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Abstract. Let FO/Fp be a formal group law of height 2, and let FIFP[[t]] be a universal
deformation of Fo to the category of complete noetherian local Fp-algebras. Associated to F
is a character yF: Gal(Ks/K) ~ Zxp, where K = Fp((t)). By class field theory this character is
identified with a continuous homomorphism ~F: K  ~ Zp’. In this paper we give generators
for UK n ker xF. This result is used to give an abstract characterization of the Igusa tower.
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Introduction

Let x be a complete discretely valued field with finite residue field Fq and
let A be the ring of integers in K. Let S be an A-algebra, with structure map
y: A - S. A formal A-module F/S is defined to be a 1-parameter formal
group law FIS together with a homomorphism

such that the induced map

is the same as y: A ~ S. Given formal A-modules defined over S we define

Homs (F, G ) to consist of those group-law homomorphisms f ~ Homs (F, G)
such that

for every a E A. Let 03C0 = 03C0A be a uniformizer for the discretely valued
ring A. If the endomorphism ~F(03C0)(x) = [03C0]F(x) is zero we say that F has
infinite height. If this endomorphism is not zero it can be written in the form

with h &#x3E; 0 and s’(0) ~ 0. In this case we say that F has (finite) height h.
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Assume now that S is a local A-algebra, with maximal ideal Ms and
residue field k. Let Fo be a formal A-module over k. A deformation of Fo over
S is a formal A-module FIS whose reduction (moduHs) is Fo. Let Fo be a
formal A-module of height h  ~ over the field k and let F be a deformation
of F. over R = k[[t]] of height g = h - 1. We write

and set e = v1 (a0). In the case e = 1 Lubin-Tate [ 11, Prop. 3.3] associate to
F an action of Autk (F0) on R. The purpose of this paper is to study this
action by using the results of [7]. The most interesting theorems which arise
from this study give data about the Galois character xF associated to F. A
related approach to the study Of ~F can be found in [3].
The work presented here is part of the author’s 1987 Harvard Ph.D. thesis,

written under the inspiring direction of Professor Benedict Gross.

1. Universal déformations of formal A-modules

Again we let S be a complete noetherian local A-algebra, with maximal ideal
As and residue field k. Let Fo /k be a formal A-module and let F and F’ be
two deformations of Fo defined over S. A *-isomorphism 03C8: F - F’ is an
isomorphism between the A-modules F and F’ which satisfies

The deformations F and F’ are isomorphic if there exists a *-isomorphism
between them. Assume that Fo has finite height h and let FIS be a deformation
of Fo of height g  h. We say that F is a universal height-g deformation
of Fo if, given another height-g deformation F’ of Fo over a complete
noetherian local A-algebra S’, there exists a unique A-algebra homomorphism
03C3: S ~ S’ such that F03C3 is *-isomorphic to F’.

Let k be a field extension of A/(03C0) ~ Fq, and let R = k[[t]]. Then k and
R can be made into A-algebras in an obvious way. Let Fo /k be a formal
A-module of height h, and let F/R be a deformation of Fo of height h - 1.

We write

and set e = vt (a0) &#x3E; 0.
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THEOREM 1.1. Let h  2 and g = h - 1. There exist universal height-g
deformations of Fo defined over R = k[[t]]. The deformation F/R is universal
if and only if e = 1.

REMARKS:

1. If g = h - d with 0  d  h then the universal height-g deformation
of Fo is defined over k[[t1, ..., td]].

2. As this theorem makes evident, there isn’t a unique universal defor-
mation of Fo of height h - 1. However, if F/R and F’l Rare two such
deformations there is a unique a E Aut (R/k) such that F7 is *-isomorphic
to F’.

Proo, f : This theorem is essentially a special case of [2, Prop. 4.2]. If

A = Zp so that F is a formal group law, F is *-isomorphic to

for some Lubin-Tate universal deformation r(t, , ... , th-1) of Fo (see
[ 11, Prop. 1.1 and Th. 3.1]). 0

Henceforth we take g = h - 1 and assume that F is a universal height-g
deformation of Fo. If F’/R is any deformation of Fo of height g we write

There exists a homomorphism a: R ~ R such that F’ is *-isomorphic to F03C3.
The formal A-module F03C3 is defined over u(R) c R, and is a universal

height-g deformation of Fo over a(R). If vt(a’0) &#x3E; 1 the deformation F03C3 is
not universal over R.

Recall that K = Frac (A) and let Dllh be the central division algebra of
degree h2 over K with invariant 1/h. By [2, Prop. 1.7], Endk (Fo ) is isomorphic
to an A-subalgebra of the maximal order B in Dl/h. Henceforth we identify
Endk(F0) with a subalgebra of B. Choose f E Autk(F0). We are interested in
lifting f to an isogeny defined over R. Since Autk(F) - A x , f cannot in
general be lifted to an automorphism of F; however, we can lift f to an
isomorphism between two different universal deformations of Fo (cf.
[11, Prop. 3.3]). Since k  R we may consider f as an invertible power
series with coefficients in R. Set



244

This gives another formal A-module F’/R which is isomorphic to F/R (but
not necessarily *-isomorphic). Since f is an automorphism of Fo, the special
fiber of F’ is Fo. Theorem 1.1 implies that F’ is a universal deformation of
Fo. Therefore we get a unique k-linear automorphism u of R such that there
exists a *-isomorphism a: F’~ FU. Let f: F ~ F’ be the composition of a
with f.

The isomorphism 1 induces the automorphism f : F0 ~ Fo on the special
fiber Fo of F and F03C3. Since 03C3 E Autk (R) is unique, there is a well-defined map

Since BIIF is well-defined it follows easily that IFF is an anti-homomorphism,
with kernel Autk(F) = A .

Both Autk(F0) and Autk(R) have natural filtrations. To describe the

filtration of Autk (Fo ) we observe that the ring B has a valuation VB such that
vB(03C0A) = h. We choose 03C0B ~ B such that vB(03C0B) = 1. Then Autk(F0) is

filtered by the subgroups

In order to define a filtration on Autk(R) we set

for 6 E Autk(R). Then Autk(R) has a filtration by the subgroups

The filtrations of Autk(F0) and Autk(R) are related by 03A8F. To describe this
relationship we define Rn = RI(tn 11 ) and set

with g = h - 1 so that we may quote the following crucial theorem.
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THEOREM 1.2. ([7, Th. 3.3]) Let Folk be a formal A-module of height h and let
FIR be a universal height-g deformation of Fo. Choose f E Endk(Fo) such that

for some 1  0. Then f lifts to EndRn-1 (F) but not to EndRn (F), where

REMARKS:

1. By [2, Prop. 4.1] we know there exists at most one lifting of f to EndRn(F).
2. The nonnegative integers a(gm) are the upper ramification breaks of the

Galois character YF associated to F. They play an important role in what
follows.

The following proposition relates liftings of endomorphisms of Fo to the
filtration of Autk(R). When combined with Theorem 1.2 it gives the relation
between the filtrations of Autk(F0) and Autk(R) that we are looking for.

PROPOSITION 1.3. Assume that f ~ Autk(FO) lifts to AutRn-1 (F) but not to
AutRn(F). Then a = BfF(f) satisfies i(03C3) = n - 1.

Proof. As before we set F’ = f  F 0 f-l. For i  0 let Fi’ = F’ (DR Ri
be the reduction of F’ (mod (ti+1)). For each i there is a unique map
03C3i: R - Ri such that F’ is *-isomorphic to F6,. Since ai is unique and F’ is
*-isomorphic to Fe, 03C3i must be the composition of a with reduction
(mod (t" 1)). For i = n - 1 this implies that an- 1: R - Rn- 1 is reduction
(mod (tn)) since f lifts to an automorphism of Fn-1. Therefore

For i = n we know that f does not lift to an automorphism of Fn ; therefore
03C3n: R - Rn is not the reduction map. Hence

We conclude that i(03C3) = n - 1. D
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COROLLARY 1.4. Let f be an automorphism of Fo which is an element of
(A + 03C01BB)  but not an element of (A + 03C0l+1B B) , for some 1  0. Write

1 = mh + b with 0  b  h, and let 03A8F(f) = 03C3. Then

Proof. This follows easily from Proposition 1.3 and Theorem 1.2. D

REMARK. Sen [12, Th. 1 ] proves that if j  1 and (Jpl is not the identity then

Since 03A8F(f)pJ = 03A8F(fpJ) we can calculate i(03C3pJ) explicitly when 03C3 = 03A8F(f).
For example, let F be a universal deformation of a formal group law Fo of
height 2 over a field k of characteristic p &#x3E; 3. Choose f E Autk (Fo ) which
satisfies vB(f - 1) = 1 and let a = 03A8F(f). We have then

If i (a) &#x3E; 0 the inequality i(03C3PJ) &#x3E; i(03C3PJ-1) and Sen’s formula imply that
i(03C3PJ) - i(03C3PJ-1) is a positive multiple of pi. In this example,

i(03C3PJ) - i(03C3PJ-1) = 2pi,

so the i(aPJ) are not quite as small as Sen’s formula allows.
Sen also points out that if i(03C3) &#x3E; 0 and a has infinite order, the limit

lim i(03C3PJ) ~ Zpj~~

is defined. When 03C3 = ’P,(f) this limit depends only on A and h and not on
f or F. If i(03C3) &#x3E; 0 then
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The meaning of these numbers is obscure.

2. The Galois character associated to F

Let F/R be a deformation of the type considered previously. In this section
we construct the Galois character YF associated to F and compute certain
elements of ker yF. In the next section we will show that in certain cases these
elements generate I n ker yF, where I is the inertia subgroup of Gal (KsIK).

Let K = k((t)). Gross [5, p. 86] associates to F a Galois character

To describe this character we first define characters

for each n  1. Since[03C0]F(x) is a power series in xq8 with g = h - 1, [03C0n]F(x)
is a power series in e". By the Weierstrass preparation theorem [03C0n]F(x)
factors into

with un(xqgn ) a unit in R[[x]] and cn(xqgn) a distinguished polynomial of degree
qhn . The polynomial cn(xqgn) has qn distinct roots in K which form a principal
A/(03C0n)-module under the action of F. The group Aut (KIK) acts on these
roots. Since Aut (k/K) ~ Gal (KsIK), this action defines a character

Then since 03B3n is the reduction (mod(03C0n)) of 03B3n+1, by taking the inverse limit
of these finite characters we get a character
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When k is a finite field local class field theory identifies K’ with a dense
subgroup of the abelianization of Gal (Ks/K); by composing the class field
theory map with yF we get a character

Henceforth we asume that k is a finite field and we work with xF rather
than yF .
As our notation suggests, xF depends on the choice of F. However, if we

choose another universal height-g deformation F’ of Fo there is a unique
k-linear automorphism a of R such that F03C3 is *-isomorphic to F’. It follows
that x,, = XFI On the other hand, if a is any k-linear automorphism of K
then the functoriality of class field theory [13, p. 178] and the functoriality
of yn imply that XF = XFu 0 6. Therefore XF’ = XF 0 03C3-1, which shows that XF
and XF’ differ only by an automorphism of K.

Let f ’ be a k-automorphism of Fo. We can lift f ’ to an isomorphism
f: F ~ Fe, where 03C3 = 03A8F(f) is a k-linear automorphism of R (and K).
Since F and F03C3 are isomorphic we have ~F = XFI. This implies

In particular, if 03B1 ~ Kx and a = 03A8F(f) for f ~ Autk (Fo ) then ualot E ker XF.
This gives us a method of finding elements of ker xF; in some cases we can
calculate these elements explicitly (see Section 4). What is remarkable is that
in certain important cases the subgroup

is dense in UK n ker xF. This surprising fact is the subject of Section 3.

3. The kernel of xF

Before we attempt to find generators for UK n ker xF we would like to
identify some elements of UK which are not in ker xF. The theory of higher
ramification groups is a tool which allows us to find such elements. We
review here the relevant facts about ramification groups.
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Let k be a finite field, let K = k((t)), and let L be an abelian extension
of K with G = Gal (L/K). The group G has a filtration by the "upper
ramification groups" Gn (n  0). One way to describe these groups uses
class field theory: Let úJL/K: K  ~ G be the reciprocity map of class field
theory, and set

for n  0. Then we define

We say that n is a ramification break of G if Gn =1= Gn+’ .
In [5, Th. 3.5] the ramification breaks of the abelian extension of

K = k((t)) cut out by X, are calculated. It is shown that

where a(gm) is given by

(As usual, g = h - 1 here.) For m = 0 this result implies that xF maps
UK/U1K ~ k" onto A /(1 + 03C0A)  ~ F q; for m &#x3E; 0 it implies that ~F maps
UnK/Un+1K ~ k+ onto (1 + 03C0mA) /(1 + 03C0m+1A)  ~ F:, where n = a(gm).
If k = Fq, it follows that UnK ~ ker ~F ~ Un+1K. In particular, if

(3 E UnkBUn+1K 1 with n = a(gm) then fi e ker xF . If k ~ F j with f &#x3E; 1 the

situation is more complicated: The image of UK n ker xF in UnK/Un+1k has
order at most qf -’ (or (qf - 1)/(q - 1) if n = 0).
Now we let Folk be a formal group law of height 2 with k = Fp or

k = F 2, and let Fbe a universal deformation of F. over R = k[[t]]. We wish
to find generators for UK n ker xF. We begin by quoting a lemma of Sen
which allows us to say something about the units 03C303B1/03B1 E ker xF.

LEMMA 3.1. ([12, Lemma 1]). Let k be a field and let K = k((t)). Choose
03C3 E Autk (K) and set
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Proof Since 03C3x03BC = (03C303BCt/t) 2022 x03BC we have

which gives the first equation. The second and third equations follow easily
from the first. n

REMARK. This lemma has a partial converse: If i(u) &#x3E; 0 and there exists

a E KX such that

then n can be written either as J.1 + i(03C303BC) or as i(03C303BC) for some 03BC &#x3E; 0.

The following lemma is useful in conjunction with Lemma 3.1.

LEMMA 3.2. Assume 03C3 E Autk(K) and let a and f3 be 1-units of K such that
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Then there exists s E k x such that a’ - 1 + sx satisfies

Choose s E kx such that sa = b and set a’ - 1 + sx. Then we have

as claimed. 0

We now give topological generators for UK n kerx, in the case k = Fp .

THEOREM 3.3. Let Fo be a formal group law of height 2 over k = Fp and
let F be a universal height-J deformation of Fo over R = Fp[[t]]. Choose
f E AutFn(F0) such that

for every m  0, and set 03C3 = BJI F(f) E Aut(K), where K = Fp((t)). Then
given fi E UK n kerx, with vK(03B2 - 1) = n there exists a E KX such that
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Therefore the subgroup

is dense in UK n kerXF.

REMARKS.

the hypothesis of the theorem is satisfied. For instance, let

where Fr is the frobenius endomorphism of Fo.
2. Fujiwara [3, Th. 1] proves essentially the same theorem by a different but

related method.

Proof. We give the proof only for odd p; the case p = 2 is handled

similarly. Let n = vK(03B2 - 1) = a(m) with (3 E UK n ker ~F. If n = a(m) is
a ramification break for XF then

Since we’re assuming ~F(03B2) = 1 we conclude that n = vk(03B2 - 1) is not a
ramification break for X,. In particular, n is not zero, so we write

with b ~ F P.
We intend to apply Lemma 3.1 and Lemma 3.2 with y = pmr, where m

and r are defined as follows. If n ~ 1 (mod p) set r = n - 1 and m = 0.
If n ~ 1 (mod p) then by considering the p-adic expansion of n we find r and
m which satisfy
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In both cases we have

If r &#x3E; 0 set 03BC = pm r. By Lemma 3.1 and Lemma 3.2 it sufhces to show that
n = J1 + i(03C303BC). Since (r, p) = 1,

Using Corollary 1.4 and the assumption about fPn we find that

which is just what we need.
If r = - 2 we let 03BC =pm-l. By Lemma 3.1,

Therefore there is s &#x3E; 0 such that

Finally, if r = - 1 then n = a(m) is a ramification break for xF . r

By repeated use of Theorem 3.3 we find am E K" such that



254

for any given m &#x3E; 0. Unfortunately, it may happen that

which means that we can’t define

such that (Jala = p. In order to get a complete set of generators for UK n
ker ~F we need to use class field theory descent.

THEOREM 3.4. Let Fo be a formal group law of height 2 over k = FP2 2 with
p &#x3E; 2 and let F be a universal height-l deformation of Fo over R = FP2[[t]].
Let K = FP2((t)) and assume that there exists f E Autk (Fo ) such that
a)f generates B /(Zp + 03C0BB)  ~ F;2/F;.
b) fP + 1 E (Zp + 03C02BB)BZp + lr3 B B).
Let 03C3 = 03A8F(f) and choose fi E U, n ker ~F with vK(03B2- 1) = n.
l. If n is not a ramification break for XF there exists a E UK such that

2. If n is a ramification break for XF there exists a E KX such that

Therefore the subgroup

is dense in UK n ker ~F.
3. Let Ko - Fp((t)) and assume that there exists a continuous character

such that XF = Xo 0 NK/K0. Then there exists a E UK and

such that fi = c 2022 aoc/ot. This holds in particular if F can be defined over
Fp[[t]].
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REMARKS.

1. Class field theory implies that ker NKIKO c ker xF . Therefore c e ker XF.
2. Let (9 be the ring of integers in the unramified quadratic extension of Qp .

If EndFp2 (F0) contains a subring isomorphic to (9 we may construct f
which satisfies a) and b) as follows. Let 03B6 E (9 c EndFp2 (F0) be a primitive
p2 - 1 root of unity and set f = 03B6 + p. The smallest power of f which
lies in Zp + 03C0BB is

Therefore f satisfies a) and b).
3. Let F be a universal height g deformation of the formal A-module Fo /k

of height h. If A ~ Zp or h &#x3E; 2 then the methods presented here are not
sufficient to determine UK n ker xF . In such cases it would be interesting
to know the group structure of the quotient of UK by the closure of

Proof. We have Qt = at + ... with a E kX. Since

an - 1 if and only if i (03C3n) &#x3E; 0. Hence by Corollary 1.4, an = 1 if and only
if fn E Zp + 03C0BB. Hypothesis a) implies that this holds if and only if

p + 1 | n. Therefore a is a primitive p + 1 root of unity.
If n = vK(03B2 - 1) is not a ramification break then 03B2 is a 1-unit (since

a(O) = 0) and we can write

If p + 1 t n then VK(a(tn) - tn ) = n. Hence by Lemma 3.2 there exists
a e Un such that

which proves the first statement in this case.

To handle the cases with p + 1 n we need the following lemma.
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Proof. This follows from the equation aa’ la’ = 03C3P+103B1/03B1 = ia/a. D

Assume p + 1 | n so that n = ( p + 1 ) n’. By considering its p-adic expan-
sion we write n’ uniquely in the form

with r = 0 or r &#x3E; 0,p~r. If r = 0 then n = ( p + 1)n’ is the ramification
break a(m + 1). If r &#x3E; 0 we let 03BC = p’(p + 1) r. Then by Lemma 3.1,

Since p &#x3E; 2 and

it follows easily that

Therefore Corollary 1.4 implies that
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By Lemma 3.2 and Lemma 3.5 there exists a’ E U, such that

This completes the proof of the first statement of the theorem.
To prove the second statement we consider fi E UK n ker ~F such that

n = vK(03B2 - 1) is a ramification break for XF. If n = 0 then

for some b e F p2. In fact b e (F p2 )p-1 = 03BCp+1, because ~F maps F p2 onto
Jlp - 1 c Zpx. Since

with a a primitive p + 1 root of unity, there is a positive integer s such that

If n = a(m) &#x3E; 0 we let T = 03C3p+1 and J1 = pm -’ so that

The character X, induces a surjective map

The kernel of this map has order p, and is generated by 03C4x03BC/x03BC. Therefore
there is s &#x3E; 0 such that

The second statement of the theorem now follows from Lemma 3.5.
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To prove the third statement we take 03B2 E UK n kerxF with n =
vK(03B2 - 1) = a(m). We wish to find c E kerNK/K0 such that

If n = 0 then

with b ~03BCp+1 c F p2, so we set c = b ~ ker NK/K0. If n &#x3E; 0 it is easy to see that

UK n kerNK/Ko maps onto a subgroup of UnK/Un+1K of order p. The image of
03B2 is in this subgroup, because ker N K/Ko c kerxF and XF maps UK / UK +’ onto

Therefore we get c E ker N K/Ko such that

We have shown that any /30 E UK n ker ~F can be approximated by some
co E ker NK/K0 or by (Jaolao for some ao E UK . Also note that VK(cO - 1) and
vK(ao - 1) go to infinity as n = VK(/30 - 1) goes to infinity. Given

fi E UK n ker x we make successive approximations to /3 by elements of the
form co (Jaolao with co E ker NK/K0 and ao E UK. By taking the limit we find
c E UK n kerNK/Ko and a E UK such that /3 = C. 03C303B1/03B1. D

4. An explicit a

In this section we give an example of a formal group law F0/F9 and a
universal deformation F/F9[[t]] of Fo such that a particular 03C3 = 03A8F(f)
( f E AutF9(F0)) can be computed explicitly. We get Fo and F as the formal
groups of elliptic curves, and , f is induced by an isogeny of elliptic curves.
We consider the Legendre elliptic curve with full level-2 structure over the

03BB-line, with equation

There is an analogue to the classical modular equation for elliptic curves
which applies to curves with level-2 structure. Consider the equation
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whose generic solution is (03BB(03C4), 03BB(203C4)), where 03BB(03C4) is the standard modular
function of level 2. Corresponding to a solution (Àl, 03BB2)(03BBi ~ 0, 1, ~) of
this equation are two elliptic curves

related by a 2-isogeny ~: E1 ~ E2 which maps (0, 0) and (Àl , 0) onto (0, 0)
and maps (0, 1) onto 00 . (Warning: To define 0 it may be necessary to extend
the base field.)
Our plan is to find 03BB0 E k such that

is a supersingular elliptic curve, and (03BB0, 03BB0) satisfies our analogue of the
modular equation. We observe then that the elliptic curve 

is a universal deformation of Eo over R = k[[t]], so the formal group F
of E is a universal deformation of the formal group Fo of Eo. Assuming
4J E End (Eo ) is defined over k, 4J lifts to a map E - E6, for some 03C3 E Autk(R).
Therefore the induced endomorphism ~ of Fo lifts to a map F - F7. To
determine 03C3 we use our version of the modular equation. The pair (03BB0 + t,
03BB0 + ut) must satisfy the equation

The last step is to solve this equation for Y = 03BB0 + at in terms of

X = 03BB0 + t.

For our example we take k = F9 and 03BB0 = -1. Then End (Eo ) is defined
over k. The point (Âo, 03BB0) satisfies our modular equation, and the corre-
sponding elliptic curve has 
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which implies that

is supersingular. We define E by the equation

Then has 03BB-invariant t - 1. When we solve the modular equation for Y
in terms of X we find that

Set X = t - 1 and Y = 03C3t - 1. It follows then that

where i e F9 is a square root of - 1. The two different values of 03C3t corre-
spond to the liftings of two different endomorphisms of Eo which have the
same kernel {oo, (0, 1)}. From now on we take

We now want to show that ~ satisfies the hypotheses of Theorem 3.4.
Since i is a primitive 4th root of unity, ~ satisfies hypothesis a) of Theorem
3.4. To show that ~ satisfies hypothesis b) we have to calculate the first few
terms of 03C34 t :
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Hence i(03C34) = 4 = a(1). Then by Corollary 1.4 we see that

so ~ satisfies hypothesis b) of Theorem 3.4.
Now we can invoke Theorem 3.4, which says that the power series of the

form

are dense in U, n ker ~F, with 03C3 as given above. The theorem also says
that every P E UK n kerx, has the form fl = 03C303B1/03B1 2022 c where a E UK,
c ~ ker NK/K0, K0 = F3((t)).

5. Igusa curves

In this section we outline how the techniques developed in Sections 1-3 may
be used to derive an abstract characterization of the Igusa tower. In this
section we always assume p &#x3E; 2.

The Igusa tower is a collection of smooth projective curves {Xn}n0 with
covering maps xn+1 ~ Xn for each n. The curve Xo is the projective j-line,
and for n positive Xn is an abelian cover of Xo, with

Since Xn is a nonsingular curve over Fp it is determined by its field of F,-
rational functions. In order to describe the function field Kn of Xn as an
extension of Ko = Fp(j) we construct a generic elliptic curve EIKO with
invariant j. Associated to E is a Galois character yE, analogous to the
character yF constructed in Section 2. To construct YE we first observe that
the pn -torsion group of E(K0) is isomorphic to Zlpn. The group Aut(K0/K0) ~
Gal((K0/K0) acts on the pn-torsion of E and gives a character

These yn fit together to give a character
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The characters yn and y, actually depend on our choice of generic elliptic
curve E, but if we compose these maps with the reduction maps

the resulting characters 7,, and E depend only on the j -invariant of E.
Therefore thé subfield Kn of (K0)s cut out by

is well-defined. The nth Igusa curve is the unique smooth curve over Fp with
function fields Kn . See [6, Ch. 12] for a systematic treatment of the Igusa curves.

Let Eo/Fp be an elliptic curve, with invariant jo. If E0(Fp) has no points of
order p we say that Eo is a supersingular elliptic curve and jo is a super-
singular j -invariant. If Eo is supersingular then jo E Fp2 ([6, Lemma 12.5.4]).
The point on Xo associated to jo e Fp is wildly ramified in the Igusa tower if
and only if jo is supersingular. The other points of Xo are called "ordinary".
If j0 = 0 is an ordinary point of Xo, it has ramification degree 3 in the Igusa
tower; if jo = 1728 is an ordinary point it has ramification degree 2 in the
Igusa tower. All other ordinary points of Xo are unramified in the Igusa
tower. In order to determine the cover Xn of the genus-0 curve Xo, we wish
to understand the cover locally near the finitely many points that ramify. To
solve this local problem we use the methods of Section 3. Once we’ve solved
the "local Igusa problem" at the supersingular points, we use class field
theory to give a global characterization of the Igusa tower.
To see how these methods are applied we consider a supersingular jo . To

avoid unnecessary complications we assume j0 E Fp{0, 1728}. (If p  13 such

a j0 exists.) Since j0 ~ 0, 1728, we may choose our generic elliptic curve EIKo
to have good reduction Eo at ( j - jo ). Setting t - j - jo we see that E gives
an elliptic curve Ej0 over R = Fp[[t]] which is a universal deformation of Eo.
The formal group F of Ej0 is a universal deformation of the formal group Fo
of Eo. Let /Ço = Fp ((t)). It is easily seen that the Galois characters

are identical. Since Gal((KJ0)s/KJ0) is isomorphic to the decomposition group
of Gal((K0)S/K0) at (j-j0), we can view 03B3EJ0 

= ’YF as the restriction
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of y, to this decomposition group. Suppose we have an isogeny of degree
prime to p from EJ0 to another universal deformation §j of Eo. (Such an
isogeny could be induced by an appropriate isogeny of E.) The methods of
Section 3 allow us to use this isogeny to get data about keryF; this informa-
tion is then interpreted in terms of ker03B3E.
The details of this program may be found in [8, Ch. 4]. Here we only wish

to state our characterization precisely. To do this we replace Xn by its p-part
Yn-1: Since for n  1

there is a curve Yn-1 /Fp lying between X, and Xo such that Y, - 1 is an abelian
cover of Xo of degree pn -’ .

The curves {Yn}n  o form another tower of abelian covers of Xo - Yo, with
Gal(Yn-1 /Y0) ~ (1 + pZ)  /(1 + pnZ) . We let Ln denote the Fp -rational
function field of J:.

In order to characterize Yn we use the theory of modular curves. Choose
N &#x3E; 1 which is prime to p and define the curve Z. /Fp to be X0(N), the
modular curve which parameterizes elliptic curves with a cyclic subgroup of
order N. Let Zf be the lifting of Yn to a cover of Zô . Then ZNn/Fp is a smooth
curve which is a cover of Yn of degree
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To keep our notation simple, in what follows we write Zn instead of
Zf.

Recall that we have chosen a generic elliptic curve E defined over
Fp(j) = Lo. Let Mn ~ Ln denote the field of Fp -rational functions of Zn .
Over Mo there exists another elliptic curve E’ and a cyclic N-isogeny ~:
E - E’ corresponding to the generic point of Zo = Xo (N ). As before we
define Galois characters

Since E and E’ are related by an isogeny of degree prime to p, YE and yE’ are
identical. The formula YE = yE’ is the key to our characterization of the
fields Ln, just as the formula X, = XFI was the key to our characterization
of tlx n kerXF .
The Fricke involution WN is an automorphism of order 2 of Zo = X0(N)

which induces an involution of the function field Mo of Zo. The involution
induced by WN interchanges the j-invariants of E and E’-that is,

Let E" = wN(E) be the wN-conjugate of E. The characters

are identical, since they depend only on the j -invariants of the elliptic curves
used to define them. We let Wo /Fp be the quotient of Zo by the action of wN,
with function field M§ = M;N. Combining the identities 03B3E" = E. and
YE - YE’ we get YE = E... Using this last formula one can show that Zn is
Galois over Wo, with
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Therefore we may define curves Wn /Fp with

Hence the cover Zn of Zo comes from an abelian cover W of Wo and also
from an abelian cover Yn of Y0. These two descents combined with the local
data described below suffice to characterize the Igusa tower.

Let P be any supersingular point on the j -line Yo . For each n there is a
unique point Pn of Yn lying over P, because the supersingular points are
totally ramified in the Igusa tower. Conversely, every point in Y0 which
ramifies in Yn lies over a supersingular point, because only the supersingular
points are wildly ramified in the Igusa tower. By [6, Th. 12.7.1 (1)], we know
that the point ~ on Yo splits completely in each of the curves Yn .
We now state our characterization of (the p-part of) the Igusa curves. The

proof of this theorem may be found in [8, Ch. 4].

THEOREM 5.1. Let p &#x3E; 2 and choose N &#x3E; 1 with (N, p) = 1. The tower

( Yn /Fp ) is the maximal abelian pro-p tower over Yo for which
a) the only ramification is over the supersingular points,
b) the lifting of the tower over Zo = X0(N) comes from an abelian tower over

Wo = X0(N)/wN, and
c) 00 splits completely.

REMARKS.

1. The key is condition b). The theorem essentially says that invariance
under N-isogenies determines the Igusa tower.

2. Let 0) be an invariant differential on the generic elliptic curve E/Fp(j) and
let H be the Hasse invariant of the pair (E, 0)). The function field of X,
is generated over Fp(j) by any root of the equation
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(The field extension is well-defined because E determines H up to multi-
plication by (Fp(j) )(p-1)/2.) This fact combined with Theorem 5.1 gives
a complete characterization of the Igusa tower.

3. The only abelian cover of Yo of degree pn satisfying a), b), and c) is

Yn .

6. Another example

Let p = 3 and N = 2. We give here explicit Artin-Schreier generators for
the function fields L1, M1, Mi over Lo, Mo, M’0.

The function field of Y0 = Xo is Lo = Fp(j). Since p = 3 we can identify
Y, with X2. To find the function field of this curve we construct the unique
generic elliptic curve E over F3 ( j ) such that E (3) has rational 3-torsion

(cf. [4, §5]). This curve has Weierstrass equation

A laborious calculation shows that if Po = (xo, yo) is a point on E then

We get the corresponding equations for E(3) by cubing the coefficients in the
formulas for E. Therefore E(3) has Weierstrass equation

and rational 3-torsion points (j5, ±j8).
The function field L, of Y, = X2 is the 9-division field of E(9). After we

cube our coefficients a second time we find that E(9) has rational 3-torsion

points (j15, ± j25). Therefore there exists a point P0 - (xo, yo) of order 9 on



267

E(9)((L0)s) which satisfies

We rewrite this as

The substitution

transforms the last equation into the irreducible Artin-Schreier equation

Let a be a root of this equation. Since LI has degree 3 over Lo we have
L 1 = L0(03B1).

Since Zo = Xo(2) is a genus-0 cover of Yo, its function field Mo has the
form F3(t), with F3 ( j ) c F3(t). By [1, p. 179], we can choose t such that

and such that the Fricke involution w2 of Zo = Xo (2) induces the map
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on Mo. The function field M’0 of Wo is the fixed field of this involution-that
is, M’0 = F3(t + t - ’ ) -

Since 1/j = t2/(t + 1)3, M, is generated over Mo = F3(t) by the roots of
the equation

We observe that

where a = t + t-’ E Mo. Therefore the roots of the Artin-Schreier

equation

generate M, over Mo. Since 1/(l - a) E M’0, the extension MI of Mo comes
from the extension M" of M’0 generated by the roots of the equation above.
We have shown that the Z/3-extension MllMo comes from the Z/3-

extension M; 1 M¿. This means that the extension L1/L0 satisfies hypo-
thesis b) of Theorem 5.1. Since LI is generated over Lo by the roots of the
equation

it follows that L, /Lo is ramified only over j = 0, and that the prime j - ~
splits completely in this extension. Thus our extension satisfies all the

hypotheses of Theorem 5.1. It follows from the theorem that L, is the unique
Z/3-extension of Lo with these properties.
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