
COMPOSITIO MATHEMATICA

KEVIN KEATING
Lifting endomorphisms of formal A-modules
Compositio Mathematica, tome 67, no 2 (1988), p. 211-239
<http://www.numdam.org/item?id=CM_1988__67_2_211_0>

© Foundation Compositio Mathematica, 1988, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1988__67_2_211_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


211

Lifting endomorphisms of formal A-modules

KEVIN KEATING

Compositio Mathematica 67: 211-239 (1988)
© Kluwer Academic Publishers, Dordrecht - Printed in the Netherlands

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Received 25 August 1987; accepted in revised form 3 February 1988

Abstract. Let k be a field of characteristic p and let Fn be a 1-parameter formal group law over
k[t]j(tn+ 1). Assume that the reduction of Fn (mod (t)) has height h  oo and that Fn has height
h - 1. In this paper we compute the endomorphism ring of Fn . The result can be used to
compute the endomorphism ring of an ordinary elliptic curve E over k[t]/(tn+1) whose
reduction (mod (t)) is supersingular.

Introduction

Let Fo be a formal A-module (or formal group law) of height h  oo over

a field k of characteristic p, and let F be a formal A-module of height h - 1

over R = k[[t]] whose special fiber if Fo. The endomorphism ring of Fo
can be quite large - if k is separably closed then Endk (Fo ) is the maximal
order in a division algebra. The ring of R-endomorphisms of F is just
A. Intermediate between these two are the rings EndR/(tn+l)(F), which are
A-subalgebras of Endk(F0). In this paper we compute EndR/(tn+l) (F) using the
formal cohomology theory of Lubin-Tate [10] and Drinfeld [1]. The Serre-
Tate lifting allows us to apply these results to the endomorphism-lifting
problem for ordinary elliptic curves E over R/(tn+1) with supersingular
special fiber. In another paper [6] we use these results to get information
about the Galois character xF attached to F.

The work presented here is part of the author’s 1987 Harvard Ph.D.
thesis, written under the direction of Professor Benedict Gross. His guidance
in this research was indispensable.

1. Statement of the theorem

Let K be a complete discretely valued field with finite residue field Fq, and
let A be the ring of integers in K. Then either A xé Fq[[x]] and K xé Fq ((x)),
or K is a finite extension of Qp. Let R be an A-algebra with structure map
y: A ~ R. A one-parameter formal A-module F over R is a one-parameter
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formal group law F over R, together with a homomorphism

such that the induced map

is equal to y. If F and G are formal A-modules over R then HomR(F, G)
consists of those f ~ HomR (F, G ) such that f intertwines the image of ~F
with the image of OG. That is,

for all a E A. If A = Z, then a formal A-module is the same thing as a
formal group law.

Let 03C0 = 03C0A be a uniformizer for A and recall that A/03C0A ~ F q is the

residue field of A. Let F be a formal A-module over the F-algebra R, and
for a E A set

Then the power series [03C0]F(x) is either zero, in which case we say that F has
infinite height, or has the form

with s’(0) ~ 0. In the second case we say that F has (finite) height h.
Let Fo be a formal A-module over the field k of characteristic p &#x3E; 0, and

let R be a local A-algebra with maximal ideal uHR and residue field k’ iD k.

Then the structure maps yk : A ~ k and yR : A ~ R make the diagram

commute. A deformation of Fo over R is a formal A-module FIR such that

F ~ F0 (mod MR).

Let F/R and F’/R be deformations of Fo /k. An isomorphism ~: F ~ F’ is
called a *-isomorphism if the reduction of 0 (mod(t)) is the identity of Fo.
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Let F/R and F’/R be deformations of F0/k. An isomorphism 0: F ~ F’ 
is called a *-isomorphism if the reduction of 0 (mod(t)) is the identity of Fo.

Let 1  h  oo and choose a formal A-module Fo of height h over k. Let
R be the discretely valued ring k[[t]]. The ring R has a canonical A-algebra
structure, given by the composite map

Let F be a deformation of Fo over R of height h - 1. We write

with ao E RB{0}. Set e = vt(a0), so that 0  e  00. Let Rn = R/(tn+1)
and Fn = F QR Rn; then Fn is the reduction of F (mod (tn + )). Our goal is to
compute

for every n. Let D1/h be the division algebra of degree h2 over K with invariant
1 /h, and let B be the maximal order in DI/h. By [1, Prop. 1.7] the ring

is isomorphic to B when k is separably closed. The reduction maps Rn+, 1 - Rn
induce maps

By [1, Prop. 4.1] these maps are injective, and the rings EndRn (F) can be
identified with A-subalgebras Hn of B. In the general case, H is isomorphic
to an A-subalgebra of B and EndRn (F) is identified with an A-subalgebra
H, c H. The non-commutative ring B has a discrete valuation vB such that
vB(a) = h · VA (a). Choose nB E B such that vB(nB) = 1. We say that 03C0B is a

uniformizer for B. Since the formal A-module Fo has height h, any uni-
formizer 03C0B has the form

for some b E k .

We begin by computing EndRn(F) in the case where e = 1 and k is

separably closed. The general case will be handled in Theorem 3.3. Let
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g - h - 1 and for m  0 define

so that a(O) = 0. The non-negative integers a(gm) are the upper ramification
breaks of the Galois character XF associated to F (see [4, p. 86]).

THEOREM 1.1. Let Fbe a deformation of Folk of height g = h - 1 with e = 1

and k separably closed. Let fo E Endk(F0) ~ B be such that

Write 1 = hm + b with 0  b  h and set

Then fo E Hn-1BHn.

REMARK. Some special cases of this theorem were proved independently by
Fujiwara (see [2, Prop. 3 and Prop. 4] and [11, Lemma 2]).
Using Theorem 1.1 we can calculate Hn = EndRn (F).

THEOREM 1.2. Let F be a deformation of Fo as above. Then

where j (n) = hm + b whenever

REMARKS:

1. The presence of the upper ramification breaks a(gm) in our formulas for

EndRn (F) is not a coincidence. The relation between xF and the rings
EndRn (F) is exploited in [2] and [6].
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2. The most important special case of this theorem is A = Zp , h = 2,
g = 1. This occurs when Fis the formal group of a universal deformation
of a supersingular elliptic curve over k[[t]] (see Section 4). In this case,

The proof of Theorem 1.1 has two steps, which we state as propositions.

PROPOSITION 1.3. Let 0  1  h, and assume that

PROPOSITION 1.4. Choose fo E A + 03C0B B and let n &#x3E; 1 be such that Jo E
Hn-1BHn. Then [03C0]F0 o fo e Hn’-1BHn’ where

The first proposition says that the Theorem 1.1 holds if 1 is small enough.
The second proposition gives us a way to calculate the maximal lifting
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of nfo given the maximal lifting offo. Since the elements of A lift to all levels,
an easy inductive argument shows that these two propositions together
imply Theorem 1.1.

2. Formal cohomology

To prove Theorem 1.1 we will use the formal cohomology theory developed
by Lubin-Tate [10] and Drinfeld [1]. Let k be a field of characteristic p &#x3E; 0

which is also an A-algebra, with structure map y: A ~ k. Let Fo be a formal
A-module of height h  ~ over k, and let M be a finite dimensional

k-vector space. A symmetric 2-cocycle of Fo with coefficients in M is a collec-
tion of power series A(x, y) E M[[x, y]] and {03B4a(x) E M[[x]]}03B1~A satisfying

If 03C8 E M[[x]] then the coboundary of 03C8 is the 2-cocycle

The coboundaries form a k-vector subspace of the space of symmetric
2-cocycles. The quotient of the symmetric 2-cocycles by the coboundaries is
a k-vector space denoted H2(F0, M). By [10, Prop. 2.6], H2(F0, k) has
k-dimension h - 1.

The following lemma will simplify many of our calculations by allowing
us to work with the single power series b1l(x) rather than with the whole
cocycle (0(x, y), {03B4a(x)}). We say that the coccyle (A, {03B4a}) is zero if all its
component power series are zero.

LEMMA 2.1. The cocycle (0(x, y), {03B4a(x)}) is zero if and only if 03B403C0(x) = 0.
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Proof. If the cocycle is zero than clearly 03B403C0(x) = 0. Assume conversely
that 03B403C0(x) = 0. The formula

with a = 03C0 reduces to

since blt(x) = 0 and 03B3(03C0) = 0. Then since [03C0]F0(x) ~ 0, this implies
0(x, y) = 0. The formula

with a = 03C0 reduces to 03B403C0b(x) = 0. The same formula with b = 03C0 and a

arbitrary gives

because 03B403C0(x) = 0 and 03B403B103C0(x) = 0. Again this implies that 03B403B1(x) = 0, so the
cocycle is zero. D

Let Fo /k be a formal A-module of finite height h, and let F/R be a defor-
mation of Fo, where R is a noetherian local A-algebra with residue field k.
Denote the maximal ideal of R by MR and let

To apply the cohomology theory to the problem of lifting endomorphisms
we need to define a cocycle which tells us whether a given endomorphism of
Fn lifts to an endomorphism of Fn+1. For 10 (x) E H = Endk(F0) we define
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Let fn-1(x) E EndRn-1 (F) be an endomorphism which lifts fo , and let fn (x) be
a lifting of fn-1 (x) to a power series in Rn[[x]]. By [3, Eqn. 3.4] we get a
symmetric 2-cocyle

with coefficients in the k-vector space M, = MnR/Mn+1R. (The second formula
above is a slight correction of that given in [3].) It is clear from the definition
that this cocyle is zero if and only if f" e EndR,, (F).

PROPOSITION 2.2. Let fn(x) E R,[[x]] be a power series which lifts fo(x) E
Endk(Fo). Then f" is an endomorphism of Fn if and only if it commutes with
[03C0]Fn.

Proof. This follows easily by induction from the construction above and
Lemma 2.1. n

We now let R = k[[t]], with canonical A-algebra structure as in Section 1.

Let F/R be a deformation of Fo/k of height g = h - 1. Choose £_j e
EndRn-1 (F) of the form

with ba E Rn-1B{0}. Then fn-1 (X) E Rn-1 [[xqr]]. We lift h-I to h E Rn[[xqr]]
and form the cocycle (A, {03B4a}) as before. Since

the leading term of 03B403C0 has degree at least qr+g . 

LEMMA 2.3. a) If r &#x3E; 0 and the degree of the leading term of 03B403C0 is greater than
qr+g then fn-1 lifts to fn E EndRn (F) with leading term of degree qr .
b) If r &#x3E; 0 and the degree of the leading term of 03B403C0 is equal to qr+g then j" - 1
lifts to fn E EndRn (F) with leading term of degree qr-1.

Proof. If r &#x3E; 0 it follows from the definitions that 03B403C0(x) is a power series
in x4. We write



219

Since [03C0]F0(x) = s(.xllh) with s an invertible power series we may set 03C8 =
d03BFs-1. Then f’n = f" - (t/1/Pfo) is a power series which lifts fn-1. We observe
that

Then Proposition 2.2 implies that f’n E EndRn (F). If the leading term of 03B403C0
has degree *qr+g then the leading term off’ has degree qr-1. If the leading
term of 03B403C0 has degree greater than qr+g then the degree of the leading term
of £’ is greater than qr-1 but no more than q’ . Since this degree must be a
power of q, it is equal to qr . D

3. Proof of the theorem

In this section we assume k is separably closed, R = k[[t]], g = h - 1, and
e = 1. We begin with a technical lemma which will allow us to prove
Proposition 1.4. Let f0 E Endk(F0) = End(F0) and let fn- j 1 ~ EndRn-1(F) be
a lifting of fo. Then fn-1 can be written

with

LEMMA 3.1. Assume that m + qr  qgm + 1. Then
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with vt(b’0) = n = m + qr.
d) if m + qr = n and r = 0 then fn-1 does not lift to an endomorphism of Fn.

REMARK. The liftings f’n supplied by b) and c) satisfy the hypothesis of the
lemma.

Proof. By our assumption

Since b0aqr0 - a0bqg0 e (tn) we must have m + qr  n, which proyes a).
Since fn-1 (x) e EndR, (F) has leading term of degree qr, fn-1 is a power

series in XI’. Choose a lifting fn (x) e Rn[[xqr]] of fn-1. Abusing our notation
slightly, we write

The lifting f off,, - 1 gives us a cocycle (A, {03B4a}) as described above, with

If m + qr &#x3E; n then

so the leading term of 03B403C0 has degree greater than qr+g. Part b) now follows
from Lemma 2.3a). If m + qr = n then the leading term of 03B403C0 has degree
qr+g, so c) follows from Lemma 2.3b). Finally, d) follows from a) and the
above remark. D

We now use this lemma to prove Proposition 1.4. We write fo = a + .Îo’
with a E A and fo’ E 03C0BB. Since endomorphisms in A lift to all levels, it
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suffices to prove Proposition 1.4 with fo E 03C0BB. We are given that fo lifts to

in EndRn-1 (F). Since fn-1 doesn’t lift to an endomorphism of Fn, by Lemma
2.3 we see that r = 0. Since fo e nBB we have m = vt(b0) &#x3E; 0. Therefore
the hypothesis of Lemma 3.1 is satisfied. The lemma implies that

Now lift fn-1 (x) arbitrarily to f(x) ~ R[[x]]. Since f is well-defined

(mod (tn )), [03C0]F 03BF f is well-defined (mod (tqgn+’ )). In fact the power series

is an element of EndRqgn (F). To show this it suffices by Proposition 2.2 to
prove that 

We have

with E - 0 (mod (t")). Therefore

We wish to determine the maximal lifting of ~qgn E EndRqgn (F). We have

with
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When applied to ~qgn the hypothesis of Lemma 3.1 translates to

The hypothesis is satisfied because n &#x3E; 1.
We now apply Lemma 3.1 repeatedly to find the largest n’ such that ~qgn

lifts to EndRn,_,(F). By b) and c) of the lemma we lift ~qgn to

with

and

Therefore

By d) of Lemma 3.1, ~n’-1 does not lift to EndRn’(F). This completes the
proof of Proposition 1.4. D

To prove Proposition 1.3 we need another lemma.

LEMMA 3.2. Let fn-I E EndRn-1 (F) as before and assume that m + q’ &#x3E;

qg m + 1 = n. Then fn - 1 l ifts to fn’ E EndRn(P) of the form
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Proof Just as in the proof of Lemma 3.1 we lifth-l (x) to fn(x) e Rn[[xqr]]
with

As before fn gives us a cocycle (A, {03B4a}) with coefficients in Mn in which

The valuation of the leading term of à, is given by

Therefore the first nonzero term of à, has degree qr+g; by Lemma 2.3 b),
Jn-1 lifts to fn E EndRn (F) with leading term of degree qr-1. D

Using this lemma we prove Proposition 1.3 in the cases where h  l. If l  0
then

so it suffices to consider only those fo with

In that case fo has the form

with bo E k . By Lemma 3.2, fo lifts to f’1 (x) E End., (F) of the form

with vt(b’0) = 1. The endomorphism f’1 satisfies the hypothesis of Lemma
3.1 ; parts b) and c) of the lemma imply that// lifts to
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with

By d) of the same lemma we know thath-I does not lift to an endomorphism
of Fn , which proves Proposition 1.3 for 0  1  h.

If 1 = 0 then

and fo has the form

with bo E FqhBFq. We need to show that no lifting

of fo to RI [[x]] is an R1 -endomorphism of F. From f, we get a cocycle
(A, {03B4a}) with coefficients in MI such that

Since bo E FqhBFq we have vt (bo - bqg0) = 0; hence bo ao - a0bqg0 is nonzero
in RI , and bn(x) =1- 0. Thus f1 ~ EndR, (F), which proves the proposition
when 1 = 0.

If 1 = h then

and we write fo = a + 03C0g0 for some a E A and

with bo E FqhBFq. We can assume a = 0 and f0 = ngo. As in the proof of
Proposition 1.4 we lift go arbitrarily to g E R[[x]]. Since
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we have

By Proposition 2.2 we conclude that

is an element of EndRqg (F).
As usual, we lift fqg to fqK + 1 ~ RqK + 1[[xqg]] with

We get a cocycle (A, {03B4a}) with coefficients in Mqg+1 such that

The first coefficient of 03B403C0 satisfies

Since bo e FqhBFq we have bqg0 ~ bo2g in Fqh. Therefore

is non-zero in Mqg+1. Hence 03B403C0 has leading term of degree q2g = q+g, so by
Lemma 2.3 b) fqg lifts to

with leading term of degree q2g-1.
The lifting fqg+1 satisfies the hypothesis of Lemma 3.1. We apply parts b)

and c) of that lemma to show that fqg+1 lifts to fn-1 1 c- EndRn-1 (F) of the form
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with

By Lemma 3.ld),h-I does not lift to EndRn(F). This completes the proof of
Proposition 1.3. ~

We now prove a more general version of Theorem 1.1 which makes no

assumptions about e or k.

THEOREM 3.3. Let FIR be a deformation of height g = h - 1 of the formal
A-module Folk of height h. We write

and set e = vt(a0) &#x3E; 0. Choose fo E Endk (Fo ) c B which satisfies

for some 1 &#x3E; 0. Write 1 = hm + b with 0  b  h. Then fo lifts to

EndRn-1 (F) but not to EndRn (F), where

Proof. Assume for the present that k is separably closed. By [1, Prop. 4.2]
there exists an A-subalgebra R’ - k[[u]] of R and a formal A-module F’
defined over R’ which satisfies

a) [03C0]F’ (x) = uxqg + ···, and
b) there exists a *-isomorphism 0: F ~ F’ QR, R defined over R.
Let R’n = R’/(un+1). Theorem 1.1 says that fo’ - ~03BFf003BF~-1 lifts to

fn 1 ~ EndRn-1(F’) but that/"’-I 1 doesn’t lift to EndR’n (F’), where
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Let

Then fne-1 is a lifting of fo which doesn’t lift to EndRne (F). For if !ne lifts
fne-1 then f’ne = ~03BFfne03BF~-1 is an endomorphism of the reduction of

F’ (mod (tun )) which lifts f’0. The endomorphism f’ne lifts uniquely to a power
series f’n over R’n = R’/(un+1). We have

Therefore

Proposition 2.2 implies that fn’ E End,, (F-), which is a contradiction.

Therefore fne-1 does not lift to EndRne (F).
We now consider the case where k is not separably closed. Let Fô =

Fo Q k ks and FS = F Q9R RS, with Rs = ks[[t]]. We have proved the theorem
for FsIRs. We need to show that if fo E Endks(FJ) is invariant under G =
Gal (ks /k) then any lifting f E Ende (P) of fo is also invariant under G. If
a E G the endomorphism fn - ah of Fsn induces the zero endomorphism on
Fs0. By [1, Prop. 4.1] this implies that f,, - 03C3fn = 0. D

We can now compute EndRn (F) without assuming e = 1 or k = ks.

THEOREM 3.4. Let F be a deformation of Fo as above. Then

where j(n) = hm + b whenever
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4. Application to elliptic curves

The main motivation for the study of one-parameter formal Lie groups is
their relation to elliptic curves. We would like to derive an analogue of
Theorem 3.3 for elliptic curves E over R = k[[t]] whose reduction (mod (t))
is supersingular. Associated to an elliptic curve E/R is a formal Lie group
F/R whose special fiber Fo is the formal group of the special fiber Eo of E.
If E is an ordinary elliptic curve with supersingular reduction then F is a
formal group of the type considered in Sections 1 and 3, with A = Zp,
h = 2, and g = 1. Theorem 3.3 can be applied to F to determine when
fo E Endk(Fo) lifts to EndRn (F). To apply this data to elliptic curves we need
a special case of the Serre-Tate lifting [8, pp. 5-6].

THEOREM 4.1. Let S be an Artin local ring with residue field k. Consider the
category ~1 of elliptic curves EIS with supersingular reduction Eolk, and let
FE/S be the formal group of such a curve. Let ~2 be the category of pairs
(8, G), with 6/k a supersingular elliptic curve and GIS a lifting of the formal
group of 0. Then the functor

is an equivalence of categories.
To apply this result we let En = E (8) R Rn so that Fn /Rn is the formal

group of En . Theorem 4.1 implies that

EndRn (E) = Endk(E0) n EndRn(F).

To compute EndRn (F) we need to know the valuation e of the leading term
of [p]F(x). This can be found for instance in [5, Th. 12.4.3], which says that

Here jo E k denotes the reduction of j (mod (t)).
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Using Theorem 3.3 and Theorem 4.1 we can now determine the maximal
lifting of ~ E Endk (Eo ). The result can be conveniently formulated in terms
of the characteristic polynomial of 0. Recall that Endk (Fo ) is a Zp -subalgebra
of the maximal order B in the quaternionic division algebra over Qp. For
~ E Endk (Eo ) we let  E Endk (Fo ) be the induced map on the formal group
of Eo. We wish to find 1 such that

Therefore we want to calculate

If a E Z then § - a E Endk(Fo) is induced by ~ - a E Endk(Eo). Hence we
have

Therefore we want to find

which can be computed in terms of the discriminant (Tr 4»2 - 4 deg 0 of ~.
Recall that we have defined the nonnegative integers

In the elliptic curve case we have g = 1, h = 2, and q = p, so the formula
above reduces to

THEOREM 4.2. Assume p &#x3E; 2 and let 0 E Endk(E0)BZ. Then
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Therefore 0 lifts to EndRn-1 (E) but does not lift to EndRn (E), where

Proof. Let u = vp((Tr 4»2 - 4 deg 4». In view of Theorem 3.3 and the
arguments above, it suffices to verify that

We have

and since p &#x3E; 2 it follows that

with equality if u is odd. If u is even we observe that since 0 e Z, the
characteristic polynomial of ~ is irreducible over QP. Therefore

with a E Z not a square (mod p). It follows that

which completes the proof. D

The case p = 2 is a bit more complicated.

THEOREM 4.3. Assume p = 2 and let 0 E Endk(E0)BZ. Then 0 lifts to

End,,,_, (E) but does not lift to EndRn(E), where
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Proof : If u = V2 ((Tr 4»2 - 4 deg ~) is odd then Tr 0 is even and u  3.
We again have

and we conclude that

This formula combined with Theorem 3.3 proves the theorem for u odd.
If u is even then

with

because the characteristic polynomial of ~ is irreducible over Qz. If u = 0
this implies that both Tr ~ and deg 0 are odd and hence that

If u &#x3E; 0 then Tr ~ is even and we write

If a =- - 3 (mod 8) then
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If 03B1 ~ - 1,3 (mod 8) then

These formulas combined with Theorem 3.3 give us our result. D

As an example we let R = F9[[t]] and consider the elliptic curve E/R which
has Weierstrass equation

The reduction of this curve (mod (t)) is a supersingular elliptic curve Eo/F9.
Let i E F9 be a square root of - 1. The curve Eo has an automorphism i of
order 4 given by

and an automorphism 03C9 of order 3 given by

Let J be the subalgebra of End(Eo ) generated by i and co. By computing the
discriminant of J we find that J is a maximal order in J Oz Q. Therefore
J = End(Eo ), and we may write an arbitrary endomorphism 0 of Eo in the
form

We wish to calculate the largest n such that 0 lifts to an endomorphisms
of E(mod (t")). Since

and p = 3 we have
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In order to apply Theorem 4.2 we calculate

Denote this integer by 1. The theorem implies that 0 lifts to EndRn-1 (E ) but
not to EndRn (E), where n is given by

For example, a + i does not lift (mod (t2)), while a + 3i lifts (mod (t5)) but
not (mod (t6)). Also, 3co lifts (mod (t8)) but not (mod (t9)).

5. Endomorphisms of quasi-canonical liftings

In this section we state an analogue of Theorem 1.1 for quasi-canonical
liftings [3]. The proof is omitted. Using this result and the Serre-Tate lifting
one can calculate the endomorphism rings of certain elliptic curves defined
over Artin local rings.

Let K be a complete discretely valued field with finite residue field Fq and
let A be the ring of integers in K, with uniformizer 03C0 = 03C0A. Let (9 be the ring
of integers in a separable quadratic extension L of K, let M be the com-
pletion of the maximal unramified extension of L, and let W be the ring of
integers in M. Let k be the residue field of U and let Fo /k be a formal
A-module of height 2. By [1, Prop. 1.7], B = Endk (Fo ) is isomorphic to the
maximal order in the division algebra D of degree 4 over K. Therefore the
ring (9 embeds in B = End (Fo ). We choose an embedding
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such that the induced map

is the reduction map. This makes Fo into a formal (9-module. By [9, Th. 1]
there is a formal (9-module F/ W which lifts Fo. By [1, Prop. 4.2], the
-module lifting F of Fo is unique up to *-isomorphism. We call F the
canonical lifting of Fo associated to the pair «9, a).
The (9-module F can also be viewed as an A-module. Let W be the ring

of integers in an algebraic closure M of M and let JI be the maximal ideal
of W. Choose a formal A-module F’/ W which is isogenous to F by the map

Let M’ c M be the finite extension of M generated by

with n’a uniformizing element of M’. Both F’ and 0 can be defined over the
ring of integers W’ of M’. The endomorphism ring of F’ is an A-order in

which we write as

We say that F’ is a quasi-canonical lifting of Fo of level s. In [3, Prop. 5.3]
it is shown that quasi-canonical liftings of all levels s  1 exist, that M’/M
is a totally ramified Galois extension of degree

and that the coefficient of XI in [03C0]F’ (x) has n’ -valuation 1.

In [3, Prop. 3.3] Gross calculated the endomorphism ring of F over
W = W/(03C0n+1W):
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We wish to make the corresponding calculation for the quasi-canonical
lifting F’. That is, we want to determine the rings EndW’n(F’), where
W’ - W’/(03C0’)n+1. In order to do this we define e to be the ramification
degree of M’ over K. Using the formulas for the ramification degree of M’
over M we see that

Also recall that for g = 1 we have

THEOREM 5.1. Let Folk be a formal A-module, let F’IW’ be a quasi-canonical
lifting of Fo of level s  1, and choose fo E Endk(F0) ~ B with

for some 1  0. Then fo lifts to End W’n-1 (F’) but not to EndW’n(F’), where

REMARK. If /A is ramified then e = 2f is even. If (91A is unramified and
1  2s is even then

Therefore n as defined above is a positive integer.
Theorem 5.1 allows us to compute Endw,; (F’).
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THEOREM 5.2. Let F’ be a guasi-canonical lifting of level s  1 as above. Then

where j(n) is given by

The proof of Theorem 5.1 uses induction. The first step is given by the
following proposition.

PROPOSITION 5.3. Let 1  2s + 1 and

Thenfo lifts to EndW’n-1(F’) but not to EndW’n(F’), where
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If l  2s this proposition follows easily from Theorem 1.1. If 1 = 2s + 1

the situation is quite delicate, especially when /A is ramified. For a proof
of this proposition, see [7, pp. 34-39].
The inductive step in the proof of Theorem 5.1 is given by the following

proposition, whose proof can be found in [7, pp. 32-34].

PROPOSITION 5.4. Let f0 E Endk (Fo ) be such that fo lifts to EndW’n-1 (F’) but not
to EndW’n(F’) for some n  (e - 1)/(q - 1). Then 03C0f0 E Endk (Fo ) lifts to
EndW’n’-1 (F’ ) but no t to EndJv,(F’), where n’ = n + e.

This proposition is a generalization of [3, Prop. 3.3], and is proved in a
similar manner. Theorem 5.1 now follows by induction.
We give an example where F’ is the formal group of an elliptic curve. Let
W be the ring of integers in the completion of the maximal unramified
extension of Q2, and consider the elliptic curve E/ W with Weierstrass
equation

Since E/W has good supersingular reduction Eo/Fz the formal group F of E
is a deformation of the formal group Fo of Eo. Let w E W be a primitive cube
root of unity. Then E has complex multiplication by the full ring of integers
Z[co] of Q(co), via the map

given by

It follows that the formal group F is a canonical lifting of Fo. Hence by [3,
Prop. 3.3],

where
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To get a quasi-canonical lifting of F. we need to construct an elliptic curve
which is isogenous to E. Let 03C0’ E 2 be a cube root of 2, and set

W’ = W[03C0’]. Over W’ we define another elliptic curve E, with Weierstrass
equation 

This curve has good reduction Eo, so the formal group F’ of E’ is a
deformation of Fo. In addition, there is an isogeny 0: E ~ E’ given by

The isogeny ~ has degree 2, with kernel {~, (-1 203C0’, -1 2)}. The isogeny :
F - F’ induced by ~ also has degree 2. We find that End (E’) ~ Z[203C9]; the
Serre-Tate lifting implies then that End (F’) ~ Z2[2úJ]. Therefore F’ is a
quasi-canonical lifting of F0 of level s = 1.

We now apply Theorem 5.2 and the remark after Theorem 5.1 to show
that

where W’n = W’/(n’)n+I and 1 = Z2 + 2úJZ2. For instance, the frobenius
endomorphism Fr of Fo satisfies
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Therefore Fr lifts to EndW’1 (F’) but not to EndW’2(F’). The endomorphism
of Fo induced by a(cv) is not an element of (9, + TrBB, so it doesn’t lift to
EndUl’ (F’ ).
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