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Abstract. Let 03A3~t=1 1 unxn denote the power series expansion around X = 0 of the algebraic
function ( 1 + 03A3ei=1 03B11Xi)-1/e. In this paper we show some congruences for the coefficients un .
Furthermore we give some lower bounds for the number of factors of an arbitrary prime
p  3 in un, if p ~ 1 mod e and p{03B1j for at least one j.

1. Introduction

Let f(X) = 03A3~n=0 unxn be a power series with rational coefficients which
satisfies an equation of the form

P(X, f(X)) = 0 where P(X, Y) e Z[X, Y] and P(X, Y) ~ 0.

Such power series are called algebraic power series. It follows from a
theorem of Eisenstein that the set of primes which divide the denominator of
some coefficients, is finite. Let us call this set of primes S.

Let p be a prime, p tf S. Christol, Kamae, Mendès-France and Rauzy [1] ]
showed that the sequence {un mod p}~n=0 is p-recognisable. This means that
the sequence {un mod p}~n=0 can be generated by a p-automaton. Denef and
Lipshitz [2] showed that the sequence {un mod ps}~n=0 is pS -recognisable for
each s ~ N. They reformulate this property in the following way:

b’s e N, 3r e N, Vi e Z with 0  i  pr we can find
r’ e N with r’  r and i’ e Z with 0  i’  pr’
such that b’m E N we have ump, +i == ump" +/ mod pS.

In special cases this congruence takes on a simple form. In this paper we
consider algebraic power series of a special form

One of the results in this paper is
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THEOREM A. Let p be a prime, p - 1 mod e. Then we have

ump, - Umpr- mod for all m, r E N.

The second result in this paper is quite different. It provides a lower bound
for the number of factors p in Un in the case e = p - 1. It is based on the

following identity mod p which is known as Frobenius factorisation (cf. [3]).

It follows from a simple calculation that

where n = no + n1p + ··· + n,p’, 0  ni  p is the p-adic represen-
tation of n. In particular we have un - 0 mod p if pla¡ and ni = j for some
i. The following theorem gives a stronger law.

THEOREM B. Let p be a prime, p  3. Let 03A3~n=0 unXn be the power series
expansion of (1 1 + 03A3p-1i=1 03B1iXi)-1/(p-1) where ai E 7L for i = 1, ... , p - 1. 

Let n be a positive integer with p-adic representation 03A3ti=0 nipi. Let

J = {1  j  p - 1: p|03B1j} and S = (k E N: nk E J}. Then

This phenomenon appears also in the case that the Taylor series does not
represent an algebraic function, but satisfies a linear differential equation.
We finish the introduction with a conjecture of F. Beukers.

Let bn - 03A3nk=0(nk)2(n+kk)2. Let J5 = {1, 3} and J11 = {5}. Let =
{k ~ N|nk ~ J5, where 03A3jnj5j is the 5-adic representation of n} and
S11 = {k ~ N | nk E JI 1 where Ej nj 11j is the 11-adic representation of n}.
Beukers conjectures that
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2. Some preliminaries

We use the following notation:
- For a finite set S we denote the cardinality of S by |S|,
- [X] is the largest integer not exceeding X, {X} - X - [X],
- p is a fixed prime, p  3,
- ordp(r) = multiplicity of the prime factor p in r, for r E ZB{0},
- r* = r. p-ordpr) is the p-free part of the rational number r ~ 0,
- for a E Q, m, , ... , mn E Z0 we define the multinomial coefficient

- We denote by 7Lp the set of p-adic integers.
For any a ~ Zp we have its p-adic representation 03A3~n=0 anpn with an E Z

and 0  an  p for all n. For kEN we denote its truncation 03A3k-1n=0 anpn by

- Let n be a positive integer. Let {b1, ... , be} be any partition of non-
negative integers such that

We denote the p-adic representation of bi by

Further we define integers ck, Tk and rationals dk for k = 0,..., t by
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LEMMA 2.1. Let n ~ Z0 and a E Zp. Then

ordp

Proof. We have

We define uk as the number of the factors among a, a - 1, ... , a - n + 1

which are divisible by pk. Then

ordp

We have to calculate uk . To do so, we define Vk as the largest integer not
exceeding 0 such that ordp(03B1 + 03BDk)  k and Wk as the largest integer not
exceeding - n such that ordp(03B1 + wk)  k. Then uk - (Vk - wk)/pk. It is
clear that 03BDk = - [03B1]k and wk - - [03B1]k + 1(lalk - n)pk] · pk. Hence Uk =
- [([03B1]k - n)/pk] · pk. By n/pk = [n/pk ] + {n/pk}, we have

COROLLARY 2.2. Let M, N, r E Z0, N  M  pt+1 and let e be an integer,
e  2, which divides p - 1. Put Nk = {N/pk}, Mk = {M/pk}, and let

b, , ... , be, dk be defined as in (2) and (5). Then
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ordp

Proof. (i) The first equality follows by induction on r. Apply Lemma 2.1
with x = M for proving the case r = 0.

(ii) Let a = ( p - 1)/e. Then - lie = a/(1 - p) = a + ap +
ap2 + ... E Zp. We use Lemma 2.1 with a = -lie. Since

and

we have

ordp

Since for any rational integer f

we obtain

ordp

A simple calculation shows that
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Hence

ordp

Since

ordp

ordp

and

we obtain

ordp

Now (iii) follows by noting that dk- 1 /p - Nk is an integer. D

LEMMA 2.3. Let n E Z0 and n = no + nlp + ... + ntpt its p-adic repre-
sentation. Let {b1, ... , be} be an arbitrary partition, as in (2). Then we have
with the notation of (3)-(6)

(i) Tk - n mod pk+’ for k  0,
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Proof. (i) We have, by using the definition of bi, Tk and bi,,

(ii) We prove the left inequality by

For the right inequality notice that

(iii) follows.immediately from definition (5).

LEMMA Then

where

and 0 indicates that the sum is taken over ail partitions {b1, ..., be} such that
03A3ei=1 ibi = n.

Proof. We have
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LEMMA 2.5. Let n = npr and let {b1 ... be} be an arbitrary partition as in (2).
For any non-negative integer j such that ci &#x3E; 0 we have

ordp

Proof. From Corollary 2.2 (iii) it follows that

ordp

It suffices to prove that

Suppose that

for some

Then dk  ple. From Lemma 2.3(ii) it follows that Tk  pk+l. By using
Lemma 2.3(i) we conclude that Tk = 0. But Lemma 2.3(ii) implies
cjpj  Tk . Hence ci = 0 which contradicts cj &#x3E; 0. D

LEMMA 2.6. Let e  2 be an integer which divides p - 1. Let r  1 be an

integer. Then
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Proof Put m - 03A3ei=1 bi. Then we have

By Corollary 2.2(iii) we have

ordp

Hence we have mod pr
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Note that (-1/e)mpr ~ (- l/e)mpr-1 mod p’ by a theorem of Fermat-Euler.
Furthermore by el (p - 1),

and

are rational integers. It now follows that

The substitution of these congruences in (7) completes the proof of the
lemma. D

COROLLARY 2.7. With r and e as in Lemma 2.6 we have

where

Proof. This is obvious since

3. Congruences

THEOREM A. Let
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Let p be a prime such that p ~ 1 mod e. Let r, m ~ (N. Then

Proof : Put n = Mpr. We may assume p X m. Take an arbitrary partition
{b1 ... be} as defined in (2). Define j with 0  j  r by co - cl = ··· =
cj-1 = 0, Ci &#x3E; 0. If j = 0 then Lemma 2.5 implies that

Now suppose that j &#x3E; 0. Since ck - 03A3ei=1 bik, bik  o and ck - 0 for k  j,
we have pj/bi for i = 1 ... e. Substitute b = b’ipji. By Lemma 2.6 we have

Since ap’ ~ 03B1pj-1i mod pi, by Fermat-Euler, we have

Since c, &#x3E; 0 we find, using Corollary 2.2(iii) and Lemma 2.5,

We recall Lemma 2.4,

For n = mpr we split this sum into two parts: One part for which p x bi for
some i, the other part for which p bi for all i. Congruence (9) implies that the
first part vanishes mod p’ . Hence
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where " denotes the sum taken over all partitions {b1 , ... , be} such that
03A3ei=1 1ibi = Mpr and p|bi for i = 1, ... , e. According to (10) the right side
of this congruence equals

here 0 denotes the sum is taken over all partitions {b1, ... , be} such that

4. Prime factors p of the algebraic power séries (1 + 

THEOREM B. Let p be a prime, p  3, and 03B1i e Z for i = 1, ..., p - 1. Put

Let n be a positive integer with p-adic representation no + n1p + ... + ntpt.
Let J = {1  j  p - 1 : plocj 1, S = {k E N: nk E J} and let R be a subset
of S such that for each pair of successive numbers m and m + 1, at most one

of the numbers nm and nm+ belongs to R. Put o- = |S| and  = IRI. Then

(i) ordp un  (l,

(ii) ordpun  [(03C3 + 1)/2],

(iii) if J = {p - s, p - s + 1, ... , p - 11 for some s, then ordpun  a.

Proof. Let {b1 ... bel be an arbitrary partition, as defined in (2). We need
the following notation in this proof:
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Notice that

We prove the theorem by use of the two following lemmas.

LEMMA 4.1.

Ordp(un)  min (03B2 + i).
tlb, =n

Proof. Lemma 2.4 implies that

Hence

It now follows from Corollary 2.2 that

Since

and

the lemma is proved.
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LEMMA 4.2. then either

or

Proof. By Lemma 2.3(ii) the conditions dk-1  p/(p - 1) and dk 
p/( p - 1) imply that Tk-1  pk and Tk  pk+1. Furthermore we have, by
Lemma 2.3(iii), Tk = Tk-l 1 + X, ibikpk and finally we have, by Lemma
2.3(i), Tk - n mod pk+ 1. By combining this we obtain nk = L¡ ib¡k’ Note
that dk  p/( p - 1) implies ck  1. Hence either Ck = 0 or ck = 1. If

ck = 0 then Yi iblk = 0 and nk = 0. If ck = 0. If ck = 1 then X, bik = l.

Hence there exists a j such that bjk = 1 and bik = 0 for all i ~ j . Here we
conclude nk = j. D

Proof of Theorem B (i). Let {b1 ... bp-1} be an arbitrary partition, as
defined in (2). We will construct a set K c Z0 with the properties:

For any such set K we have

We can complete the proof of Theorem B(i) by applying Lemma 4.1 which
yields

We shall now construct K satisfying properties (i) and (ii). Let M be the set
of all k such that k E K, k + 1 e K and k e R. Put N = {k + 1: k E M}
and take K = (KBM) ~ N. Then K satisfies property (i) because |K| 
|K|  T. We shall prove property (ii) by showing that k ~ R, k ~ B ~ K
leads to a contradiction. Note that k Í K implies kiKi for any i  1.

Hence
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We conclude that dk  p/(p - 1). 1Jy definition of R, we have k - 1 rt R.
If k - 1 E K then our construction of K would imply k E K, which con-
tradicts the supposition that k rt B u K. Hence k - 1 rt Ki for any i  1.

This implies dk-1  p/( p - 1). Thus by Lemma 4.2 we have either nk - 0

or ~k = j and bjk = 1 for some j. Since nk = 0 implies k e R, the first case
of Lemma 4.2 is excluded. However k E R implies j = nk E J. The second
case therefore implies k E B, which is also excluded. This yields the desired
contradiction.

Proof of Theorem B(ii). Choose R c S such that Q is maximal. Then at
least  ta.

Proof of Theorem B(iii). Let {b1 ... bp-1} be an arbitrary partition, as
defined in (2). We will construct a set K c Z0 with the properties:

The construction of K is more complicated than in the first part. Put

for some distinct positive integers i, j 1,

Take K = (KB(M1 ~ M3)) u Nl u N2 u N3. Note that |Mi| - N) for
i = 1, 2, 3, and |M1 ~ M3| = |N1 ~ N3| and IKI + |N2|  03A3i|Ki|. We
conclude |K|  X, |Ki|  03C4 and K satisfies property (i). K also satisfies

property (ii). to see this, suppose k E S and k ~ B ~ K. This will lead to a
contradiction. k E K implies that k E M, u M3, since k e K. But k E MI
implies k ff S which contradicts k E S, while k E M3 implies k E B which
contradicts k e B u K. Therefore k e K, hence

We distinguish five cases:

(a) dk_ 1  p/( p - 1). This leads to a contradiction, just as in the proof
Theorem B(i).

(b) dk-1  p/( p - 1) and k - 10 S. These imply that k - 1 E K. Hence
k E Nl , contradicting k ft K.
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(c) dk-1  p/( p - 1) and dk-2  p2/(p - 1). These imply that k - 1 e Ki
for some i  1, and k - 2 E Kj for some j  2. Hence k - 1 ~ Ki n
Kj. If i ~ j then k E N2, which contradicts k e K. If i = j then i  2.
This implies k E k,, which also contradicts k rt K.

(d) dk-1  p/(p - 1) and k - 1 E B. These imply that k - 1 E K n B.
Hence k E N3, contradicting k rt K.

(e) The remaining case reads

Then dk-2  p2/(p - 1) implies that Tk-2  pk by Lemma 2.3(ii).
Further dk-l 1  p2/(p - 1) implies that ck-1  p + 1. Since k - 1 rt B,
we have

These arguments imply that

Since dk  p/(p - 1), dk - ck + dk-1/p and p/(p - 1)  dk-1, we have
ck = 0. Hence by use of Lemma 2.3(iii) we have

On the other hand we have k, k - 1 E S, which implies nk  p - s and
nk-1  p - s and thus

which contradicts (11).
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