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0. Introduction

In ([K-S]) Kuga and Satake associate an abelian variety to each polarized
K3 surface. This is refined by Deligne in [D] where he shows that this is in
fact an absolute Hodge correspondence, i.e. according to the Hodge conjec-
ture there should exist an algebraic correspondence between the K3 surface
and the associated Kuga-Satake abelian variety. The aim of this paper is to
set up this correspondence in the particular case when the K3 surface is the
desingularization of the double cover of the plane branched along six lines.
It can be shown that when the six lines become tangent to a conic the K3
surface is the Kummer quartic surface. Further, the Kuga-Satake abelian
variety in this case is just a number of copies of the jacobian of the hyper-
elliptic curve obtained as the double cover of the conic branched at the six
points of tangency (see [M]). for the general set of six lines, however,
cohomology computations show that the Kuga-Satake abelian variety is a
number of copies of a four dimensional abelian variety. In fact, this four-
dimensional variety turns out to be the Prym variety of a certain fourfold
cover of an elliptic curve, the cover being of genus five. The problem thus
reduces to setting up a correspondence between the K3 surface and this
curve of genus five. The key to this is a construction of C. Schoen (in [S])
emulating which we construct a surface which we call the "Schoen surface".
This surface is a quotient of the product of the curve with itself and has an
involution on it, the quotient by which gives the K3 surface. Though we
begin with the curve and then construct the K3 surface, we can show that
every K3 surface of the above type is reached by the construction.

Let FI be the desingularization of the double cover of the plane branched
along six lines. In Section 1 we show that the lattice T of transcendental

cycles on Y 1 is isomorphic to Hyp OE) Hyp (B [ - 2] 0 [ - 2] as a quadratic
space (where Hyp stands for the 2-dimensional hyperbolic space). The
Hodge structure on this is given by a 2-dimensional real subspace of T Q R
on which the quadratic form is positive definite.
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Let C be a curve of genus five with an automorphism of order 4, such that
the quotient is an elliptic curve and the isotropy of any point is atmost of
order 2. In Section 2 we compute the Hodge structure of the Prym variety.
The lattice F of the Prym variety is a hermitian lattice over Q[i] of the form
Hyp ~ Hyp. The Hodge structure is given by a 2-dimensional complex
subspace of F Q R on which the hermitian form is positive definite. There
is a natural Q[i]-antilinear involution on ̂ 2Q[i]F which preserves the Hodge
structure. The invariants of this involution thus give a Hodge structure
which we check is of the same type as the lattice of transcendental cycles on
the K3 surface as described above. Further, it is easily seen that this is the
Kuga-Satake-Deligne correspondence in the given case (upto isogeny and
repetitions of the Prym). In fact, if G 1 is the Shimura variety corresponding
to SO(Hyp ~ Hyp (D [ - 2] (B [ - 2]) which parametrizes Hodge structures
of type T and G2 is the Shimura variety corresponding to U(Hyp Et) Hyp)
which parametrizes Hodge structures of type F, then we see that we have a
finite-finite correspondence between Gland G2. Thus, the problem can be
seen to be twofold. Given a curve of the above type, to construct a K3 surface
and to represent the above Hodge correspondence by an algebraic cycle on
the product of the Prym variety and the K3 surface.
The geometric construction in Section 3 exactly mirrors the above

algebraic calculation. Reading between the lines in [S] there is a natural way
to construct out of C a surface W whose lattice of transcendental cycles is
isomorphic to ̂ 2Q[i]F as a Hodge structure. We then produce an involution
on W which acts like the involution described above. The desingularization
of the quotient of W by this involution gives a K3 surface of the required
type. One then checks (in Section 4) that this construction represents the
Hodge correspondence as required.

1. Cohomology of the K3 surface

Let LI, ... , L6 be lines in the projective plane P2 such that no three of these
are coincident. We can then form the double cover of P2 branched precisely
along these six lines. Let Y 1 - Y be the desingularization. If p¡,j = Li n Lj,
then we have exceptional curves Ei,j of Y 1 ~ Y precisely over these points.
Further, if [H] is class of the inverse image of a line in P2 , then for a general
choice of L1, ... , L6, the Néron-Severi group NS of YI can be described
over the rationals:

We wish to prove
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LEMMA 1. Let Y1 be the desingularization of the double cover Y of the plane
branched along six lines. Let Ei,j’s be the exceptional curves of the morphism
Y1 ~ Y, and H the pull back to Y1 of a general line in the plane. If

then,

as a quadratic space.

Further, T is a sub-Hodge structure of H2(Y1, Q), with this structure being
given by a 2-dimensional linear subspace of T Q R on which the intersection
pairing is positive definite.

Proof of Lemma 1. Looking at the Hodge structure on H2 ( YI, C)
we see that H0( Y 1, KY1) E9 H2 ( Y 1, UY 1 ) is perpendicular to N,S Q9 C c
H’ ( Y 1, 03A91Y1). Thus, the second part of the statement is immediate. We note
that the first part of the statement needs to be proved only when Y1 and Y
specialize to X1 and X, where X1 and X are the surfaces obtained for the
special choice of six lines tangent to a conic Q. Then it is known classically
that X1 and X can be alternatively described as follows.

Let C be the hyperelliptic curve obtained as the double cover of the
conic Q branched along the six points of tangency, and A be the Jacobian
variety of C. Choosing as base point on C one of the six points of ramifi-
cation we get a natural inclusion C ~ A. This gives the theta divisor on A.
The linear system 12CI on A gives a morphism A ~ P3, which factors
through X’ - Ali, where i is the involution on A given by the inverse in the
group law.

X is obtained by blowing up the image in X’ of the origin in A and the
map to P2 is obtained as the projection from this point. X1 is got by blowing
up all the sixteen nodes of X’ corresponding to the points of order 2 on A.
Equivalently, X1 = A1/i, where A1 is the blow up of A at the sixteen points
of order 2 on A. If Eu denotes the exceptional curve in A 1 corresponding to
the point a in A, then

Now, A is the Jacobian of C and thus
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The action of i on H1(C, Q) is by - Identity, so i acts trivially on
H2(A, Q). The natural homomorphism H2(X1, Q) ~ H2(A1, Q) is

therefore an isomorphism of vector spaces. The intersection pairing on
H2(X1, Q) is however, 1/2 the intersection pairing on H2 (A 1, Q).
Choose a symplectic basis {e1, f1, e2 , f2} for Hl (C, Q). This gives a basis

for H2 (A, Q):

such that:

1. (ai . bi) = 1 w.r.t. the intersection pairing on H2(A, Q).
2. a, + bj = [C], with [C] the class of C as a curve on A as above.

By this description, under the specialization from Y 1 to X1, the class [H]
specializes to 2(a, + bl - [Eo]) with 0 the origin in A, and the classes [Ei,j]
specialize to [Ea]’s for a in 2A different from 0. Hence we may compute the
lattice T in H2 (X 1, Q) as the perpendicular of,

This is easily computed to be isomorphic to Hyp ~ Hyp ~ [- 2] ~ [ - 2],
where Hyp stands for the 2-dimensional hyperbolic space. Q.E.D. Lemma 1.

2. The Prym variety

LEMMA 2. Let C be a curve of genus 5 with an automorphism of order 4, s.t.
the quotient by this automorphism is an elliptic curve E and the isotropy of any
point is atmost of order 2. The Prym variety for this cover is given by a Hodge
structure F of the following type:

1. The action of the automorphism makes F a Q[i]-vector space of rank 2.
2. The symplectic form of F gives a hermitian form w.r.t. this Q[i]-structure

which of type Hyp ~ Hyp.
3. The Hodge structure is determined by a 2-dimensional complex subspace of
F ~ R on which the hermitian form is positive definite.
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Proof of Lemma 2. Let p, + P2 + P3 + P4 be the branch locus on E. We
have a line bundle L on E of degree 2 such that,

but

This gives a line bundle M = L-’
2 in Pic(E). The isomorphisms,

which is of order

and

give an algebra structure to (!JE 0 L-1 (B L -1 Q M Q M, as well as to
(9E EB M.

It is easily seen that for a suitable choice of L,

Further, if E’ is the quotient of C by the isotropy then,

The automorphism J of order 4 is described by - i - (Identity) on L and
by (-Identity) on M. (Here i denotes the square root of - 1).

Let P be the connected component of identity in the kernel of the natural
homomorphism Jac(C) ~ Pic(E), i.e. the Prym variety. Then we have:

The action of J is by i - (Identity) on V and by i - (- Identity) on W. There
is a natural morphism H1(C, R) ~ H’ (C, (9c) and F ~ R goes isomor-
phically (as real vector spaces) to V (B W. This isomorphism is compatible
with the J action.
The automorphism J of C gives a Q[i] action on F, and so the restriction

to F of the symplectic structure on H1(C, Q) is the imaginary part of a
Hermitian structure H. Since the order of the automorphism is a power of
2 the discriminant of H is also a power of 2 in Q. But then 2 = Norm(1 1 + i)
so that disc(H) = 1 in QX/Norm(Q[i]X).
Now V (B W is the tangent space to P and the symplectic structure on F

is the restriction of the imaginary part of the positive definite Hermitian
structure H 1 which gives the polarization on P. This Hermitian structure is
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J-invariant and so, for all v in V and w in W

Let 03BD1 03BD2 in V and w, , w2 in W give an orthonormal basis of V ~ W
with respect to the form H 1. Then Im H1(J·vi , vi) = - Im H1(J·wi,
wi) = 1 and the rest of the pairings are zero. Since Im H1 = Im H we get
that H is of signature (2, 2). By a result of Landherr (see [L]) the signature
and discriminant of a hermitian form over Q [i] determine it completely
(discriminant being taken as an element of Qx/Norm(Q[i]x)) upto iso-
morphism. Thus F is isomorphic to Hyp EB Hyp as a Hermitian space.
Further, the Hodge structure on F is clearly determined by giving W (or V)
as a quotient of F Q R. Q.E.D. Lemma 2.

Let {e1, f1, e2, f2} be a basis for F over Q[i] such that H(ei, fi) = 1 and

the rest of the pairings are zero. Then the lattice U = ^2Q[i]F has a basis,

such that a, n bi = g a generator for ^4Q[i]F. By extending the Hermitian
form H to U we have,

while the rest of the pairings are zero. Similarly, extending H to ^4Q[i]F we
have H(g, g) = 1. Let t: U ~ U be the Q[i]-antilinear homomorphism
defined by,

Then H(u1, u2)g = U, A t(u2) for all ul , U2 in U, and this condition deter-
mines the involution t. The isomorphism F Q R rr V (9 W gives rise to an
isomorphism U Q R ~ A 2 c V (B ^2C W Et) V ~C W. Thus U is a polarized
Hodge structure of weight 2. It is easy to see that t is an automorphism of
this polarized Hodge structure. Let T be the invariant subspace of U under
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the involution t. The set (aj - bl, J (al + bl), J · a2 , J · b2 , a3 , b3} gives
a basis for T and it follows that the quadratic form on T induced by H
on U is isomorphic to Hyp ~ Hyp ~ [ - 2] ~ [ - 2]. In fact the Hodge
structure on T is given by the t-invariants in A c 2 V ~ ̂2C W which form a
2-dimensional real subspace of T (D R. Thus we may state as proved,

LEMMA 3. Let F be a Hodge structure as in Lemma 2. Then there is a Hodge
structure T as in Lemma 1, and a Hodge correspondence T ~ A Q[il 2 F.
Q.E.D. Lemma 3.

We note that as a consequence of the proof of Lemma 3 SU(Hyp ~ Hyp,
Q[i]) is a double cover of SO(Hyp ~ Hyp ~ [ - 2] ~ [ - 2], Q). Hence
it is the spin group of this orthogonal group. Since the 4-dim representation
of SU(2, 2) is unique, F is perforce the spin representation associated
with the orthogonal group above. As a consequence (see [D] Sects. 3 and
4, and [M] Lemma 7) the Kuga-Satake-Deligne correspondence for the
Hodge structure T of Lemma 1 is precisely what has been constructed
in Lemma 3, providing that we show that every such T is associated with
some choice of F. This will be a consequence of the construction in Sections
3 and 4.

3. The Schoen surface

With notation as in Section 2 let us choose an origin o in E s.t. OE(p1 +
... + p4) - OE(4.o). Also choose an origin o’ in E’ lying over o in E. Let
p, q in E be points such that L ~ OE(2 · p) and M ~ OE(2 · p - 2 q).
Then, we have equivalences on E:

Let G be the group acting on C x C generated by automorphisms
( J, J -’ ) and the flipping of the two factors. Following C. Schoen we define
the "Schoen surface" W as the quotient of C x C by the action of G.
Similarly we define the surfaces S’ and S as the quotients by G of E’ x E’
and E x E respectively (note that J acts as an involution on E’ and
acts trivially on E). The addition morphisms E’ x E’ - E’ and E  E ~ E

give rise to morphisms S’ - E’ and S ~ E, making them ruled surfaces.
In fact, S’ is the fibre product of Es E and S ~ E. The morphisms
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of Section 2 give rise to morphisms

For each point e in E we have a section De of S - E given by the image
of E x {e} in S. Let Dé denote the corresponding divisor in S’. Let Le denote
the line bundle on S corresponding to the divisor De .

W has an automorphism of order 4 induced by (J, 1) on C x C, s.t. the
isotropy is of order at most 2. The quotient by the isotropy is S’and the
quotient by the automorphism of order 4 is S. The branch locus in S is the
union of the divisors Dp1, ... , Dp4 . As in Section 2 we get W = SpecSOS E8
Lp-2 Q Lq-2 E8 M. W has twelve ordinary double points corresponding
pairwise to the six points of intersection of the Dpi. We may blow up these
points on S, S’ and W to get S 1, S l’ and W1.

Let Ei,j denote the exceptional curve in S 1 lying over the point of inter-
section of Dp, and Dpj, and let Fi,j denote the strict transform of the fibre
of S -+ E through this point. Let Di denote the strict transform of the
section Dpl of S ~ E. Then Di meets Ei,j for every i ~ j, and Fn,k for every
k =1= n =1= i ~ k. This shows that S 1 - E is a family of stable 4-pointed
curves of genus zero in the sense of Harris and Mumford (see [H-M],
Section 4). They show that there is a fine moduli space for 4-pointed stable
curves of genus 0. By examining the morphism S 1 ~ E we see that the fibres
over Pl + P2 and p3 + p4 are pairs of lines which meet the sections Di in the
pairs {D1, D2} and {D3, D4}. By similarly examining the other singular
fibres one concludes that S 1 is in fact a double cover of the universal family
and the corresponding involution on E acts as inversion in the group law.
Hence there is an involution s: S1 ~ S 1 such that:

1. s carries the section Di into itself for each i.

2. s carries Ei,j onto Fk,l; {i, j, k, l} = {1, 2, 3, 4}.
3. s lies over the involution e -+ - e of E.

Thus by lifting this inversion to e’ ~ - e’ on E’ we also get a natural lift of
the involution to Sl’. This also fixes an action of s on M.

Let b: S1 ~ S denote the natural morphism. Then it is easily checked
that:
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Further, the fact that
shows that:

is invariant under s

Hence we have two possible choices of a lift of s to an involution on W1.
The composite W1 - S l’ - E’ makes W1 an elliptic fibration over E’

with level two structure. The morphism Wl - S1’ is the quotient by the
inversion in the group law on the fibre. The involution s’: S1’ ~ S l’ as
described above acts as identity on the fibre of S1’ - E’ over o" since it fixes
the four points of intersection with the four chosen sections. Thus the two
choices of lifts of s to an involution on W1 restrict to identity and the inverse
in the group law on the fibre of W1 - E’ over o’. Notice that the action of
these lifts is by multiplication by the section of M over E’ which gives the
algebra structure to OE 0 M. But then, if p’ is the other point of E’ lying
over o, the section has opposite signs at o’ and p’. Thus the action of the lift
can be chosen to be identity on the fibre of W1 over o’, in which case this
lift will act as inverse in the group law on the fibre over p’. Similarly, if q’
and r’ are the other two fixed points of the inversion on E’, this lift will act
as identity on the fibre over one of these (say q’) and by inversion on the
other fibre. Thus, this choice of lift has 8 isolated fixed points and two fixed
fibres.

Now blow up these 8 fixed points to get W2 and form the quotient Y2.
Then Y2 is a smooth surface with a morphism to the quotient of E’ by the
involution, i.e. P1. The four sections of W1 ~ E’ also descend since they are
invariant under the involution. Thus Y2 - Pl is an elliptic fibration with
level two structure. There are 6 singular fibres of type I2 corresponding to
the twelve singular fibres of W1 ~ E’ and two singular fibres of type Iô
corresponding to the fibres of W1 fixed under the involution (notation for
elliptic fibrations as in Kodaira [K]).

Let S 2’ be the blow up of S 1 ’ at the images of the 8 points on W1. Then
we can also form the quotient of S2’ by the involution to get Z. The natural
morphism Y2 - Z is a double covering. Further, the morphism Y2 - Pl
factors through Z and Z ~ Pl is a genus zero fibration with 8 singular fibres
and four disjoint sections Ci, ... , C4. Six of these singular fibres are of the
following type:

1. Each fibre has 2 components with each component meeting 2 of the
sections.

2. For each pair of sections there are two such fibres where these sections
meet the same fibre component.
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The remaining two singular fibres are of the following type:
3. Each fibre consists of five components. There are four exceptional curves

each meeting exactly one of the sections, and the remaining component
meets each of these four components exactly once.

Looking back to Section 1 we see that if we choose one pair of lines say
LS and L6 out of the six lines in P2 , then we have a morphism from Y 1 to
P’ making it an elliptic fibration like Y2 above. Further, blowing up the pi,j
in P2 to get 21 we also have a morphism from Z1 to P’ and Y 1 is a double
cover of Z1. The morphism Z1 ~ P’ has the same description as Z - P’
above (with L5 and L6 corresponding to the fifth component in the fibres as
in (3) above and LI, ... , L4 being the four sections).

Blowing down the four exceptional curves in the fibres of type (3) (as
above) in Z and Z1 we get families of stable four pointed curves of genus
zero which are characterized by the morphisms to the moduli space (the
lambda functions), z: pl -+ P1 and zl: P1 ~ P’ (see [H-M] loc cit.). Thus,
Z - P’ (and Z1 - P’ ) is characterized by the lambda function on the base
P1 and a choice of two points on the base over which the fibres are of type
(3) as above.
Under différent choices of E and {p1, ... , p4} c E such that p, +

... ’ + p4 = o in E, the above construction will give any z: P1 ~ P’ of
degree two and any pair of points in P’ = E’/s’ that we choose. Again, by
varying the choice of lines in P2 we can get any zl : P1 ~ P’ of degree two
and any pair of points in P’. Thus, for a suitable choice we get an iso-
morphism between Z and Z1, hence also an isomorphism between Y2 and
Yl.

4. Cohomology computations

We now state,

MAIN THEOREM. Let Y1 be the desingularization of the double cover of
the plane branched along six lines no 3 of which are coincident. Then there
is an abelian variety P and an element of CH2 (P x Y1) such that the

corresponding homomorphism H2(Y1, Q) ~ H2 (P, Q) is an inclusion on the
lattice of transcendental cycles.

Proof of Theorem. Let Sym2 (C) be the second symmetric power of
C. Then the addition morphism Sym2 (C) x Sym2(C) ~ Jac(C) can be
composed with the morphism Jac(C) - P of Section 2 (P is the Prym
variety of Section 2), to give Sym2(C) x Sym2(C) ~ P. Further, use the
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projection to the first factor of Sym2 (C) x Sym2 (C) to get a class in
CH2(Sym2(C) x P). This class represents the homomorphism
H2(Sym2(C), Q) = AQ2 H1(C, Q) ~ ̂ 2QH1(P, Q).

Similarly, the morphism C x C - W descends to Sym2(C) ~ W
giving us a class in CH2 (Sym2 (C) x W ) which represents the inclusion

^2Q[i]F ~ ^2QH1(C, Q).
Now compose the above correspondences with W2 - W x Y2. This

gives a class in CH2 (P x Y2).
Since we have already shown in Section 3 that our construction reaches

every Y 1, we only need to show that the above construction actually gives
a correspondence of the required type.
The following claims are easily checked:

1. H2(W1, Q) = H2(W, Q) Q Q-span of 1-diml. fibres of W1 - W.
2. H2(W, Q) = G-invariants in H2 (C x C, Q).
3. The action of J on H° (C, Q) and H2 (C, Q) is trivial, so the G-invariants

in H° (C, Q) Q H2 (C, Q) C H2 (C, Q) Q H° (C, Q) form a 1-diml.
vector space spanned by the class of the image in W of C x {c}, for some
general point c in C.

4. The flipping operates as the alternating action on H1(C, Q) O Hl (C, Q)
so that the G-invariants in H1 (C, Q) Q H1 (C, Q)) are just A 2 F 0
^2QH1(E’, Q). Further, ̂ 2QH2(E", Q) is spanned by the class of a general
fibre of W - E’.

5. The involution on W1 interchanges the (J, 1) action with the (1, J-1)
action. Thus the action on ̂ 2Q[i] F of this involution is Q[i] antilinear.

6. The real part of the Hermitian form on ̂2Q[i] F is a constant multiple of the
intersection pairing on ^2Q[i]F c H2(W1, Q). Hence, this real part is
invariant under the involution.

As a consequence of ( 1 )-(4) we see that the lattice of transcendental cycles
on W1 is ^2Q[i]F. The invariants under the involution is the lattice of tran-
scendental cycles on Y2. Since (5) and (6) show that the involution has the
required type of action on A Q[il 2 F we have the required correspondence.
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