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Abstract. In this paper we consider a large class of smooth group actions. Under some weak
assumptions for the action of the infinite dimensional Hilbert-Lie group we prove that a
non-empty set of points of a manifold with trivial isotropy group is an open-dense subset. In
the case of a linear action of a compact Lie group on a Hilbert space the orbit space admits
a natural structure of a stratification onto smooth Hilbert manifolds. An example shows that
this does not in general happen for non linear actions

1. Introduction

One of the ingredients necessary for the construction of field models in
Quantum Physics is the knowledge of infinite dimensional group actions on
infinite dimensional manifolds. Pursuing this line of though P.G. Ebin,
A.E. Fisher and J.P. Bourguignon have studied the action of the group of
diffeomorphism of Sobolev class H’l’ on the space of Riemannian metrics
of class Hk [2, 4, 6]. The geometric structure of the orbit space for the
above action may play an essential role in a rigorous quantization of
General Relativity. In the case of Yang-Mills theory, the time zero con-
figuration space of fields corresponds to the orbit space of the infinite
dimensional group action of automorphism of a principal bundle on the
space of connections.
The geometric structure of the orbit space was, in such a setting, studied

by W. Kondracki and J. Rogulski [7], cf. also [8], whereas the mixed
Yang-Mills-Einstein theory was recently studied by W. Kozak [9] in a
Kaluza-Klein context. In all the above cited papers the density of the main
stratum, i.e. of the subset of the orbit space corresponding to the set of
O-type orbits, was established with the help of difficult technics, in general
différent for every case. At the same time the slice property for the group
action was proved independently.

In this paper we will show that the slice property implies already the
density of the main stratum. The theorem of density proved here is presented
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in a general formulation, namely it holds under weak assumptions and
contains, mutatis mutandis, all above cited situations. This theorem is

proved in Section 2, where it is also shown that the slice property of infinite
dimensional group action implies the countability of the set of orbit

types. Thus the slice property for smooth actions leads to simple proofs of
theorems previously considered as rather difficult.

In Section 3 we will investigate a linear action of a compact Lie group on
a Hilbert space. Using the results of Section 2 we prove that the oribt space
for this action admits a stratification structure onto smooth Hilbert mani-
folds. It can be presented in the form of a countable sum of an ordered and
disjoint family of manifolds which fulfil some additional boundary condi-
tions. Such manifolds are called strata. Strata correspond to orbit types. In
particular the main stratum which corresponds to O-type orbits is dense in
the whole orbit space, as it was mentioned before. In Section 3 we also give
an example of a compact Lie group action on a compact manifold for which
the orbit space does not admit a stratification structure in a natural way.

2. Density of the set of 0-type orbits

Consider an action of a Lie group G on a manifold M. For x E M let S’(
denote the isotropy subgroup of x in G, i.e.,

g ~ Sx if and only if gx = x. (2.1)

We will also call Sx the symmetry group of x. Let S be a compact subgroup
of G such that there exists a point x E M for which S = Sx. Every con-
jugated subgroup gSg-’ is the symmetry of the point gx, we have gSg-1 =
Sgx. Let Gx denote the orbit through x of the action of G. Obviously, for any
element S" form (S) = {the class of subgroups conjugated with S in G}
there exists a point x’ E Gx such that S’ = Sx’. In this way every orbit Gx
of the G-action determines uniquely a conjugacy class of a compact sub-
group in G. In general there exist, however, many différent orbits corre-
sponding to one conjugacy class (S). We shall call (S) the orbit type. Let

M(S) be the set of elements of M with isotropy groups conjugated to a certain
Sx, for some fixed x E M. M(S) is called the set of S-type orbits. If for a
compact Lie subgroup S of G there exists an x E M such that Sx - S, then
M(S) is the set of all points from M with symmetry of S-type - otherwise M(S)
is empty. It is seen that M(S) is invariant under the G-action. By M(O) we shall
denote the set of all elements of M without any symmetry except the identity
in G. We shall call M(O) the set of 0-type orbits.
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In this section we confine our attention to the O-type orbits in order to
show that M(O) is an open and dense subset in M. We shall mostly consider
a smooth action of a Hilbert-Lie group G on a Hilbert manifold M endowed
with a G-invariant smooth Riemannian metric. Let us note that the com-

pactness of any subgroup of symmetries S, is assured if we assume the
G-action on M to be proper. If an orbit Gx is a submanifold in M then by lN§
we shall mean the space of vectors orthogonal to the tangent space Ty Gx of
Gx in y E Gx. Ny is just a fibre of the normal bundle N of a fixed orbit Gx,
a closed smooth subbundle in TM|Gx.

DEFINITION 2.1. ( U, Pr)x is called a tubular neighbourhood of a given orbit
Gx if and only if U is a G-invariant, open neighbourhood of Gx and Pr
is a locally trivial G-equivariant retraction of U onto Gx and a smooth
submersion.

Suppose that Gx has a tubular neighbourhood (U, Pr)x and let

denote the slice at y. Thus the tubular neighbourhood has the structure of
a fibre bundle ( U, Pr, Gx) with uy as a fibre at y E Gx.

DEFINITION 2.2. We say that an action of G on M admits slices at each point
x E M if for every orbit Gx, there exists a tubular neighbourhood ( U, Pr)x.

There is no need to emphasize that the slice method is one of the best
instruments for testing the differential and the topological structure of
manifolds under consideration (cf. [2, 3, 5, 10]). As we shall show below, all
the advantages of the slice method were not recognized yet.

PROPOSITION 2.1. Let the action of a Hilbert-Lie group G on a Hilbert
manifold M with a G-invariant metric be smooth and proper. Suppose that
every orbit of this action is a smooth submanifold in M. Then the action of G
on M admits slices at each x E M.

Proof. The proof which is, in fact, a standard construction of a tubular
neighbourhood (U, Pr)x, will consist of a brief outline of the method. For
x E M we have the following, rather straightforward, identifications

where 03C0N denotes the canonical projection in the normal bundle N. Since
exp* is the identity on Tx M, so it is on Tx N, we can therefore find an open
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neighbourhood V c N of zero in the fibre 03C0-1N(x) such that the deriva-
tive of exp : V ~ M is an isomorphism at an arbitrary point v E V. Thus
exp : V - exp(V) is a local homeomorphism. Since the metric is G-invariant
and exp is G-equivariant, one can make V to be G-invariant. We can make
use of the following topological lemma [3]: Let X, Y be metric spaces
and let f : X ~ Y be a local homeomorphism. Let f’ be a 1 : 1 mapping on
a closed subset B c X and f-1 f(B) = B. Then there exists an open neigh-
bourhood W of B such that f: W ~ f(W) is a homeomorphism. Now let
X = V, let B be the image of the zero section in N and let f = exp. By the
lemma there exists a G-invariant, open neighbourhood W of the image of
the zero section in N such that W c V and exp: W - exp( W) is a homeo-
morphism, hence a diffeomorphism. For the neighbourhood (U, Pr)x of Gx
one can set U = exp (W) and Pr = nN 0 exp-’. a

PROPOSITION 2.2. Let any compact group G act on a Riemannian manifold. Let
the action be smooth and proper and let M be connected and separable. Then
the number of different sets of S-type orbits is at most countable.

Proof. Observe first that for any action of a compact Lie group on a
Riemannian manifold we can find a G-invariant Riemannian metric. By
Proposition 2.1., the G-action admits slices for each x E M.

Consider the covering (U, Pr)x, x E M of M. Since M is metric and sep-
arable it is a Lindelôf space. Choose now a subcovering which is countable.
Every tubular neighbourhood intersects at most a countable number of

M(S), i.e., sets of S-type orbits. The result follows from lemma 2.1 below and
from the countability of the number of conjugacy classes of closed sub-
groups S of a compact Lie group G, cf. [7, 8]. /

Observe the following lemma as a simple consequence of the G-equivariance
of Pr and exp.

LEMMA 2.1. Let the action G on M fulfil all the hypotheses of Proposition 2.1,
and let (U, Pr)x denote a tubular neighbourhood of Gx. For each y E U and fôr
each g E G we have

THEOREM 2.3. Under the same assumptions as in the Proposition 2.1 - that is,
the action of a Hilbert-Lie group G on a connected Hilbert manifold M with
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a G-invariant Riemannian metric is smooth and proper, moreover every orbit
of this action is a smooth submanifold in M, we have:

If Meo) is non-empty, then it is open and dense in M.

At first, we consider a special case of the above theorem in the following
lemma. Next, we can make use of the obvious corollary of lemma below,
which presents the linear situation of G-action on the Hilbert space. It is
shown how to reduce the problem in Theorem 2.3 to this case.

REMARK. The assumptions of the Theorem 2.3 hold in the physically rel-
evant examples, i.e. Gauge Theory, General Relativity and Kaluza-Klein
Theory mentioned at the beginning of the paper. In the case of the Gauge
Theory where the action of gauge group on the space of connections is
considered cf. [7, 8] it has been proved that this action is smooth, proper and
admits G-invariant Riemannian metric. It was also shown that the orbits

compose the submanifolds. In this way all assumptions listed here are
verified.
We can not use directly Theorem 2.3 in the case of General Relativity and

Kaluza-Klein Theory because the groups acting in this context (the group of
diffeomorphisms and the group of quasi-gauges) are not the Lie groups.
Moreover their actions are not smooth. However, the proof mechanism,
under small modifications, is able to work as it was done in [9].

LEMMA 2.2. Let a compact Lie group G act smoothly on a connected manifold
M with a G-invariant Riemannian metric. Let M be geodesically complete and
let M(o) be non-empty. Then M(o) is open and dense in M.

Proof. In virtue of the Proposition 2.1 the G-action admits slices for each
x E M. To show that M(O) is open consider the orbit Gx c M(o) of an
arbitrary point x E Meo)’ The tubular neighbourhood ( U, Pr)x is also con-
tained in M(o) because if Sx is the symmetry of x and Sy is the symmetry of
y E 03C3x, Sy c Sx. This shows that M(O) is the sum of tubular neighbourhoods
of its orbits, and therefore it is also open. Let us turn our attention to the
density of M(O). Let x E MI = MBMeo) and let Yo E M(O). We can j oin yo with
xo E Gx by a geodesic r in such a way that r is orthogonal to Gx at xo. This
geodesic realizes the local minimum of distance between yo and Gx, its

existence is assured by geodesic completeness of M and by the compactness
of Gx. Since Ml is open, (I Xo contains points with non-trivial symmetries
only. By the virtue of Lemma 2.1. all vectors in Nxo also have non-trivial
isotropy groups (symmetries), which are contained in the isotropy group of
xo . (We implicitly identify the isotropy group S and its lifting S* to N).
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Consider any g E Sxo, such that g*v = v, v E Nxo, and v is the vector tangent
to 0393 at xo . Then every point of the geodesic is a fixed point for the G-action.
But for yo E M(O) there is one only possible isotropy g - 0. ~

COROLLARY 2.4. If a compact Lie group G acts isometrically on a Hilbert
space H and the set of O-type orbits H(o) is non-empty, then H(O) is open and
dense in H.

Proof of the Theorem 2.3. The fact that M(o) is open is a consequence of
the slice property of the G-action on M, by the same considerations as in the
proof of the Lemma 2.2.
To show the density of M(O) let MI = MBMeo). Since M is connected there

exists x E Meo) n Ml . Consider the slice ux in x. MI n ux is open in (Ix thus
exp-1(M1 n ax) is also open and non-empty in Nx . Note that

Let now (Nx)S(O) be the set of O-type orbits of the linear action S, on Nx,
namely, the differential of the Sx on 03C3x. Since the G-action is proper S, is
compact. But on account of Lemma 2.1. by (2.5) we have

where exp-1(03C3x) is open.
By Corollary 2.4. (Nx)S(O) n exp-l (ux) is dense in Nx n exp-’(u,). But the

non-empty and open set exp-1(M1 n 03C3x) is contained in (NxB(Nx)S(O) n
exp-1(03C3x) which leads to a contradiction..

3. Density theorem-linear case

As a result of the previous section we are able to perform a decomposition
of the manifold M into the sum of S-type submanifolds:

The set of S-type orbits Mes) is a submanifold in M, which follows from
Proposition 2.1 and from the fact that M(S) n U is a submanifold in U,
where U is a tubular neighbourhood of the orbit through x E Mes), with
Sx E (S). We have also showed that the sum (3.1 ) is countable and that M(O)
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is open and dense in M. It is interesting to ask whether M(S) is dense in
M(S) ~ M(s’), for any two subgroups of G satisfying S ~ S’.

In this section we give the positive answer to the above question in the case
of a linear acton of G. We present also a counterexample that even in the
case of a smooth action of a finite Lie group on a compact, connected
manifold the density theorem for arbitrary S ~ S’ is not true.

THEOREM 3.1. Let a compact Lie group G act smoothly and linearly on a
Hilbert space M. Suppose that there exists x E M such that Sx = S. Then
S c S’ implies that Mes) is dense in M(s) u M(s’)’

Proof. Since G is compact there exists in M a G-invariant inner product.
Define

Ms is a closed vector subspace in M. Let N(S) be the normalizer of S in G.
Observe that N(S) being the compact Lie group is the maximal subgroup
conserving M. Thus the action

is well defined. N(S) does not act effectively on Ms but N(S)/S does so.
Denote by MS the set of points of M with the symmetry group exactly equal
to S. It is seen that the set of 0-type orbits of the action of N(S)/S on Ms
is equal to MS . Thus in virtue of Corollary 2.4 Ms is open and dense in Ms .
Let us denote

We have

which implies that M(S) is also dense in M(g). Hence, of course, Mes) is dense
in Mes) u Mes’) which is contained in M() for S c S’. Il

Now, we present an example of a compact Abelian Lie group G acting
smoothly on a finite dimensional smooth manifold M in such a way that
there exist two non trivial isotropy groups S, c S2 c G wih the property
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that M2 q: Ml , where 0 * Mi is the set of all x E M such that an isotropy
group of the point x is conjugated with Si in G, i = 1, 2.

Let M be the real projective plane P2. Take as a group G the n/2-rotations
around certain point xo E M. The isotropy group S2 of xo is then simply G.
We see that M decomposes into three strata: M2 - {x0}, Ml which is a circle
with isotropy group SI being the group of the n-rotations and Mo with trivial
isotropy group, i.e. main stratum. Since Ml is closed so M2 ~ 1, hence the
counter-example claimed.
The existence of the counter-examples shows that (besides the linear case,

Theorem 3.1 ) the orbit space of a G-action is not, in general, endowed with
a structure of the stratification. However, in the mentioned above physical
theories, it was shown that the orbit space admits the natural stratification
stucture.
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