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1. Introduction

Let X z Pr be a projective variety, not contained in any hyperplane, and let
I = I P. denote the homogeneous ideal of X. When X is a finite set or an
algebraic curve, several authors have given criteria for I to be generated by
quadrics (cf. [Ml], [St.D], [F], [H], [G]). As the results and conjectures of [G]
and [GL1] indicate, however, one expects that theorems on generation by
quadrics will extend to - and be clarified by - analogous statements for
higher syzygies. Our purpose here is to prove two elementary theorems
along these lines.

Let E. be a minimal graded free resolution of I over the homogeneous
coordinate ring S of Pr :

0 ~ Er+1 ~ ··· ~ E2 ~ I ~ 0,

where E, = ~S(-alJ). We are interested in knowing when the first few
terms of E, are as simple as possible. Specifically, for a given integer p  1,
we ask whether X z pr satisfies the following property:

(Np) E, - ~S(-i- 1) (i.e., all ai = i + 1) for 1  i  p.

Thus:

X satisfies (N, ) ~ IX/Pr is generated by quadrics;
X satisfies (N2 ) ~ (N1) holds for X, and the module of syzygies among

quadratic generators Qi E IX/Pr is spanned by the relations of the form
Z Ll Ql = 0, where the Li are linear polynomials;

* Partially supported by NSF Grant DMS 85-02350.
** Partially supported by a Sloan Fellowship and NSF Grant DMS 86-03175.
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and so on. (It would also be natural to define property (N0) to mean that X
imposes independent conditions on hypersurfaces of degrees  2. All of the
results below extend to (N.), and in fact most are classical in this case.)
Our first result concerns finite sets:

THEOREM 1. Suppose that X 9 P’ consists of 2r + 1 - p points in linear
general position, i.e., with no r + 1 lying on a hyperplane. Then X satisfies
property (Np).

This generalizes a result of St.-Donat [St.D] who showed that the homo-
geneous ideal of 2r points in pr is generated by quadrics. Much as in [St.D],
the result has implications for the syzygies of algebraic curves. In fact, as an
immediate consequence of the Theorem, one recovers a result of the first
author from [G]:

(*) Let X be a smooth irreducible projective curve of genus g, and, for p  1

consider the imbedding X 9 P(H0(L)) = pg+p+1 defined by the com-
plete linear system associated to a line bundle L of degree 2g + 1 + p.
Then X satisfies property (Np).

The case p = 1 of (*) is due to Fujita [F] and St.-Donat [St. D], strengthening
earlier work of Mumford [M1].
To complete the result (*), it is natural to ask for a classification of all

pairs (X, L) for which it is optimal. This is the content of

THEOREM 2. Let L be a line bundle of degree 2g + p on a smooth irreducible
projective curve X of genus g, defining an embedding X ~ P(H0(L)) = Pg+ p .
Then property (Np) fails for X if and only if either

(i) X is hyperelliptic;
or

(ii) X ~ Pg+P has a (p + 2)-secant p-plane, i.e., H’(X, L ~ 03C9*X) ~ 0.

So for instance if X g pg+l is a non-hyperelliptic curve of degree 2g + 1,
then the homogeneous ideal Ix/pg+B of X is generated by quadrics unless
X has a tri-secant line; this was essentially conjectured by Homma in [H]
(cf. also [S]). The theorem already gives a first indication of the fact that the
syzygies of a curve are closely connected with its geometry. The influence of
the geometry on the algebra is an intriguing, but largely uncharted, facet of
the theory of algebraic curves. We refer the reader to [GL1, §3], where
Theorem 2 was announced, for some conjectures in this direction.
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The generators and syzygies of the ideal of a sufficiently general collection
of points in pr have been studied by several authors (cf. [B], [GGR]).
However, as far as we can tell the elementary Theorem 1 seems to have

escaped explicit notice.
Our exposition proceeds in three parts. Section 1 contains various Koszul-

theoretic criteria for a projective algebraic set to satisfy property (Np).
This material is standard folklore, and is included mainly for the benefit of
the reader not versed in such matters. In Section 2 we give the proof of
Theorem 1. The application to curves occupies Section 3.

Finally, we are grateful to L. Ein and E. Sernesi for valuable discussions.

§0. Notation and conventions

(0.1). We work throughout over an algebraically closed field k of arbitrary
characteristic.

(0.2). Given a vector space V of dimension r + 1 over k, S = Sym(V)
denotes the symmetric algebra on V, so that S is isomorphic to the poly-
nomial ring k[xo, ..., jcj. We denote by k the residue field S/(x0, ..., Xr)
of S at the irrelevant maximal ideal. For a graded S-module T, we write T
for its component of degree j, and as usual T( p) is the graded module with
T(p)j = Tp+j.

(0.3). P(V) is the projective space of one-dimensional quotients of V, so that
H0(P(V), OP(V) (1)) = V. A subscheme X z P( V ) is a non-degenerate if it
does not lie in any hyperplane.

§1. Criteria for property (Np)

This section is devoted to spelling out some criteria - eventually of a
Koszul-theoretic nature - for a projective algebraic set to satisfy property
(Np ) from the introduction. The experts won’t find anything new here, and
we limit ourselves for the most part to what we need in the sequel. For a
general overview of Koszul-cohomological techniques in the study of syzy-
gies, the reader may consult e.g. [G].

Fix a vector space V of dimension r + 1 over the ground field k, and
consider a non-degenerate projective scheme



304

of pure dimension n, defined by a (saturated) homogeneous ideal

1 ç S = Sym( ). Let R = SII be the homogeneous coordinate ring of X.
Then Tors (R, k) is a graded S-module, which may be computed from a
minimal graded free resolution.

of R. Thus Torsi(R, k)J is a finite dimensional k vector space whose dimen-
sion is the number of minimal generators of Ei in degree j. The non-
degeneracy hypothesis on X implies that if i &#x3E; 0 then {Ei}j = 0 for j  i.

Hence X z pr satisfies property (Np ) from the introduction if and only if

In fact:

LEMMA 1.2. For p  codim (X, Pr), property (Np ) holds for X ~ pr if and
only if

Proof : Set Mi = max {j |TorSi(R, k), ~ 01. In view of (1.1), it suffices to
prove that the {M,1} are strictly increasing in i for i  codim(X, Pr), i.e., that

where as above n = dim X. To this end, note first that ExtiS (R, S) = 0 for
i  codim(X, Pr); this is presumably well-known, and in any event follows
from the local fact ([BS] p. 25) that 03B5xtioPr(OX, (Dpr) = 0 when

i  codim(X, Pr ). Hence if as above E. is a minimal graded free resolution
of R, and if Ei* = Homs(E1, S ), then the sequence

is exact. On the other hand, recall that if F is any finitely generated graded
S-module, then:

the integers ml (F) = def min {j|TorSi(F, k)J ~ 01 (**)
are strictly increasing in i.
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(This follows from the fact that a minimal graded free resolution E, (F) of
F may be constructed inductively by choosing minimal generators of
ker{Ei(F)~ Ei-1(F)}.) But (*) determines a minimal resolution of

coker(E,*n-r-1 ~ En*-r)’ and (1.3) is then a consequence of (**).

In the situations that will concern us, one can get away with checking even
a little less:

LEMMA 1.4. Suppose that the ideal sheaf yX/Pr of X is 3-regular in the sense
of Castelnuovo-Mumford, i.e., assume that

Then, for p  codim(X, Pr), (Nn) holds for X - pr i f and only i f

Proof : It follows from [M2, Lecture 14] that if Je7 is an m-regular coherent
sheaf on Pr, then the corresponding graded S-module 0393*(F) =
~l H0(Pr, F(l)) is generated by elements of degree  m. Applying this
observation inductively to the sheafification

of a minimal graded free resolution of I = 0393*(yX/Pr), one fnds that di is
(i + 2)-regular. But this means that TorSi(R, k)j = 0 for j  i + 3, so the
lemma follows from (1.2).

In order to prove in practice the vanishing occurring (1.2) and (1.4), the
crucial point is that one can compute TorSl(R, k) via a resolution of k.
Specifically, consider the Koszul resolution

of k. Tensoring by R and taking graded pieces, one finds that TorSi(R,k)j is
given by the homology (at the middle term) of the complex of vector spaces
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LEMMA 1.6. Assume that the ideal sheaf fx/pr of X in P, is 3-regular. Then
for p  codim(X, Pr), X ~ pr satisfies property (Np ) if and only if the
Koszul-type complex

is exact at the middle term.

Proof: Since X g pr is non-degenerate, one has R, = V. Furthermore,
Rm = H0(Pr, OX(m)) for m  2 thanks to the 3-regularity of lx1pr- Thus
(1.7) is just the special case of (1.5) with i = p and j - p + 2, so the
assertion follows from (1.4).

Suppose finally that X is an irreducible projective variety of dimension
n  1, and that the embedding X z P( V ) is defined by the complete linear
system associated to very ample line bundle L on X (so that V = H° (X, L)).
We wish then to interpret the exactness of (1.7) in terms of sheaf cohomol-
ogy. To this end, consider the natural surjective evaluation map

of vector bundles on X, and set ML = ker(e,). Thus ML is a vector bundle
of rank r = h° (X, L) - 1 on X, which sits in an exact sequence

(Note that ML is defined whènever L is generated by its global sections.)
Taking ( p + 1 )st exterior powers and twisting by Lm yields

LEMMA 1.10. Assume that L is normally generated, i.e., that the natural maps
SmH0(X, L) ~ H0(X, L"’) are surjective for all m. Suppose also that

Hi(X, L2-i) = 0 for i &#x3E; 0. Then for p  codim(X, P’), X C P(H0(X, L))
satisfies property (Np) if and only if

Proof : The normal generation of L means that h1(Pr, cfx/pr(m)) = 0 for all
m, and the cohomological hypothesis on L then implies the 3-regularity of
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yX/Pr. Hence we are in the situation of Lemma 1.6. On the other hand, the
maps occurring in (1.7) factor as shown through homomorphisms deduced
from (1.9) :

Thus the exactness of (1.7) is equivalent to the surjectivity of the indicated
homomorphism u (which comes from (1.9) with m = 1). But H1(X, L) = 0
thanks to the hypothesis on L, and it follows from (1.9) that u is surjective
if and only if HI (X, 039Bp+1 ML Q L) = 0. ·

§2. Syzygies of finite sets

Fix a vector space V of dimension r + 1 over k, and let X z P(V) = P’ be
a finite set consisting of 2r + 1 - p (1 A p  r) distinct points

THEOREM 2.1. Assume that the points of X are in linear general position, i.e.
that no r + 1 lie on a hyperplane. Then X ~ P’ satisfies property (Np).

Proof: It is classical that 2r + 1 or fewer points in linear general position
in P’ impose independent conditions on quadrics, and it follows that fx/pr
is 3-regular. Hence by Lemma 1.6 we are reduced to showing that the
complex

is exact in the middle.
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To this end, we start by writing X as the disjoint union X = X, u X2,
where X1 = {x1, ... , xr+ 1 1, so that X2 consists of r - p points. Then

for every m, and the homomorphism b in (2.2) breaks up as the direct sum
b - b, ~ b2, where for i = 1 or 2

is the natural map. Now it is an elementary exercise to show that since
# X2  r + 1, property (Nr) holds for X2 ~ pr (e.g., 2-regularity of fX2/Pr).
Hence, as in (1.6), the sequence 

is exact. Thus to prove exactness of (2.2), it sufHces to show that given
element

then one can write çj = a(03B6) for some element 03B6 ~ 039Bp+1 V ~ V with
a2(ç) = 0 (a2 being the map which appears in (*)).

This is in turn verified by an explicit calculation. Specifically, choose a
basis s, , ... , Sr+1 1 of V so that Sl(xJ) = 03B4ij, and denote by e, the evident
element of H° (X, , OX1(2)) supported at x,. Then ker(b1) is spanned by
elements of the form

So fixing indices j1  ···  ip and 1 ~ {j1, ..., jp}, it sufHces to produce
an element 03B6 E ker(a2) with a(03B6) = S/l 039B ... 039B SJP Q e,. To this end, let
v = L ÀISI E V be a linear form on P( V ) which vanishes on X2, and set
03B6 = SJ1 A - - - 039B SJP A si 0 v e AP+’ V @ V. Then a2(03B6) = 0, and one has

a(03BE) = + Sll 039B ··· 039B SJP Q e, provided that coefficients in v satisfy

Hence to prove the theorem, we are reduced to checking that there is a linear
form v = E 03BBJSJ vanishing on X2 where the 03BBJ satisfy (**). Equivalently, we
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must produce a hyperplane H containing X2 and any p points of X, - {xi},
such that xl ~ H. But X2 ~ {p points of X1} consists of r points, which span
a unique hyperplane H. By general position H does not contain any further
points of X, and we are done..

REMARK. Suppose that X z Pr consists of 2r + 1 - p or fewer points,
distinct but not necessarily in linear general position. Then (Np ) may fail for
X, but we propose the following.

Conjecture. If X ~ Pr fails to satisfy (Np ), then there is an integer s  r,

and a subset Y 9 X consisting of at least 2s + 2 - p points, such that Y
is contained in a linear subspace ps ç Pr in which (Np ) fails for Y.

For instance, the conjecture predicts that the homogeneous ideal of six
points in P3 is generated by quadrics unless five lie in a plane or three on a
line. One may formulate an analogous statement concerning the failure of
2r + 1 points in Pr to impose independent conditions on quadrics, and this
has been verified by the authors.

§3 Syzygies of algebraic curves

Let X be a smooth irreducible projective curve of genus g, and let L be a line
bundle of degree d  2g + 1 on X. Then L is non-special and very ample,
and hence defines an embedding.

Furthermore, by a theorem of Castelnuovo, Mattuck and Mumford (cf.
[GL1]), L is normally generated, i.e., 9L embeds X as a projectively Cohen-
Macaulay variety. We denote by evx the canonical bundle on X. Finally, we
shall have occasion to draw on the following standard general position
statement:

LEMMA 3.1. With X g P(H0(X, L)) = pd-g as abo ve, fix s  d - g - 1

points xl , ... , Xs E X, and set D = 03A3 Xi. If the x, are chosen sufficiently
generally, then L( - D) is non-special and generated by its global sections.

In other words, D spans an (s - 1)-plane 039BD ~ Pd-g such that
X n 039BD = D (scheme-theoretically). One may prove (3.1) e.g., by a simple
dimension count, which we leave to the reader.

To set the stage, we start by showing - in the spirit of [St.D] - that
Theorem 2.1 leads to a quick new proof of the result of the first author
from [G]:
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PROPOSITION 3.2. ([G, (4.a.1)]). Suppose that deg L = 2g + 1 + p

(p  1). Then X satisfies property (Np) for the embedding X ç pg+1+p
defined by L.

Proof: Let Y ~ Pg+P be a general hyperplane section of X. Since
X ~ pg+1+p is projectively Cohen-Macaulay, a minimal free resolution of

IX/Pg+1+p restricts to one for Iy/pg+p, and in particular X ~ Pg+1+p satisfies (Np)
if and only if Y ~ Pg+P does. But Y consists of 2(g + p) + 1 - p points
in linear general position (cf. [L]), and so satisfies (Np) thanks to (2.1).

The main result of this section is the classification of all pairs (X, L) for
which (3.2) is optimal:

THEOREM 3.3. Suppose that deg L = 2g + p (p  1), and consider the

resulting embedding

Then property (Np) fails fôr X if and only if either:
(i) X is hyperelliptic;

or

(ii) CfJL embeds X with a ( p + 2)-secant p-plane, i.e., H0(X, L 0 wj) =1= 0.

REMARK. Concerning the statements in (ii), note that an effective divisor
D - X of degree p + 2 spans a p-plane in Pg+P if and only if

Since deg(03C9X (8) L*(D)) = 0, this is in turn equivalent to requiring that D
be the divisor of a non-zero section of L 0 wi.

Proof of Theorem 3.3. We assume first that X is non-hyperelliptic and that

(Np) fails for X, and we show that H°(X, L Q 03C9*X) ~ 0. To this end, note
to begin with that since L is normally generated and non-special, we are in
the situation of Lemma 1.10. Hence:

ML being the vector bundle defined by (1.8). But ML has rank g + p and
determinant L*, and therefore 039Bp+1 ML Q L = 039Bg-1 M*L. Thus

by Serre duality.
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Choose now g - 2 points XI, ... , xg-2 E X, and put D = Y-xi. We
assume that the x, are chosen sufficiently generally so that the conclusion of
Lemma 3.1 holds. Then as in (1.8) the vector bundle ML(-D) is defined, and
one has an exact sequence.

where 03A3D = ~g-2l=1 OX(-xl)(cf.[GL2,§2]).Observing that rk(03A3D) = g - 2
and det 03A3D = OX(-D), (3.5) gives rise to a surjective map

of vector bundles on X. Twisting by Wx and taking global sections, one
obtains a homomorphism

Grant for the time being the following claim:

If HO(X, Ag-’ ML 0 Wx) ~ 0, then for a sufficiently general (3.8)
choice of D the homomorphism (3.7) is non-zero.

Then H0(X, ML(-D) Q 03C9X(-D)) ~ 0 by (3.4). On the other hand, it follows
from the analogue (1.8) for ML(-D) that W(X, M,(-,) 0 03C9X(-D)) is iso-
morphic to the kernel of the natural map

But since X is non-hyperelliptic, for general D the line bundle 03C9X(-D) =
03C9X(-x1 -... - Xg-2) is generated by its global sections, with

h0(X,03C9x(-D)) = 2. Hence by the "base-point free pencil trick" (cf.
[ACGH, p. 126]), the kernel of (3.9) is also identified with

Thus H0(X, L Q 03C9*X) ~ 0, as required.
We next turn to the proof of (3.8). Referring to (3.6), it is enough to show

that
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where the intersection is taken over all effective divisors of degree g - 2 for
which the conclusion of Lemma 3.1 is valid. For any such divisor D, set

WD = H° (X, L)/H0 (X, L( - D)). Then dim WD = g - 2, and one has a
canonical surjective map

which fits into an exact commutative diagram

of bundles on X (cf. [GL2, §2]). In particular ker uD ~ ker(vD 0 1), so for
(*) it sufHces to verify

where as above the intersection is taken over divisors satisfying (3.1 ). To this
end, fix g + p + 1 points Xl’ ... , Xg+p+l G X z Pg+p, spanning Pg+P. By
choosing the x, sufficiently generally, we may assume that for every multi-
index I = {i1 1  ...  ig-2} ~ [1,g + p + 1], the divisor

satisfies (3.1). But if one then chooses a basis of H0(X, L) dual to the x; , one
checks immediately that in fact

This proves (**) and hence also (3.8).
To complete the proof, it remains only to show that property (Np ) actually

fails for X if either X is hyperelliptic or if H° (X, L 0 03C9*X) :0 0. Suppose first
that D g X is a divisor of degree p + 2 spanning a p-plane in Pg+p. Then
as in [GL2, §2], one has an exact sequence 0 ~ ML(-D) ~ ML ~ 03A3D ~ 0
where rk ED = p + 1 and det 03A3D = OX(D) = L* ~ 03C9X. This gives rise to
a surjective map 039Bp+1 ML Q L ~ 03C9X, and hence H’ (X, Ap+ 1 ML Q L) ~ 0
by duality. Thus (Np ) fails for X by (1.10).
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Finally, suppose X is hyperelliptic. The lines Pl P2 spanned by points
P, , P2 where Pl + P2 belongs to the g2 sweep out a rational surface scroll Y.
One notes (see [G]), letting RX and RY denote Sllx/pr and SIIYI,, respectively,
that there is a natural injection

By the standard determinantal representation of Y, we have

On the other hand, the Koszul complex

has cohomology at the second term isomorphic to TorSp+1 (RX, k)p+2 and is
exact elsewhee if property Np holds for X. Thus the alternating sum of the
dimensions of this complex is - dim TorSp+1(Rx, k)p+2. After considerable
computation, if deg L = 2g + p, one obtains

This contradicts the inequality

dim TorSp+1(RX,k)p+2  dim TorSp+1 (RY, k),12

so that property Np cannot hold.
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