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0. Introduction

Most of the known examples of algebraically completely integrable (ACI)
systems admit a 1-parameter family of Lax representations. These represen-
tations can be used to show complete integrability and to express the
solutions in terms of theta functions ([1], [6]). At present there is no general
procedure for producing a 1-parameter family for a given ACI. In this paper
we present a 1-parameter family (A(z), B(z)) of 2 x 2 Lax representa-
tions for the case of an ACI system whose Liouville tori are isogenous to
Jacobians of hyperelliptic curves in Weierstrass form. We then apply the
technique to the Kovalevskaya top [9].

Section 1 contains a brief review of the algebro-geometric method for
linearizing a flow with a 1-parameter family of Lax pairs. The construction
of the matrix A(z) corresponding to a single hyperelliptic curve is given in
Section 2. In Section 3 we consider a family of hyperelliptic curves and prove
the main result. Finally, in Section 4 we present a family of Lax pairs for the
Kovalevskaya top.

Shortly after this work had been completed, other Lax representations
(of higher dimensions) for Kovalevskaya’s top were found by Adler-van
Moerbeke [2] and Haine-Horozov [8]. Both works depend on converting the
Kovalevskaya system to other differential equations for which Lax represen-
tations were previously known. The referee informed us of two other sol-
utions to the problem, [3] and [12]. The matrix A(z) also appreared, in a
somewhat different context, in [5] and [11].

1. ACI systems, Lax representations

Several definitions of an ACI system exist in the literature, e.g., [1], [10]. We
ofI’er the following definition.
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DEFINITION 1. An algebraically completely integrable system (X, v) consists
of a 2n-dimensional algebraic variety X, an n-dimensional base variety B,
and an algebraic vector field v such that there is a map n : X ~ B with the
following properties:

(a) the fibers 03C0-1(b) are Zariski open in abelian varieties Ab,
(b) v is vertical and constant on n-’ (b).

DEFINITION 2. A Lax representation of a differential equation (X, v) is a pair
(A, B) of endomorphisms of a vector space V (or a pair of matrices) whose
entries are meromorphic functions on X such that the vector field v is

represented by the equation

The algebro-geometric approach to understanding the flow associated
with an ACI system (X, v) is as follows. First we associate with each point
x E X a representation of the system in the form of a Lax pair (A(z), B(z))
with complex parameter z. The form of the Lax equation implies that as time
t changes the matrix A(z) remains in its coadjoint orbit:

Hence the spectral curve

is time invariant. We also have an eigenvector map associated with A(z):

sending (z, w) E Cx to ker(wl - A(z)). We assume that, generically, this is
one-dimensional. The eigenvector map induces a line bundle

where d = deg ~x(Cx). In certain cases as x(t) flows along integral curves
for v, Lx(t) varies linearly in Picd(C). After we choose a base point in the
curve Cx this is quivalent to Lx(t) flowing linearly on the Jacobian, J(Cx). The
solutions of the differential equation can then be expressed in terms of the
theta function of C. For more details, c.f. [6].
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2. The matrix

Consider a hyperelliptic curve C of genus g whose equation is given in
Weierstrass form by

where, f ’ is a polynomial of degree 2g + 1. In this form, the point at infinity
is a distinguished Weierstrass point. Let Pl’ ... , pg be points of C and
denote the corresponding point (pl , ... , pg) of Sg C by p. Consider the
Jacobi polynomials

they satisfy the identity

cf. [10]. We consider the matrix

Its characteristic polynomial

is just the equation of C. The eigenvector corresponding to (z, w) E C is
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where

The entries of A are polynomials in z which depend rationally on fi E SgC.
By Jacobi’s inversion theorem [7], the symmetric product SgC is birationally
isomorphic to Pie (C), so we may consider A as a matrix-valued rational
function on Pie(C): for a generic line bundle x E Picg(C), A(z)(x) is A(z, fi)
where p E Sg C is the unique effective divisor satisfying

(more precisely, this is defined when x is non-special.) In particular, we
think of the entries of A as rational functions U(z, x), V(z, x), W(z, x) of
x E Pie (C). For generic x E Pie (C) we have the eigenvector map

hence a linearization map

which a-priori is defined only on a Zariski-open subset.

LEMMA 1. The linearization map (1) is

and is hence defined everywhere.

Proof. It suffices to show that (2) holds generically, so we assume that x
is non-special and that

i.e. that the divisor  is uniquely defined and does not contain oo . We need
to show that m(z, w, fi), as a function on C, has polar divisor  + oo . The
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divisor of w + V(z, p) is

where j is the hyperelliptic involution, since at j(pi) = (-w(p;), z(pi)) the
value of V(x, p) is w(pi) (the points qk in the above formula have not been
determined). The divisor of U(z, p) is

Hence the divisor of m(z, w, fi) is

LEMMA 2. Let x E Pid(C) be a differentiable function of t, and assume A(z, x)
is well-defined at x = x(t). Then

where

Proof. Let

then

Now
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where

3. Families of hyperelliptic Jacobians

DEFINITION 3. A family W - B of hyperelliptic curves is said to be a Weier-
strass family if it is given in B x P2 , by an equation of the form

where b E B, (z, w) are affine coordinates of a point in p2B(line at 00), and
f is a polynomial of odd degree 2g + 1 in z.

DEFINITION 4. Given an ACI system (X, v) where X fibres

over a base B, and the fibers 03C0-1(b), b e B are Zariski open in Abelian
varieties Ab, we say (X, v) is hyperelliptic if each Ab is isogenous to a
hyperelliptic Jacobian. We say that (X, v) is Weierstrass if there is a Weier-
strass family B ~ B of hyperelliptic curves such that Ab is isogenous to
J(Cb ), where Cb is the fiber of W over b E B.

Our main result is:

THEOREM 1. Any Weierstrass ACI system (X, v) admits a one-parameter
family of 2 x 2 Lax representations (A(z), B(z)) whose linearization map

is an isogeny on fibers.



37

REMARK. On a hyperelliptic curve C in Weierstrass form, one of the
Weierstrass points, denoted oo, is distinguished. We thus have a natural
isomorphism

for any d. The linearization map L can therefore be taken to be a map into

J(Y/B).

Proof. Since there are only countably many isogeny types, one of them
must hold for the generic b E B, hence for all b E B, in other words, there is
a morphism

inducing isogenies on fibers. Since the vector field v is constant on each Ab,
it descends to a (constant) vector field l*v on J(Cb). Replacing (X, v) by
the quotient system (J(WIB), 1*v), we may assume that each fiber Ab of
03C0:X ~ B is isomorphic to the Jacobian J(Cb). By the remark, we have
isomorphisms

We can thus interpret A(z, x), B(z, x) of Section 2 as matrix-valued func-
tions depending polynomially on z E C and rationally on x E X:

They form a Lax representation by Lemma 2, and the linearization map

when translated to X, becomes the map described in Lemma 1.

4. The Kovalevskaya equations

The Kovalevskaya equations for heavy rigid body motion are
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where

M represents angular momentum, Q angular velocity, r position, and E
center of gravity. The first integrals

define the coadjoint orbit where the system is completely integrable (see
[14]). Two additional integrals define the Liouville tori where the flow
occurs:

S. Kovalevskaya constructed the map (using her notation)

where
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She showed the above map is an isogeny and that the equations transform
to

where Here

our curve C is hyperelliptic of genus 2. Our point p on Sg C is

The function V(z, fi) can be written

the matrices A and B are

where
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The derivatives are resolved by using (3) (u, 1, h, k are all constants;
2p = qr, 2q = - (pr + UY3)’ etc.).
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