COMPOSITIO MATHEMATICA

MATTHIJS COSTER

Congruence properties of coefficients of certain algebraic power series

Compositio Mathematica, tome 68, nº 1 (1988), p. 41-57 <http://www.numdam.org/item?id=CM_1988__68_1_41_0>

© Foundation Compositio Mathematica, 1988, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Congruence properties of coefficients of certain algebraic power series

MATTHIJS COSTER

Department of Mathematics and Computer Science, University of Leiden, Niels Bohrweg 1, P.O. Box 9512, 2300 RA Leiden, The Netherlands

Received 4 September 1987; accepted in revised form 17 March 1988

Abstract. Let $\sum_{i=1}^{\infty} u_n X^n$ denote the power series expansion around X = 0 of the algebraic function $(1 + \sum_{i=1}^{e} \alpha_i X^i)^{-1/e}$. In this paper we show some congruences for the coefficients u_n . Furthermore we give some lower bounds for the number of factors of an arbitrary prime $p \ge 3$ in u_n , if $p \equiv 1 \mod e$ and $p | \alpha_i$ for at least one j.

1. Introduction

Let $f(X) = \sum_{n=0}^{\infty} u_n X^n$ be a power series with rational coefficients which satisfies an equation of the form

$$P(X, f(X)) = 0$$
 where $P(X, Y) \in \mathbb{Z}[X, Y]$ and $P(X, Y) \neq 0$.

Such power series are called algebraic power series. It follows from a theorem of Eisenstein that the set of primes which divide the denominator of some coefficients, is finite. Let us call this set of primes S.

Let p be a prime, $p \notin S$. Christol, Kamae, Mendès-France and Rauzy [1] showed that the sequence $\{u_n \mod p\}_{n=0}^{\infty}$ is p-recognisable. This means that the sequence $\{u_n \mod p\}_{n=0}^{\infty}$ can be generated by a p-automaton. Denef and Lipshitz [2] showed that the sequence $\{u_n \mod p^s\}_{n=0}^{\infty}$ is p^s -recognisable for each $s \in \mathbb{N}$. They reformulate this property in the following way:

$$\forall s \in \mathbb{N}, \exists r \in \mathbb{N}, \forall i \in \mathbb{Z} \text{ with } 0 \leq i < p^r \text{ we can find} \\ r' \in \mathbb{N} \text{ with } r' < r \text{ and } i' \in \mathbb{Z} \text{ with } 0 \leq i' < p^{r'} \\ such \text{ that } \forall m \in \mathbb{N} \text{ we have } u_{mp'+i} \equiv u_{mp'+i'} \text{ mod } p^s.$$

In special cases this congruence takes on a simple form. In this paper we consider algebraic power series of a special form

$$\left(1 + \sum_{i=1}^{e} \alpha_i X^i\right)^{-1/e} = \sum_{n=0}^{\infty} u_n X^n, \text{ where } e \ge 2, \alpha_i \in \mathbb{Z}, \text{ for } i = 1, 2, \dots, e.$$
(1)

One of the results in this paper is

THEOREM A. Let p be a prime, $p \equiv 1 \mod e$. Then we have

$$u_{mp^r} \equiv u_{mp^{r-1}} \mod p^r \text{ for all } m, r \in \mathbb{N}.$$

The second result in this paper is quite different. It provides a lower bound for the number of factors p in u_n in the case e = p - 1. It is based on the following identity mod p which is known as Frobenius factorisation (cf. [3]).

$$\left(1 + \sum_{i=1}^{p-1} \alpha_i X^i\right)^{1/(1-p)} \equiv \left(1 + \sum_{i=1}^{p-1} \alpha_i X^i\right)^{1+p+p^2+\cdots} \equiv \prod_{j=0}^{\infty} \left(1 + \sum_{i=1}^{p-1} \alpha_i X^i\right)^{p'}$$
$$\equiv \prod_{j=0}^{\infty} \left(1 + \sum_{i=1}^{p-1} \alpha_i X^{ip'}\right) \mod p.$$

It follows from a simple calculation that

$$u_n\equiv\prod_i\,\alpha_{n_i}\bmod p,$$

where $n = n_0 + n_1 p + \cdots + n_i p^i$, $0 \le n_i < p$ is the *p*-adic representation of *n*. In particular we have $u_n \equiv 0 \mod p$ if $p|\alpha_j$ and $n_i = j$ for some *i*. The following theorem gives a stronger law.

THEOREM B. Let p be a prime, $p \ge 3$. Let $\sum_{n=0}^{\infty} u_n X^n$ be the power series expansion of $(1 + \sum_{i=1}^{p-1} \alpha_i X^i)^{-1/(p-1)}$ where $\alpha_i \in \mathbb{Z}$ for $i = 1, \ldots, p-1$. Let n be a positive integer with p-adic representation $\sum_{i=0}^{t} n_i p^i$. Let $J = \{1 \le j \le p-1: p | \alpha_i \}$ and $S = \{k \in \mathbb{N}: n_k \in J\}$. Then

 $\operatorname{ord}_{p} u_{n} \ge [\frac{1}{2}(|S| + 1)].$

This phenomenon appears also in the case that the Taylor series does not represent an algebraic function, but satisfies a linear differential equation. We finish the introduction with a conjecture of F. Beukers.

Let $b_n = \sum_{k=0}^n {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$. Let $J_5 = \{1, 3\}$ and $J_{11} = \{5\}$. Let $S_5 = \{k \in \mathbb{N} | n_k \in J_5$, where $\sum_j n_j 5^j$ is the 5-adic representation of $n\}$ and $S_{11} = \{k \in \mathbb{N} | n_k \in J_{11}, \text{ where } \sum_j n_j 11^j \text{ is the 11-adic representation of } n\}$. Beukers conjectures that

- (i) $\operatorname{ord}_5(b_n) \ge |S_5|$,
- (ii) $\operatorname{ord}_{11}(b_n) \ge |S_{11}|,$

cf. [4] and [5].

2. Some preliminaries

We use the following notation:

- For a finite set S we denote the cardinality of S by |S|,
- [X] is the largest integer not exceeding X, $\{X\} = X [X]$,
- -p is a fixed prime, $p \ge 3$,
- $-\operatorname{ord}_{p}(r) = \operatorname{multiplicity} of the prime factor p in r, for <math>r \in \mathbb{Z} \setminus \{0\},\$
- $-r^* = r \cdot p^{-\operatorname{ord}_p(r)}$ is the *p*-free part of the rational number $r \neq 0$,
- for $\alpha \in \mathbb{Q}, m_1, \ldots, m_n \in \mathbb{Z}_{\geq 0}$ we define the multinomial coefficient

$$\binom{\alpha}{m_1 \dots m_n}$$
 by $\frac{\alpha(\alpha - 1) \dots \left(\alpha + 1 - \sum_{i=1}^n m_i\right)}{m_1! m_2! \dots m_n!}$.

- We denote by \mathbb{Z}_p the set of *p*-adic integers.

For any $\alpha \in \mathbb{Z}_p$ we have its *p*-adic representation $\sum_{n=0}^{\infty} a_n p^n$ with $a_n \in \mathbb{Z}$ and $0 \leq a_n < p$ for all *n*. For $k \in \mathbb{N}$ we denote its truncation $\sum_{n=0}^{k-1} a_n p^n$ by $[\alpha]_k$.

- Let *n* be a positive integer. Let $\{b_1, \ldots, b_e\}$ be any partition of non-negative integers such that

$$\sum_{i=1}^{e} ib_i = n.$$
⁽²⁾

We denote the *p*-adic representation of b_i by

$$b_i = b_{i0} + b_{i1}p + \cdots + b_{ii}p'$$
 $(i = 1, \dots e).$ (3)

Further we define integers c_k , T_k and rationals d_k for $k = 0, \ldots, t$ by

$$c_k = \sum_{i=1}^{e} b_{ik},$$
 (4)

$$d_k = p \sum_{i=1}^{e} \left\{ \frac{b_i}{p^{k+1}} \right\}$$
 for $k \ge 0$, and $d_{-1} = d_{-2} = 0$, (5)

$$T_{k} = \sum_{j=0}^{k} \sum_{i=1}^{e} i b_{ij} p^{j}.$$
 (6)

44 M. Coster

LEMMA 2.1. Let $n \in \mathbb{Z}_{\geq 0}$ and $\alpha \in \mathbb{Z}_p$. Then

$$\operatorname{ord}_p\left(\frac{\alpha}{n}\right) = \sum_{k=1}^{\infty} \left(-\left[\frac{[\alpha]_k}{p^k} - \left\{\frac{n}{p^k}\right\}\right]\right).$$

Proof. We have

$$\left(\frac{\alpha}{n}\right) = \frac{1}{n!} \cdot \alpha(\alpha - 1)(\alpha - 2) \dots (\alpha - n + 1).$$

We define u_k as the number of the factors among $\alpha, \alpha - 1, \ldots, \alpha - n + 1$ which are divisible by p^k . Then

$$\operatorname{ord}_p\left(\frac{\alpha}{n}\right) = \sum_{k=1}^{\infty} \left(u_k - \left[\frac{n}{p^k}\right]\right).$$

We have to calculate u_k . To do so, we define v_k as the largest integer not exceeding 0 such that $\operatorname{ord}_p(\alpha + v_k) \ge k$ and w_k as the largest integer not exceeding -n such that $\operatorname{ord}_p(\alpha + w_k) \ge k$. Then $u_k = (v_k - w_k)/p^k$. It is clear that $v_k = -[\alpha]_k$ and $w_k = -[\alpha]_k + [([\alpha]_k - n)p^k] \cdot p^k$. Hence $u_k = -[([\alpha]_k - n)/p^k] \cdot p^k$. By $n/p^k = [n/p^k] + \{n/p^k\}$, we have

$$\operatorname{ord}_{p}\left(\frac{\alpha}{n}\right) = \sum_{k=1}^{\infty} \left(u_{k} - \left[\frac{n}{p^{k}}\right]\right)$$
$$= \sum_{k=1}^{\infty} \left(-\left[\frac{[\alpha]_{k}}{p^{k}} - \left[\frac{n}{p^{k}}\right] - \left\{\frac{n}{p^{k}}\right\}\right] - \left[\frac{n}{p^{k}}\right]\right).$$

COROLLARY 2.2. Let $M, N, r \in \mathbb{Z}_{\geq 0}, N \leq M < p^{t+1}$ and let e be an integer, $e \geq 2$, which divides p - 1. Put $N_k = \{N/p^k\}, M_k = \{M/p^k\}$, and let b_1, \ldots, b_e , d_k be defined as in (2) and (5). Then

(i)
$$\operatorname{ord}_{p}\left(\frac{Mp^{r}}{Np^{r}}\right) = \operatorname{ord}_{p}\left(\frac{M}{N}\right) = \sum_{k=1}^{t+1} -[M_{k} - N_{k}],$$

(ii) $\operatorname{ord}_{p}\left(\frac{-1/e}{Np^{r}}\right) = \sum_{k=1}^{t+1} \left[N_{k} + \frac{e-1}{e}\right]$
 $= \sum_{k=1}^{t+1} \left(\left[\frac{N}{p^{k}} + \frac{e-1}{e}\right] - \left[\frac{N}{p^{k}}\right]\right),$

(iii)
$$\operatorname{ord}_{p}\left(\frac{-1/e}{b_{1}p^{r}\dots b_{e}p^{r}}\right) = \sum_{k=0}^{r} \left[\frac{d_{k}}{p} + \frac{e-1}{e}\right].$$

Proof. (i) The first equality follows by induction on r. Apply Lemma 2.1 with $\alpha = M$ for proving the case r = 0.

(ii) Let a = (p - 1)/e. Then $-1/e = a/(1 - p) = a + ap + ap^2 + \cdots \in \mathbb{Z}_p$. We use Lemma 2.1 with $\alpha = -1/e$. Since

$$[\alpha]_k = \sum_{j=0}^{k-1} a p^j = a \cdot \frac{p^k - 1}{p - 1} = \frac{p^k - 1}{e}$$

and

$$\left[\frac{p^{l}-1}{ep^{l}}-\left\{\frac{Np^{r}}{p^{l}}\right\}\right] = 0 \text{ for } 0 \leq l \leq r,$$

we have

$$\operatorname{ord}_{p}\left(\frac{-1/e}{Np^{r}}\right) := \sum_{l=1}^{r+t+1} \left(-\left[\frac{p^{l}-1}{ep^{l}}-\left\{\frac{Np^{r}}{p^{l}}\right\}\right]$$
$$= \sum_{k=1}^{t+1} \left(-\left[\frac{p^{k}-1}{ep^{k}}-\left\{\frac{N}{p^{k}}\right\}\right]\right).$$

Since for any rational integer f

$$\left[\frac{1}{e} - \frac{1}{ep^k} + \frac{f}{p^k}\right] = \left[\frac{1}{e} + \frac{f}{p^k}\right],$$

we obtain

$$\operatorname{ord}_{p}\begin{pmatrix} -1/e\\ Np' \end{pmatrix} = \sum_{k=1}^{i+1} - \left[\frac{1}{e} - N_{k}\right].$$

A simple calculation shows that

$$-[1/e - N_k] = \left[\frac{e-1}{e} + N_k\right].$$

46 M. Coster

(iii) Put $N = \sum_{i=1}^{e} b_i$. We have

$$\binom{-1/e}{b_1p^r\ldots b_ep^r} = \binom{-1/e}{Np^r} \cdot \binom{Np^r}{b_1p^r\ldots b_ep^r}.$$

Hence

$$\operatorname{ord}_{p}\left(\begin{array}{c}-1/e\\b_{1}p^{r}\ldots b_{e}p^{r}\end{array}\right) = \operatorname{ord}_{p}\left(\begin{array}{c}-1/e\\Np^{r}\end{array}\right) + \operatorname{ord}_{p}\left(\begin{array}{c}Np^{r}\\b_{1}p^{r}\ldots b_{e}p^{r}\end{array}\right).$$

Since

$$\operatorname{ord}_{p}\begin{pmatrix} -1/e\\ Np^{r} \end{pmatrix} = \sum_{k=1}^{t+1} \left[N_{k} + \frac{e-1}{e} \right],$$

$$\operatorname{ord}_{p}\begin{pmatrix} Np^{r}\\ b_{1}p^{r} \dots b_{e}p^{r} \end{pmatrix} = \operatorname{ord}_{p}\begin{pmatrix} N\\ b_{1} \dots b_{e} \end{pmatrix} = \sum_{k=1}^{t+1} \left(\left[\frac{N}{p^{k}} \right] - \left[\frac{b_{1}}{p^{k}} \right] - \cdots - \left[\frac{b_{e}}{p^{k}} \right] \right) = \sum_{k=1}^{t+1} \left(\frac{N}{p^{k}} - N_{k} - \sum_{i=1}^{e} \left[\frac{b_{i}}{p^{k}} \right] \right)$$

and

$$\sum_{i=1}^{e} \left[\frac{b_i}{p^k} \right] = \sum_{i=1}^{e} \left(\frac{b_i}{p^k} - \left\{ \frac{b_i}{p^k} \right\} \right) = \frac{N}{p^k} - \frac{d_{k-1}}{p},$$

we obtain

$$\operatorname{ord}_{p}\begin{pmatrix} -1/e\\ b_{1}p^{r}\ldots b_{e}p^{r} \end{pmatrix} = \sum_{k=1}^{t+1} \left[N_{k} + \frac{e-1}{e} \right] + \frac{d_{k-1}}{p} - N_{k}.$$

Now (iii) follows by noting that $d_{k-1}/p - N_k$ is an integer.

LEMMA 2.3. Let $n \in \mathbb{Z}_{\geq 0}$ and $n = n_0 + n_1p + \cdots + n_tp'$ its p-adic representation. Let $\{b_1, \ldots, b_e\}$ be an arbitrary partition, as in (2). Then we have with the notation of (3)–(6)

(i)
$$T_k \equiv n \mod p^{k+1}$$
 for $k \ge 0$,

(ii) $c_m p^m \leq T_k \leq ed_k p^k$ for $0 \leq m \leq k$,

(iii)
$$T_k = T_{k-1} + \sum_{i=1}^{e} ib_{ik}p^k \text{ for } k \ge 1.$$

Proof. (i) We have, by using the definition of b_i , T_k and b_{i_l} ,

$$n = \sum_{i=1}^{e} ib_i = \sum_{i=1}^{e} \sum_{j=0}^{l} ib_{ij}p^j \equiv \sum_{i=1}^{e} \sum_{j=0}^{k} ib_{ij}p^j = T_k \mod p^{k+1}.$$

(ii) We prove the left inequality by

$$c_m p^m = \sum_{i=1}^e b_{im} p^m \leqslant \sum_{i=1}^e i b_{im} p^m \leqslant \sum_{i=1}^e \sum_{j=0}^k i b_{ij} p^j = T_k.$$

For the right inequality notice that

$$T_k = \sum_{i=1}^{e} \sum_{j=0}^{k} i b_{ij} p^j \leqslant \sum_{i=1}^{e} \sum_{j=0}^{k} e b_{ij} p^j = e d_k p^k.$$

(iii) follows immediately from definition (5).

LEMMA 2.4. Let $\alpha_i \in \mathbb{Q}$, $e \in \mathbb{N}$. Then

$$\left(1 + \sum_{i=1}^{e} \alpha_i X^i\right)^{-1/e} = \sum_{n=0}^{\infty} u_n X^n,$$

where

$$u_n = \sum^{0} \begin{pmatrix} -1/e \\ b_1 \dots b_e \end{pmatrix} \prod^{e}_{i=1} \alpha^{b_i}_i$$

and 0 indicates that the sum is taken over all partitions $\{b_1, \ldots, b_e\}$ such that $\sum_{i=1}^{e} ib_i = n$.

Proof. We have

$$\left(1 + \sum_{i=1}^{e} \alpha_i X^i\right)^{-1/e} = \sum_{m=0}^{\infty} \binom{-1/e}{m} \cdot \left(\sum_i \alpha_i X^i\right)^m$$

48 M. Coster

$$= \sum_{m=0}^{\infty} {\binom{-1/e}{m}} \cdot \sum_{i=0}^{0} {\binom{m}{b_1 \dots b_e}} \cdot \prod_i \alpha_i^{b_i} \cdot X^{(\Sigma_i i b_i)}$$
$$= \sum_{n=0}^{\infty} \sum_{i=0}^{0} {\binom{-1/e}{b_1 + \dots + b_e}} \cdot {\binom{b_1 + \dots + b_e}{b_1 \dots b_e}} \cdot \prod_i \alpha_i^{b_i} \cdot X^n.$$

LEMMA 2.5. Let $n = np^r$ and let $\{b_1 \dots b_e\}$ be an arbitrary partition as in (2). For any non-negative integer j such that $c_j > 0$ we have

$$\operatorname{ord}_{p}\left(\begin{array}{c} -1/e \\ b_{1}p^{r} \dots b_{e}p^{r} \end{array} \right) \geq r - j.$$

Proof. From Corollary 2.2 (iii) it follows that

$$\operatorname{ord}_{\rho}\begin{pmatrix} -1/e\\ b_{i}p_{1}^{r}\dots b_{l}p_{e}^{r} \end{pmatrix} = \sum_{k=0}^{t} \left[\frac{d_{k}}{p} + \frac{e-1}{e} \right].$$

It suffices to prove that

$$\left[\frac{d_k}{p} + \frac{e-1}{e}\right] \ge 1 \quad \text{for } j \le k < r.$$

Suppose that

$$\left[\frac{d_k}{p} + \frac{e-1}{e}\right] = 0 \quad \text{for some } j \le k < r.$$

Then $d_k < p/e$. From Lemma 2.3(ii) it follows that $T_k < p^{k+1}$. By using Lemma 2.3(i) we conclude that $T_k = 0$. But Lemma 2.3(ii) implies $c_j p^j \leq T_k$. Hence $c_j = 0$ which contradicts $c_j > 0$.

LEMMA 2.6. Let $e \ge 2$ be an integer which divides p - 1. Let $r \ge 1$ be an integer. Then

$$\binom{-1/e}{b_1p^r\ldots b_ep^r}^* \equiv \binom{-1/e}{b_1p^{r-1}\ldots b_ep^{r-1}}^* \mod p^r.$$

.

Proof. Put $m = \sum_{i=1}^{e} b_i$. Then we have

$$\begin{pmatrix} -1/e \\ b_1p' \dots b_ep' \end{pmatrix} = (-1/e)^{mp'} \cdot \frac{1 \cdot (1+e) \dots (1+mep'-e)}{(b_1p')! \cdot (b_2p')! \dots (b_ep')!}$$

$$= (-1/e)^{mp'} \cdot \frac{p \cdot (p+ep) \dots (p+mep'-ep)}{(p \cdot 2p \dots b_1p') \dots (p \cdot 2p \dots b_ep')}$$

$$\times \frac{1 \cdot (1+e) \dots (1+mep'-e)}{p \cdot (p+ep) \dots (p+mep'-ep)}$$

$$\times \frac{(p \cdot 2p \dots b_1p') \dots (p \cdot 2p \dots b_ep')}{(b_1p')! \cdot (b_2p')! \dots (b_ep')!}$$

$$= (-1/e)^{mp'-mp'-1} \cdot \begin{pmatrix} -1/e \\ b_1p'^{r-1} \dots b_ep'^{r-1} \end{pmatrix}$$

$$\times \frac{1 \cdot (1+e) \dots (1+mep'-e)}{p \cdot (p+ep) \dots (p+mep'-ep)}$$

$$\times \frac{(p \cdot 2p \dots b_1p') \dots (p \cdot 2p \dots b_ep')}{(b_1p')! \cdot (b_2p')! \dots (b_ep')!}$$

By Corollary 2.2(iii) we have

$$\operatorname{ord}_{p}\left(\frac{-1/e}{b_{1}p^{r}\ldots b_{e}p^{r}}\right) = \operatorname{ord}_{p}\left(\frac{-1/e}{b_{1}p^{r-1}\ldots b_{e}p^{r-1}}\right).$$

Hence we have mod p^r

$$\binom{-1/e}{b_1 p^r \dots b_e p^r}^* \equiv \binom{-1/e}{b_1 p^{r-1} \dots b_e p^{r-1}}^* \cdot (-1/e)^{mp^r - mp^{r-1}}.$$

$$\times \frac{1 \cdot (1 + e) \dots (1 + mep^r - e)}{p \cdot (p + ep) \dots (p + mep^r - ep)}$$

$$\times \frac{(p \cdot 2p \dots b_1 p^r) \dots (p \cdot 2p \dots b_e p^r)}{(b_1 p^r)! \cdot (b_2 p^r)! \dots (b_e p^r)!}.$$

$$(7)$$

Note that $(-1/e)^{mp^r} \equiv (-1/e)^{mp^{r-1}} \mod p^r$ by a theorem of Fermat-Euler. Furthermore by e|(p-1),

$$\left(\frac{1\cdot(1+e)\ldots(1+mep^{r}-e)}{p\cdot(p+ep)\ldots(p+mep^{r}-ep)}\right)$$

and
$$\left(\frac{(b_{1}p^{r})!\cdot(b_{2}p^{r})!\ldots(b_{e}p^{r})!}{(p\cdot2p\ldots(p\cdot2p\ldots b_{e}p^{r}))}\right)$$

are rational integers. It now follows that

$$\left(\frac{1\cdot(1+e)\ldots(1+mep^{r}-e)}{p\cdot(p+ep)\ldots(p+mep^{r}-ep)}\right)^{*} \equiv \left(\sum_{a=1,\ p \not \mid a}^{p^{r}} a\right)^{m}$$
(8)

$$\equiv \left(\frac{(b_1p^r)! \cdot (b_2p^r)! \dots (b_ep^r)!}{(p \cdot 2p \dots b_1p^r) \dots (p \cdot 2p \dots b_ep^r)}\right)^* \mod p^r.$$

The substitution of these congruences in (7) completes the proof of the lemma. $\hfill \Box$

COROLLARY 2.7. With r and e as in Lemma 2.6 we have

$$\begin{pmatrix} -1/e \\ b_1 p^r \dots b_e p^r \end{pmatrix} \equiv \begin{pmatrix} -1/e \\ b_1 p^{r-1} \dots b_e p^{r-1} \end{pmatrix} \mod p^{r+\mu}$$

where $\mu = \operatorname{ord}_p \begin{pmatrix} -1/e \\ b_1 \dots b_e \end{pmatrix}$.

Proof. This is obvious since

$$\begin{pmatrix} -1/e \\ b_1 p^m \dots b_e p^m \end{pmatrix} = \begin{pmatrix} -1/e \\ b_1 p^m \dots b_e p^m \end{pmatrix}^* \cdot p^{\mu} \text{ for all } m \ge 0.$$

3. Congruences

THEOREM A. Let

$$\left(1+\sum_{i=1}^{e}\alpha_{i}X^{i}\right)^{-1/e} = \sum_{n=0}^{\infty}u_{n}X^{n}, \text{ where } \alpha_{i}\in\mathbb{Z} \text{ for } i=1\ldots e \text{ and } e\in\mathbb{Z}, e \geq 2.$$

Let p be a prime such that $p \equiv 1 \mod e$. Let r, $m \in \mathbb{N}$. Then

 $u_{mp^r} \equiv u_{mp^{r-1}} \mod p^r.$

Proof. Put $n = mp^r$. We may assume $p \not\mid m$. Take an arbitrary partition $\{b_1 \dots b_e\}$ as defined in (2). Define j with $0 \leq j \leq r$ by $c_0 = c_1 = \dots = c_{i-1} = 0$, $c_i > 0$. If j = 0 then Lemma 2.5 implies that

$$\binom{-1/e}{b_1 \dots b_e} \equiv 0 \mod p^r.$$
(9)

Now suppose that j > 0. Since $c_k = \sum_{i=1}^{e} b_{ik}$, $b_{ik} \ge 0$ and $c_k = 0$ for k < j, we have $p^j | b_i$ for $i = 1 \dots e$. Substitute $b = b'_i p^j_i$. By Lemma 2.6 we have

$$\binom{-1/e}{b_1'p^j\ldots b_e'p^j}^* \equiv \binom{-1/e}{b_1'p^{j-1}\ldots b_e'p^{j-1}}^* \mod p^j.$$

Since $\alpha_i^{p^j} \equiv \alpha_i^{p^{j-1}} \mod p^j$, by Fermat-Euler, we have

$$\binom{-1/e}{b_1'p^j\ldots b_e'p^j}^*\prod_i\alpha_i^{b_i'p^j}\equiv \binom{-1/e}{b_1'p^{j-1}\ldots b_e'p^{j-1}}^*\prod_i\alpha_i^{b_i'p^{j-1}} \mod p^j.$$

Since $c_i > 0$ we find, using Corollary 2.2(iii) and Lemma 2.5,

$$\binom{-1/e}{b_1'p^j\ldots b_e'p^j}\prod_i \alpha_i^{b_i'p^j} \equiv \binom{-1/e}{b_1'p^{j-1}\ldots b_e'p^{j-1}}\prod_i \alpha_i^{b_i'p^{j-1}} \mod p^r.$$
(10)

We recall Lemma 2.4,

$$u_n = \sum_{i=1}^{0} {\binom{-1/e}{b_1 \dots b_e}} \cdot \prod_{i=1}^{e} \alpha_i^{b_i}$$

For $n = mp^r$ we split this sum into two parts: One part for which $p \not\prec b_i$ for some *i*, the other part for which $p|b_i$ for all *i*. Congruence (9) implies that the first part vanishes mod p^r . Hence

$$u_{mp^r} \equiv \hat{\sum} \begin{pmatrix} -1/e \\ b_1 \dots b_e \end{pmatrix} \cdot \prod_{i=1}^e \alpha_i^{b_i} \mod p^r,$$

where $\hat{}$ denotes the sum taken over all partitions $\{b_1, \ldots, b_e\}$ such that $\sum_{i=1}^{e} ib_i = mp^r$ and $p|b_i$ for $i = 1, \ldots, e$. According to (10) the right side of this congruence equals

$$\sum_{i=1}^{0} {\binom{-1/e}{b_1 \dots b_e}} \cdot \prod_{i=1}^{e} \alpha_i^{b_i} \equiv u_{mp^{r-1}} \mod p^r,$$

here 0 denotes the sum is taken over all partitions $\{b_1, \ldots, b_e\}$ such that $\sum_{i=1}^{e} ib_i = mp^{r-1}$.

4. Prime factors p of the algebraic power series $(1 + \sum_{i=1}^{p-1} \alpha_i X^i)^{-1/(p-1)}$

THEOREM B. Let p be a prime, $p \ge 3$, and $\alpha_i \in \mathbb{Z}$ for $i = 1, \ldots, p - 1$. Put

$$\left(1 + \sum_{i=1}^{p-1} \alpha_i X^i\right)^{-1/(p-1)} = \sum_{n=0}^{\infty} u_n X^n$$

Let n be a positive integer with p-adic representation $n_0 + n_1p + \cdots + n_tp'$. Let $J = \{1 \le j \le p - 1: p | \alpha_j\}, S = \{k \in \mathbb{N}: n_k \in J\}$ and let R be a subset of S such that for each pair of successive numbers m and m + 1, at most one of the numbers n_m and n_{m+1} belongs to R. Put $\sigma = |S|$ and $\varrho = |R|$. Then

(i) $\operatorname{ord}_{\rho} u_n \geq \varrho$,

(ii)
$$\operatorname{ord}_p u_n \ge [(\sigma + 1)/2],$$

(iii) if $J = \{p - s, p - s + 1, \dots, p - 1\}$ for some s, then $\operatorname{ord}_p u_n \ge \sigma$.

Proof. Let $\{b_1 \ldots b_e\}$ be an arbitrary partition, as defined in (2). We need the following notation in this proof:

$$B = \left\{ k \in \mathbb{N}: \sum_{j \in J} b_{jk} > 0 \right\},$$

$$K_{i} = \left\{ k \in \mathbb{N}: \left[\frac{d_{k}}{p} + \frac{p-2}{p-1} \right] = i \right\}, \text{ for } i = 0, 1, 2, \dots,$$

$$\bar{K}_{i} = \left\{ k + j: k \in K_{i}, 0 \leq j \leq i-1 \right\},$$

$$\bar{K} = \bigcup_{i=1}^{\infty} \bar{K}_{i},$$

$$\beta = |B|, \tau = \sum_{k=0}^{i} \left[\frac{d_{k}}{p} + \frac{p-2}{p-1} \right].$$

Notice that

$$\tau = \sum_{k=0}^{t} \left[\frac{d_k}{p} + \frac{p-2}{p-1} \right] = \sum_{i=1}^{t} i \cdot |K_i| \ge |\bar{K}|.$$

We prove the theorem by use of the two following lemmas.

Lemma 4.1.

$$\operatorname{Ord}_p(u_n) \geq \min_{\Sigma i b_i = n} (\beta + \tau).$$

Proof. Lemma 2.4 implies that

$$u_n = \sum_{i=1}^{0} {\binom{-1/(p-1)}{b_1 \dots b_{p-1}}} \cdot \prod_{i=1}^{p-1} \alpha_i^{b_i}.$$

Hence

$$\operatorname{ord}_p(u_n) \geq \min_{\Sigma i b_i = n} \left(\sum_{i=1}^{p-1} b_i \cdot \operatorname{ord}_p(\alpha_i) + \operatorname{ord}_p \left(\frac{-1/(p-1)}{b_1 \dots b_{p-1}} \right) \right).$$

It now follows from Corollary 2.2 that

$$\operatorname{ord}_{p}(u_{n} \geq \min_{\Sigma i b_{i}=n} \left(\sum_{i=1}^{p-1} b_{i} \cdot \operatorname{ord}_{p}(\alpha_{i}) + \sum_{k=0}^{t} \left[\frac{d_{k}}{p} + \frac{p-2}{p-1} \right] \right).$$

Since

$$\sum_{i=1}^{p-1} b_i \cdot \operatorname{ord}_p(\alpha_i) \ge \sum_{i \in J} b_i \cdot \operatorname{ord}_p(\alpha_i) \ge |B| = \beta$$

and

$$\sum_{k=0}^{t} \left[\frac{d_k}{p} + \frac{p-2}{p-1} \right] = \tau,$$

the lemma is proved.

LEMMA 4.2. If $d_{k-1} < p/(p-1)$ and $d_k < p/(p-1)$ then either

 $c_k = n_k = 0$

or

 $c_k = 1, n_k = j, b_{jk} = 1$ for some $j \in \{1, ..., p-1\}$ and $b_{ik} = 0$ for all $i \neq j$.

Proof. By Lemma 2.3(ii) the conditions $d_{k-1} < p/(p-1)$ and $d_k < p/(p-1)$ imply that $T_{k-1} < p^k$ and $T_k < p^{k+1}$. Furthermore we have, by Lemma 2.3(iii), $T_k = T_{k-1} + \sum_i ib_{ik}p^k$ and finally we have, by Lemma 2.3(i), $T_k \equiv n \mod p^{k+1}$. By combining this we obtain $n_k = \sum_i ib_{ik}$. Note that $d_k < p/(p-1)$ implies $c_k \leq 1$. Hence either $c_k = 0$ or $c_k = 1$. If $c_k = 0$ then $\sum_i ib_{ik} = 0$ and $n_k = 0$. If $c_k = 0$. If $c_k = 1$ then $\sum_i b_{ik} = 1$. Hence there exists a j such that $b_{jk} = 1$ and $b_{ik} = 0$ for all $i \neq j$. Here we conclude $n_k = j$.

Proof of Theorem B (i). Let $\{b_1 \ldots b_{p-1}\}$ be an arbitrary partition, as defined in (2). We will construct a set $K \subset \mathbb{Z}_{\geq 0}$ with the properties:

(i) $|K| \leq \tau$, (ii) $R \subset B \cup K$.

For any such set K we have

$$\beta + \tau = |B| + |K| \ge |B \cup K| \ge |R| = \varrho.$$

We can complete the proof of Theorem B(i) by applying Lemma 4.1 which yields

 $\operatorname{ord}_p(u_n) \geq \min(\beta + \tau) \geq \varrho.$

We shall now construct K satisfying properties (i) and (ii). Let M be the set of all k such that $k \in \overline{K}$, $k + 1 \notin \overline{K}$ and $k \notin R$. Put $N = \{k + 1: k \in M\}$ and take $K = (\overline{K} \setminus M) \cup N$. Then K satisfies property (i) because $|K| \leq |\overline{K}| \leq \tau$. We shall prove property (ii) by showing that $k \in R$, $k \notin B \cup K$ leads to a contradiction. Note that $k \notin K$ implies $k \notin K_i$ for any $i \geq 1$. Hence

$$\left[\frac{d_k}{p} + \frac{p-2}{p-1}\right] = 0.$$

We conclude that $d_k < p/(p - 1)$. By definition of R, we have $k - 1 \notin R$. If $k - 1 \in \overline{K}$ then our construction of K would imply $k \in K$, which contradicts the supposition that $k \notin B \cup K$. Hence $k - 1 \notin K_i$ for any $i \ge 1$. This implies $d_{k-1} < p/(p - 1)$. Thus by Lemma 4.2 we have either $n_k = 0$ or $n_k = j$ and $b_{jk} = 1$ for some j. Since $n_k = 0$ implies $k \notin R$, the first case of Lemma 4.2 is excluded. However $k \in R$ implies $j = n_k \in J$. The second case therefore implies $k \in B$, which is also excluded. This yields the desired contradiction.

Proof of Theorem B(ii). Choose $R \subset S$ such that ϱ is maximal. Then at least $\varrho \ge \frac{1}{2}\sigma$.

Proof of Theorem B(iii). Let $\{b_1 \dots b_{p-1}\}$ be an arbitrary partition, as defined in (2). We will construct a set $K \subset \mathbb{Z}_{\geq 0}$ with the properties:

(i) $|K| \leq \tau$, (ii) $S \subset B \cup K$.

The construction of K is more complicated than in the first part. Put

$$M_{1} = \{k \in \overline{K}: k \notin S, k + 1 \notin \overline{K}\}, N_{1} = \{k + 1 \in \mathbb{N}: k \in M_{1}\},$$

$$M_{2} = \{k \in \overline{K}: k \in \overline{K}_{i} \cap \overline{K}_{j} \text{ for some distinct positive integers } i, j\},$$

$$N_{2} = \{k + 1 \in \mathbb{N}: k \in M_{2}\},$$

$$M_{3} = \{k \in \overline{K} \cap B\}, N_{3} = \{k + 1 \in \mathbb{N}: k \in M_{3}\}.$$
ake $K = (\overline{K} \setminus (M_{1} \cup M_{3})) \cup N_{1} \cup N_{2} \cup N_{3}.$ Note that $|M_{i}| = |N_{i}|$ for

Take $K = (\bar{K} \setminus (M_1 \cup M_3)) \cup N_1 \cup N_2 \cup N_3$. Note that $|M_i| = |N_i|$ for i = 1, 2, 3, and $|M_1 \cup M_3| = |N_1 \cup N_3|$ and $|\bar{K}| + |N_2| \leq \sum_i |\bar{K}_i|$. We conclude $|K| \leq \sum_i |\bar{K}_i| \leq \tau$ and K satisfies property (i). K also satisfies property (ii). to see this, suppose $k \in S$ and $k \notin B \cup K$. This will lead to a contradiction. $k \in \bar{K}$ implies that $k \in M_1 \cup M_3$, since $k \notin K$. But $k \in M_1$ implies $k \notin S$ which contradicts $k \in S$, while $k \in M_3$ implies $k \in B$ which contradicts $k \notin B \cup K$. Therefore $k \notin \bar{K}$, hence

$$d_k < \frac{p}{p-1}$$
 and $d_{k-1} < \frac{p^2}{p-1}$.

We distinguish five cases:

- (a) $d_{k-1} < p/(p-1)$. This leads to a contradiction, just as in the proof Theorem B(i).
- (b) $d_{k-1} \ge p/(p-1)$ and $k-1 \notin S$. These imply that $k-1 \in \overline{K}$. Hence $k \in N_1$, contradicting $k \notin K$.

- (c) $d_{k-1} \ge p/(p-1)$ and $d_{k-2} \ge p^2/(p-1)$. These imply that $k-1 \in K_i$ for some $i \ge 1$, and $k-2 \in K_j$ for some $j \ge 2$. Hence $k-1 \in \overline{K_i} \cap \overline{K_j}$. If $i \ne j$ then $k \in N_2$, which contradicts $k \notin K$. If i = j then $i \ge 2$. This implies $k \in \overline{K_i}$, which also contradicts $k \notin K$.
- (d) $d_{k-1} \ge p/(p-1)$ and $k-1 \in B$. These imply that $k-1 \in \overline{K} \cap B$. Hence $k \in N_3$, contradicting $k \notin K$.
- (e) The remaining case reads

$$d_k < \frac{p}{p-1} \leq d_{k-1} < \frac{p^2}{p-1}, \quad d_{k-2} < \frac{p^2}{p-1}, \quad k-1 \in S, \quad k-1 \notin B.$$

Then $d_{k-2} < p^2/(p-1)$ implies that $T_{k-2} < p^k$ by Lemma 2.3(ii). Further $d_{k-1} < p^2/(p-1)$ implies that $c_{k-1} \leq p + 1$. Since $k - 1 \notin B$, we have

$$\sum_{i=1}^{p-1} ib_{i(k-1)} = \sum_{i=1}^{p-s-1} ib_{i(k-1)} \leq (p-s-1) \cdot c_{k-1} \leq (p-s-1) \cdot (p+1).$$

These arguments imply that

$$T_{k-1} = T_{k-2} + \sum_{i} ib_{i(k-1)}p^{k-1} < p^{k} + (p+1) \cdot (p-s-1) \cdot p^{k-1}$$

= $p^{k+1} - (s-1) \cdot p^{k} - (s+1) \cdot p^{k-1}$
= $(p-s) \cdot p^{k} + (p-s-1) \cdot p^{k-1}$.

Since $d_k < p/(p-1)$, $d_k = c_k + d_{k-1}/p$ and $p/(p-1) \le d_{k-1}$, we have $c_k = 0$. Hence by use of Lemma 2.3(iii) we have

$$T_k = T_{k-1} < (p-s) \cdot p^k + (p-s-1) \cdot p^{k-1}.$$
(11)

On the other hand we have $k, k - 1 \in S$, which implies $n_k \ge p - s$ and $n_{k-1} \ge p - s$ and thus

$$T_{k} = \sum_{j=0}^{k} \sum_{i=1}^{e} ib_{ij}p^{j} \ge \sum_{j=0}^{k} n_{j}p^{j} \ge n_{k-1}p^{k-1} + n_{k}p^{k}$$
$$\ge (p - s)p^{k} + (p - s)p^{k-1},$$

which contradicts (11).

References

- 1. G. Christol, T. Kamae, M. Mendès-France and G. Rauzy: Suites algébriques, automates et substitutions. *Bull. Soc. Math. France* 108 (1980) 401-419.
- 2. J. Denef and L. Lipshitz: Algebraic power series and diagonals. J. Number Theory 26 (1987) 46-67.
- 3. M. Mendès-France and A.J. van der Poorten: Automata and the arithmetic of formal power series. *Publ. Math. Orsay*, 86-1, Univ. Paris XI, Orsay (1986).
- 4. S. Chowla, J. Cowles and M. Cowles: Congruence properties of Apéry numbers, J. Number Theory 12 (1980) 188-190.
- 5. I. Gessel: Some congruences for Apéry numbers. J. Number Theory 14 (1982) 362-368.