult to extend this example to the case of linear
hypersurfaces in An Fq when n &#x3E; 2.

REMARK 4. (cf. Remark following Theorem 4 in [2].) By the result of Deligne
[11] on Euler-Poincaré characteristics, degree L ({Sm(F, 03C8;{ji, Ai 1)1, T) and
degree L({S*m(F, 03C8; {ji, Hi})}, T) are independent of the choice of the
{ji}ki=1. In particular, we may conclude the following.

THEOREM (5.22). For arbitrary choice of

Using (1.5) and (5.22) we find in the particular case when none of the ji’s
are divisible by q - 1 the following.

COROLLARY (5.23). Let Ho be the union of the coordinate hyperplanes. Then

where do = degf(x),di= deg gi/f(x) and {gi(x)}si=1 ~ Fq[x1, ... , Xn]
inducing f and {gi}si=1 respectively on V.

bMARK 5. Let us renumber if necessary so that ji = 0, if i = 1,..., t and
ji ~ 0, if t  i  k. Let F = {X1, ..., Xn} F = {1, ... , t},
U = {t + 1, ... , k}, V = F ~ 0/1. For each subset B of f, we define
B’ = B u 0/1, a subset of 1/. Let A ~ S, B ~ S denote arbitrary subsets.
We define
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where if f (X) E Fq[S] then fA (X) E Fq[A] is the result of specializing the
variables Xi, i ~ A, to equal zero, and where if W is a collection indexed by
V, LB, is the subcollection indexed by B’. A similar definition is immediate
for S*m,A~B. Then

In terms of L-functions

From (5.16) we obtain

where |A| 1 (respectively 1 B 1) denotes the cardinality of the given set. Utiliz-
ing the weaker estimate

we obtain via (1.3) the following result

THEOREM (5.26). If V is defined over Fq by the simultaneous vanishing of
{Hi(X)}ti=1 ~ Fq[X1,..., Xn] then

Greater precision may of course be obtained if the upper estimate in (5.25)
is attained in this case for all A ~ S B ~L. Finally we note that the
following estimate follows directly from (5.26).

THEOREM (5.27). Assume V is defined over Fq by the simultaneous vanishing of
{hi(X)}ti=1 ~ Fq[X1, X ,, ] where degree hi (X) = di. Let F and {gi}ki= t +1
be regular functions on V induced by polynomials F(X),  1 ~

Fq[X1, Xn] of respective degrees d0, {di}ki=t+1. Then
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Proof. Fixing A and using

we get immediately from (5.24) that the upper estimate is majorized by

A calculation with binonical coefficients then yields

which concludes the proof of (5.27).

6. Total degree of the L-function

In this section we estimate the total degree of L({S*m(F, 1/1; {ji, Ail)l, T).
Suppose first that the integers {ji}ki=1 are all divisible by (q - 1)/(p - 1).
We follow the method of [5] to deduce this estimate from the lower bound
for the Newton polygon of det (I - Ta) (Theorems (4.5) and (4.6)). Recall
the basic idea: From (5.1), (2.11), and the definition of à we have

But [15, Exp. XXI, Cor. 5.5.3(iii)] says that 0  ord,Qi, ordq ~j  n + k.
Hence the reciprocal zeros and poles on the left hand side of (6.1 ) all occur
among the reciprocal zeros of 03A0n+km=0 det (I - qmT03B1)(n+km) of ordq  n + k.
Let Nm be the number of reciprocal zeros of det (I - qm T03B1) of ordq  n + k
(i.e., the number of reciprocal zeros of det (I - Ta) of ordq  n + k - m).
Then

To estimate Nm , we use Theorems (4.5), (4.6), and the fact that Nm is the total
length of the projections on the x-axis of the sides of slope  n + k - m
of the Newton polygon of det (I - Ta). Suppose we can find points
(x(r), y(r)) E R2, r = 0, 1, 2, ... lying on or below the Newton polygon of
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det (I - Ta) such that

It is then clear that the total length of the projections on the x-axis of the
sides of slope 5 r of the Newton polygon of det (I - Ta) is  x(r). Hence
Nm = x(n + k - m) and by (6.2)

Theorem (4.5) gives us a sequence of points lying on or below the boundary
of the Newton polygon of det (I - Ta). The next step is to determine which
of these points satisfy (6.3) for a given r. We begin with a simple lemma.

LEMMA 6.5. Suppose W(K) is a real-valued function of K and ô is a positive
real number such that for N = 0, 1, 2, ...

Then for N = 0, 1, 2, ... ,

Proof. By induction on N, the case N = 0 being trivial. Suppose the
inequality holds with N - 1 in place of N:

Adding NW(N) to both sides:
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But

which is  0 by hypothesis.

COROLLARY (6.6). Suppose in addition that W(K) is a non-decreasing function
of K. Then for N = 0, 1, 2, ... ,

Proof. The hypothesis that W(K) is non-decreasing implies that we may
take à = 1 in Lemma (6.5). D

The function W(K) that appears in Theorem (4.5) is not non-decreasing, as
is easily seen -from Theorem (4.6). However, we shall see that on a certain
subsequence of the sequence of points given in Theorem (4.5) W(K) behaves
on average as though it were non-decreasing.

Let E = [v· d/(p - 1)] be as in Theorem (4.6) and put

where N = (Nl , ..., Nk ) E (Z0)k and d = (dl, ..., dk). For 0  r 
do ( p - 1), if r - - v d (mod p - 1) put

where N - (No, N1, ..., Nk) e (Z0)k+1 and d = (d0, d1, ... , dk), other-
wise set Wr (Q) - 0. It is easily seen that W and W are non-decreasing
functions of Q. We may reformulate Theorem (4.6) as follows. Put K0 =
K - |v| d0 and write
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where 0  r  d0(p - 1). Then W(K) = 0 if K  lvld, and for

K  1 v do we have

Now consider N such that N - |v| d0 = - 1 (mod do ( p - 1)) and let
03BB(N) = [(N - |v| d0)/(p - 1)]. Using (6.7) and the trivial estimate

K  Qdo(p - 1) we get

Now apply Corollary (6.6) to W and W to conclude

It follows that for such N, the line from the origin through

has slope  03BB(N)/2. So to get slope  r, we must choose N = Nr such that
03BB(Nr)  2r. From the definition of 03BB, it is clear that it suffices to take

Thus the point (x(r), y(r)), where
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satisfies (6.3). So from (6.4)

Next, we estimate 03A3Nn+k-mK=0 W(K). We have from (6.7) and the definition
of N,

Set D = max {di}ki=0. We have from the definitions of W , W

Thus

Hence
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From (6.8) and the elementary estimate

we get

total degree  03C8; {ji, Ri })), T)

Using the inequalities

and rs/s!  er/(| r - s | + 1) one sees that this last expression is less than or
equal to

Using (n + 1)n/n!  en and (n + 1)n-1/(n - 1)!  2en-1, this is less than
or equal to

Weakening this estimate slightly to produce a more compact formula, we
have the following result.
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THEOREM (6.11).

total degree L({S*m(F, 03C8; {ji, I7il)l, T)

From this we can also derive an estimate for the total degree of the
L-function when the coordinate hyperplanes are included in the exponential
sum. Apply Theorem (6.11) to estimate total degree of each L({S*m,A~B}, T)
(see (5.24)):

where a = cardinality of A. From (5.24),

total degree L({Sm(F, 03C8; {ji, Hi})}, T)

The estimate

leads immediately to

(6.12) THEOREM. Assume that each character Xi has the form Xi = iO) 0 NFq/Fp
where Xi(0) is a non-trivial multiplicative character of Fp*.

where f(X) and {gi(X)}ki=t+11 of respective degrees do = deg f(X),
di = deg gi(X) induce the given regular functions f and {gi}ki=t+1 on V;
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and where V itself is defined by the simultaneous vanishing of {hj(X)}tj=1 of
respective degrees, deg hj = d,.

Consider now the special case where all the multiplicative characters are
trivial, i. e., ji = 0, for i = 1, 2, ... , k. Then by Lemma (1.3),

total deg L({Sm(F, 03C8; {0, Hi})}, T) = total deg L({Km(V, f, 03C8)}, T),

where V is the affine variety defined by the vanishing of the I7i’s. It is known
[8] and [14] that over some extension field of Fq, V can be defined by n
equations. Furthermore, this extension of scalars does not change the total
degree of L({Km(V, f, 03C8)}, T) (see [5]). Hence for this particular L-function,
we may assume that k  n in Theorem (6.12).

COROLLARY (6.13).

This may be compared with [5, Theorem 2], where the exponent that
appears is 2n + 1 rather than n.
We can prove somewhat weaker results without the assumption that the

ji’s are divisible by (q - 1)/(p - 1). Let a’ be chosen so that the characters
xl , ... , Xs have orders dividingpa’ - 1. The conclusion of Theorem (4.5) is
still valid provided the Newton polygon in question is the Newton polygon of
det (I - Ta) computed with respect to ordpa’, rather than ordq. The subse-
quent arguments may then be repeated without change to establish the
following.

THEOREM (6.14). If in Theorem (6.12) the Xi’s have exponent pa’ - 1, then the
conclusion of the Theorem is valid when D is replaced by a’D.

We do not know whether the conclusions of Theorem (6.12) are valid under
the weaker hypothesis of Theorem (6.14).

References

1. A. Adolphson and S. Sperber; Exponential sums on the complement of a hypersurface.
American Journal of Math. 102 (1980) 461-487.

2. A. Adolphson and S. Sperber; Character sums in finite fields. Comp. Math. 52 (1984)
325-354.



159

3. A. Adolphson: On the Dwork trace formula. Pacific Journal of Math. 113 (1984) 257-268.
4. E. Bombieri: On exponential sums in finite fields. American Journal of Math. 88 (1966)

71-105.

5. E. Bombieri: On exponential sums in finite fields, II. Inventiones Math. 47 (1978) 29-39.
6. B. Dwork: On the rationality of the zeta function of an algebraic variety. American

Journal of Math. 82 (1960) 631-648.
7. B. Dwork: On the zeta function of a hypersurface. Publ. Math. I.H.E.S. 12 (1962) 5-68.
8. D. Eisenbud and E.G. Evans, Jr: Every algebraic set in n-space is the intersection of n

hypersurfaces. Inventiones Math. 19 (1973) 107-112.
9. M. Fried and M. Jarden: Field Arithmetic, Springer-Verlag, Berlin, Heidelberg 1986.

10. M. Fried: L-series on a Galois Stratification, preprint.
11. L. Illusie: Theorie de Brauer et caractéristique d’Euler-Poincaré. Astérisque 82-83 (1981)

161-172.

12. J.P. Serre: Endomorphismes completement continus des espaces de Banach p-adiques.
Publ. Math. I.H.E.S. 12 (1962) 69-85.

13. S. Sperber: On the L-functions associated with certain exponential sums, Journal of
Number Theory 12 (1980) 141-153.

14. U. Storch: Bemerkung zu einem Satz von M. Kneser. Arch Math. 23 (1972) 403-404.
15. P. Deligne and N. Katz: Groupes de Monodromie en Géométrie Algébrique, Lecture

Notes in Math. No. 340. Berlin, Heidelberg, New York: Springer-Verlag (1973).


