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1. Introduction

Let a be a n-dimensional Euclidean space with inner product (., .) and R a
rank n root system, not necessarily reduced, contained in a*. We use the
notation P for the weight lattice of R and H for the complex torus with
character lattice P and Lie algebra b = C ~R a = a ~ ia = a ~ t. So we
can write H = exp b. H can be decomposed in a split part and a compact
part: H = A · T with A = exp a and T = exp t. Choose an orthonormal
basis {X1, ... , Xn} for a and let {x1, ... , xn} be the coordinates on a
relative to this basis. A multiplicity function g: R ~ R (or C) is by definition
a Weyl group invariant function. For a fixed multiplicity function g we
consider three closely related quantum mechanical one particle systems on
a, described by the following Schrôdinger operators: (we take ~ = 1 )

To comprehend the relation between SA’ ST and Sa we start with the operator

on H. Now we can interpret SA and - ST as the restrictions of S to A and
T respectively, and S. as the "lowest homogeneous part" of S (see [Op],
Section 4).
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The main object of this paper is to prove that the commutant of S is a
polynomial algebra of differential operators on H with n generators. Physi-
cally this means that we find a complete set of preserved quantities for the
systems described by SA’ ST and Sa . If we descend to the level of classical
mechanics this implies that the Hamiltonian systems given by

respectively are completely integrable.
In case R = A2 the complete integrability of the system (1.7) was proved

already in 1866 by Jacobi ([J]). Marchioro (in 1970!) rediscovered this
fact and treated both the classical and the quantum mechanical scattering
problem (see [Mar]). The results of Marchioro on the scattering behaviour
were generalized in the quantum case to an aribtrary number of particles
(i.e., R = An where n + 1 is the number of particles) by Calogero ([C]).
Moser proved integrability for the Hamiltonians (1.5), (1.6) and (1.7) (with
R = An) by giving a Lax representation for the equations of motion (see
[Mo]). By extending the methods of Moser, partial results on the inte-
grability of these systems for the classical root systems were achieved by
Olshanetsky and Perelemov ([OP]). As for the quantum mechanical case we
mention Harish Chandra’s result on the structure of the space of invariant
differential operators on a (non compact) Riemannian symmetric space
X = G/K (see [HC]), which can be interpreted physically as a proof of the
integrability for the systems (1.1), (1.2) and (1.3) if we take R equal to the
restricted root system of X and?rx = (1/2)(03B1, ot),4,, - (k03B1 + 2ae2rx - 1) where
2aerx is equal to the multiplicity of the root a in G (see Section 4). In [K]
Koornwinder shows that the integrability of these systems for R = A2 or
BCz is not perturbed if one takes for the multiplicity y an arbitrary, complex
valued Weyl group invariant function. Sekiguchi and later independently
Macdonald (see [se], [Mac]) proved this remarkable fact for R = An.
Macdonald’s proof consists of a direct calculation, but uses in an essential
way the special features of the root system An.

In contrast with the above mentioned proof of Macdonald for the root
system An the general proof presented in this paper is very indirect. It is
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based on Heckman’s construction of hypergeometric functions (see [H]),
which in turn is based on Deligne’s solution of the Riemann monodromy
problem. The construction in [H] is carried through only for "generic
parameters" (see [H], Definition 7.1 and Theorem 7.5). However, in Section
2 we show that the hypergeometric function can be continued analytically
to the full parameter space (thereby filling in the last remaining gap in the
definition of hypergeometric functions). This continuation theorem implies
some combinatorical information which is used in Section 3 to prove a

conjecture (see [HO], Conj. 2.10) on the structure of the space of hyper-
geometric differential operators. In fact we prove a stronger result that
includes the existence of so called shift operators of hypergeometric differ-
ential operators (see [Op], Cor 3.12). In Section 4 we translate the results
of Section 3 in physical terms and we prove the theorems on complete
integrability of the systems discussed here.

2. Analytic continuation of the hypergeometric function in the parameter
space

For notions and notations which are used in this paper without proper
introduction we refer the reader to the papers [HO], [H] and [Op].

Fix a rank n root system R. As in ([HO], Section 2) we consider, for a fixed
complex valued multiplicity function,4 on R, the partial differential operator

on the complex torus H. This operator has an asymptotic expansion on A - :

Substitution of a formal series on A of the form

in the eigenfunction equation
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for L(k) leads to the following recurrence relations for the coefficients A, (see
also [HO], Section 3):

These relations determine the coefficients 0394k uniquely as elements of

C(b*) 0 C[K] (C(b*) is the quotient field of C[b*] and K is the vector space
of all multiplicity functions of R) once Ao E C(b*) Qx C[K] is chosen. In
comparison with ([HO], Section 3): take 2 E 1)* such that (03BB, 03BAv) + 1 ~ 0,
VK E Q+B{0} then

or equivalently:

The following lemma is a mild extension of ([Hel], Ch IV, Lemma 5.3).

LEMMA 2.1. Let U c b* x K be open, connected and bounded. Choose A, in
such a way that A, is analytic on Ü, VK E Q+ . Let a = exp X E A_. Then
there exists a constant d = du,a such that:

Proof. Introduce the following function on Q+ : m(i) - m(03A3ni=1 ti03B1i) =

L7 = ti. This height function extends to a norm on a* = RR. By equivalence
of norms on a* we have:

for certain constants a, b ~ R&#x3E;0. here |03C4| = (i, 03C4)1/2. Select c1 ~ R&#x3E;0 such that

Furthermore we can choose a constant No E N, and c2 E R&#x3E;0 such that
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So if 03BA e Q+, m(03BA)  No then (see formula (2.1))

with c == 2c, /c2 .
Choose N, E N such that

and let N = max(No, NI). Select d = du,a such that

Then we prove (2.2) with induction on m(K). Let 03BA E Q, with m(03BA) &#x3E; N and

suppose (2.2) is true for all i E Q+, mer)  m(K). In combination with (2.3)
we obtain:

COROLLARY 2.2. Let U and Do be as in Lemma 2.1. Let V be open, bounded
with V c A_. Then t/1 = LKEQ+ 039403BAa03BB+Q+03BA converges uniformly on 0 x .
Consequently, t/1 is analytic on U x A_. 0

COROLLARY 2.3. The function q5: b* x K x A_ ~ C
(Â, i, a) ~ ~(03BB + Q(k), k; a)

as introduced in ([HO], formula (3.11)) is meromorphic with simple poles
along hyperplanes of the form Hk x K x A_, K E Q+B{0}. Here Hk =
{03BB E I)*I(,1, K V) + 1 = 01. Moreover, for 03BB0 E b* with 03BB0 E HKfor precisely
one K = Ko E Q+B{0} we have:
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Proof. From the recurrence relations (2.1 ) we see that poles of the coef-
ficients A, can occur only along hyperplanes of the form HK x K with
K E Q+, 03BA  1:, and that the hyperplane Hxo does not occur if we start with
80(2, 4) = 2(î, Ka) + (03BA0, Ko). The set of hyperplanes {H03BA, 03BA E Q+} is

locally finite, so we can take a neighbourhood U of (03BB0, 4) in b* x K such
that 0 does not intersect the set {H03BA x K, K E Q+, 03BA ~ 03BA0}. As a direct
consequence of Corollary 2.2 we find that 03C8(03BB, 4; a) = (2(03BB, Ko) +
(03BA0, 03BA0))~(03BB + Q(ae), k; a) is analytic on U x A_. Formula (2.4) is a con-
sequence of the observation that, with 03940(03BB, 4) = 2(î, 03BA0) + (xo , 03BA0),
039403BA(03BB0, ae) = 0 if 03BA ~ Ko and the fact that 03C8 converges uniformly in a
neighbourhood of (03BB0, 4). D

In ([HO], formula (6.4)) the c-function c: b* x K - C is defined as

with

The following proposition is clear from this definition:

PROPOSITION 2.4. c is meromorphic on b* x K with poles along sets of
hyperplanes SI and S2 with:

The poles along SI are simple. D

REMARK 2.5. The set S2 of hyperplanes in K along which the c-function has
poles is always strictly contained in the set given in Proposition 2.4, but is
not so easy to describe explicitly in general. However, if we take a root
system R with only one root length (so R = An , Dn or En ) then it is not hard
to show that S2 coincides (with multiplicity) with the set of poles of the
function 03A0ni=1 n711 0393(k + j/(mi + 1)) (where mi (i = 1, ... , n) are the
exponents of R).
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For rank(R)  2 we obtain the following list: S2 coincides (with multi-
plicity) with the set of poles of:

Heckman showed ([H], Theorem 7.5) that if 4 is admissible (2 + aerx +
ae2rx tf Z) and 03BB E 1)* satisfies the condition (03BB + 03C41, 03BB + 03C41) ~ (03BB + z2,
03BB + T2) if Tl ~ 03C42, 03C4i ~ P and Tl - 03C42 ~ Q then span{~(w03BB + Q, 4, h)}w~W
is a system of Nilsson class functions on WBHreg of monodromy type
M(03BB, ae). In addition, if (À, k) ~ S2 then F(03BB, ae; a) = LWE w c(w,1, k)~(w03BB +
Q(k), k; a) (a E A_) has an analytic continuation to a W-invariant tubular
neighbourhnn. V r A c H which is W-invariant. A first result on mero-
morphi, ce of F on the parameters (À, 4) will be achieved by means
of the foli lemma.

LEMMA 2.6. Let X be a connected complex manifold and B c X an open
subset. Let 03A9 c cm be a domain and f a holomorphic function on Q x B.
Suppose that for almost all 03C9 E 03A9 the function f(úJ, .) can be extended to an
analytic function on X. Then f can be continued analytically to Q x X.

Proof. It is enough to show the lemma for the special case where
X = {|xi|  r, i - 1,...,n}, B = {|xi|  r’  r, i = 1,...,n} and
Q = {|03C9i|  r, i = 1, ... , m}. In this situation we may assume m = 1.
Furthermore we assume that f is bounded on Q x B by replacing r and r’
by r - e and r’ 2013 03B5 respectively (e &#x3E; 0 arbitrary small). Now Lemma
2.2.11 of [Hô] or, more accurately, the proof of this lemma gives the desired
result. D

COROLLARY 2.7. Let V be a W-invariant tubular neighbourhood of A c H.
The function F: b* x K x V ~ C
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can be extended to a meromorphic function with simple poles along the
following hyperplanes:
(a) {(03BB, ae, h)I(Â, a) - 0 for some oc E RI
(b) Hh x K x V, K E QB{0}
Furthermore it has poles (not simple in general) along:
(c) 82.

Proof. Define V_ = V n A_ · T. From Corollary 2.3 and Proposition 2.4
we conclude that the restriction of F to 1)* x K x V_ is meromorphic with
poles along the hyperplanes (a), (b) and (c), where those along (a) and (b)
are simple. Now ([H], Theorem 7.5) states that for almost all (n, ae) the
function F(03BB, 4; .) has an analytic continuation to V. So if we apply Lemma
2.6 we obtain Corollary 2.7. D

Formula (2.4) enables us to calculate the residues of Falong the hyperplanes
H, x K x V, K E QB{0}. Suppose that ,10 ~ a* + t* with ,10 E H03BA0 but
03BB0 ~ Hh if 03BA ~ xo for a fixed Ko E QB{0}. Suppose 4 E K such that (,10’ k) ~
S2. There are two cases we have to deal with:

First case. Assume that 03BA0 ~ n · 03B1 ~n ~ Z+, 03B1 ~ R0 (the indivisible roots of
R). Then c(w03BB, 4) is holomorphic in a neighbourhood of (03BB0, 4) (~w E W).
We obtain in this case (take 4 E K and a E A __ fixed):

Second case. Now let Ko = n - a for some n E 7L+ , a E Ro. Then c(w2, ae) will
have a simple pole in a neighbourhood of (20, 4) for those w E W for which
wxo  0, along the hyperplane Hxo x K (see Proposition 2.4). Thus:
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So in both cases we obtain the formula:

where

In both cases d(w, 03BA0; À, ae) is holomorphic in a neighbourhood of (03BB0, ae) on
the hyperplane H03BA0 x K.

THEOREM 2.8. The poles of F along the hyperplanes
(a) {(03BB, ae, h)I(,1, 03B1) = for some et E RI
(b) H03BA x K x Il for some K E Q)B{0}
are all removable. In other words: F: b* x K x V ~ C is a meromorphic
function with poles only along the set of hyperplanes S2 (see Proposition 2.4
and Remark 2.5).

Proo, f : Because F is W invariant as function of the parameter À E b* it is
obvious that F cannot have simple poles along the set of hyperplanes (a). So
let us restrict our attention to (b). Take 03BB0, xo as we did in formula (2.5). The
expression

being the residue of F along H03BA0 x K x V at (03BB0, 4, a), has analytic con-
tinuation on (03BB0, 4) x V. In particular: res(03BB0, 4, .) has trivial monodromy
with respect to the curves sj ( j = 1, ... , n) (see [HO], Section 5). Observe
that the functions ~(w(03BB0 + KO) + g(ae), ae; .) have analytic continuations
as multivalued functions on Hreg (apply Lemma 2.6). Put, for convenience,
d(w, 03BA0; 03BB0, k) = 0 if w03BA0  0. If we choose 03BB0 outside some subset of
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codimension  1 in Hho then, for every j ~ {1, ... , nl, the subsums

ofres(Ào, 4, a) can be separated with the monodromy action of the loops tZ
(see [HO], Section 5) that satisfy t,s, = si tZ. A rigorous proof of this is given
in lemma 2.9. Hence: Vw E W, ~j ~ {1, ... , n} the sum 03A3w,j has trivial
monodrony with respect to sj. If we apply rank one reduction (with respect
to the simple root 03B1j) to 03A3w,j we obtain an asymptotic expansion for the
ordinary hypergeometric function associated with R03B1j. Take the coordinate
z - 1 4 (h03B1j/2 + h-03B1j/2) as in [HO], Section 4. The ordinary hypergeometric
function we have obtained has exponents: 0 and 1 2 - k03B1j/2 - 4,, at z = 0, 0
and 1 2 - k03B1j at z = 1, t£ajl2 + k03B1j + (W(Âo + 03BA0), 03B1vj) at z = oo. Suppose
that one of the coefficients d(w, 03BA0; Ào, k) or d(ri W, 03BA0; Ào, k) is equal to
zero, for instance d(w, Ko; 03BB0, k) = 0. If d(rjw, 03BA0; 03BB0, k) ~ 0 one of the
following relations between the exponents at 1 and oo has to hold:

However, for almost all 4 E K and Ao E HKO these relations are violated.
Consequently: for general 4 E K and Ao E HKO both d(w, Ko; Âo, ae) and
d(r, w, Ko; Âo, ae) have to be zero if one of them is. Thus d(w, xo; Ao, ae) = 0
Vw E W. We have shown now that, except for S2’ the set of singularities
of F has codimension  2 and thus that F has analytic continuation to
(b* x K X V)BS2. ~

To complete the proof of Theorem 2.8 we will prove:

LEMMA 2.9. Let pi denote the orthogonal projection on the hyperplane 03B1~i (ai E R
a simple root). Let w, w’ E W with wK, W’K &#x3E; 0. Suppose that the map
H03BA ~ 03B1~i

À - pi((w - w’)03BB) is constant. Then w = w’ or w = riw’.
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Proof 03BB. - pi((w - w")03BB) is constant on Hh if and only if (w - w’)(03BA~) c
Ca, or equivalently (w(w’)-’ - 1)(w’03BA~) c C03B1i. Let us study the set d =
{x E WI (x - 1)(w’03BA~) c Cocil. Observe that rid = d. Furthermore: if
x E d then x or rix has to be a reflection. To see this we assume that x itself

is not a reflection and that x ~ 1. Then stab(x) has codimension 2 and so
x = r03B1r03B2 for some a, fi E R. Also: Im(x - 1) = Cot + C03B2 ~ C03B1i and thus
r;x is a reflection. We are left with two cases to treat:

(a) 03BA ~ na Vn E Z, a E R. Then x E d and x a reflection imply that x = ri
and so d = {1, ri}
(b) K = na for some a E R, n E Z+ . Suppose x E d a reflection. Then
x = ri or ryt..x . So we have d = {1, ri, rw’03B1, rirw’03B1}. Bllt W - rw’03B1w’ is in
contradiction with wa, w’a &#x3E; 0 and w - rir03C9’03B1 w’ ~ w03B1 = ri(- w’a) &#x3E;

0 ~ w’03B1 = 03B1i ~ w = w’.

We resume the combinatorical implications of theorem 2.8:

COROLLARY 2.10. Let the rational functions 039403BA(03BB, ae) on b* x K be defined
by the recurrence relations (2.1) and 03940(03BB, ae) = 1. Then the only poles
that can occur in 039403BA(03BB, ae) are simple poles along the hyperplanes H, x K
(= {(03BB, 4)12(î, r) + (i, T) = 01) where r satisfies:
(1) 03C4  03BA
(2) r na for some a E R+ , n E 7L+
Furthermore, if K = na for some a E R+, n E 7L+ then we have: c(À + K,.4) +
c(À, 4). 039403BA(03BB, ae) has a removable pole along HK x K. ~

3. Existence of hypergeometric differential operators and their shift
operators

Let V = (C(b*))Q+ (where C(b*) is the field of rational functions on b*) be
the C(b*)-vectorspace of functions from Q+ to C(b*). If we choose 4 E K
fixed we can identify V with the space of formal series on A_ of the
form r = 03A303BA~Q+ r03BA(03BB)h03BB+Q(k)+03BA, r03BA(03BB) E C(b*) by means of r ~ (r03BA(03BB))03BA~Q+.
A formal differential operator on A- with asymptotic expansion
D = hQ(f) 03A303BA~Q+ h03BA~(p03BA(03BB)) with e c K, p03BA(03BB) E C[b*] can be viewed in this
way as an element M(k; D) of gl(V), with matrix:
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PROPOSITION 3.1. (see [HO], Lemma 2.7 and [Op], Proposition 3.2). Let
qK E C(4*) with qK = 0 if K ft Q+. Let N E gl(V) be defined by NK,v(A) =
q03BA-v(03BB. + Q(k) + v). Then

if and only if the qk satisfy the following recurrence relations:

Proof. This is an easy computation in gI(r) and left to the reader. D

COROLLARY 3.2. For a given qo E C(b*) there exists precisely one N E gl(V)
of the form described in Proposition 3.1 that satisfies (3.1).

PROPOSITION 3.3. The equation M(d, L(k)). r = p. r (p E C(b*), r E r) has
a non trivial solution space if and only if p(03BB) = (Â + Q(k), 03BB - Q(k)). The
(Â + Q(k), 03BB - Q(k))-eigenspace is one dimensional and spanned by the vector
~(k) E r with ~(k) = (039403BA(k))03BA~Q+ where Ao (,4) = 1 and 039403BA(k) defined by the
recurrence relations (2.1).

Proof. See [HO], formulas (3.11)-(3.14).

In [HO] we formulated a conjecture on the structure of D(k) = (R (x)
u(b))W,L(k) ([HO], Conjecture 2.10): let y(,4): D(k) - C[I)*] be the map defined
by 03B3(k)(03A303BA~Q+ hKO(PK(À))) = {03BB ~ P0(03BB + Q(k))}. Then y(,4) is an iso-

morphism (W E K). In [Op] we extended this to shift operators (and
changed it in an inessential way: the ring -4 was replaced by the ring f).
Recall the following notations from [Op] (Corollary 3.11): R = Ur=I 1 C; is
the decomposition of R in conjugacy classes of roots, B = (~i)mi=1 is a basis
for K consisting of the vectors t¡ = e, if 2Ci n R = 0 (where e; E K is the
function defined by (ei)03B1 = 0 if oc e Ci and (ei)03B1 = 1 if a E Ci) and ei =
(2e; - ej) if 2G = Cj. The next lemma is crucial for the proof of ([HO],
Conjecture 2.10) and for the proof of the existence of the shift operators
G(t) (e E Z. B) (see [Op], Corollary 3.12).
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LEMMA 3.4. let N E gl(V) be as in Proposition 3.1 and suppose that
(a) e E Z_. B, and qo is a polynomial such that

Then q, E C[4*], VK E Q+ .
Proof With induction on the ordering  on Q+ . Take y e Q+ and

suppose that q03C4 E C[b*] V1: e Q +, 1:  y. From (3.2) we see that the only
possible pole that can occur in q03BC(03BB) is along the hyperplane H03BC + Q(k).
However, from (3.1) and Proposition 3.3 it is clear that

This is equivalent to:

or

The only term in the right hand side where a pole along H/1 can occur is,
according to Corollary 2.10, the term

This expression can, according to the same Corollary 2.10, only have a pole
along H, if y = na for some n ~ Z+, a E R+ . In this case (take 03BB0 E H, a
generic point):
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because is a W invariant polynomial and (À + 03BC) ~ r03B103BB0

LEMMA 3.5. Let,4 E K be a generic point and let D = hQ(~) LKE Q+ h K ~(p03BA) with
PK E C[b*] and e E 7L- . B be a formal differential operator on A_ with
the property that ( formally) Do (L(,4) + (Q(k, Q(k))) = (L(k + t) +
(Q(k + t), Q(k + t))) 0 D. Then the sum converges and D is in fact the lifting
of an element of An (the algebra of polynomial differential operators on Cn)
under the map H - WBH ~ cn, h ~ (z1, ... , zn). So in particular (see
[OP], Proposition 2.5), D E (f ~ U(l)))w.

Proo, f : The functions zi = 03A3w~ W/stab(03BBi) h 
w03BB1 (i = 1, ... , n) form a system

of coordinates on A_. So on A_ we have

Choose a basis {X1, ... , Xn} for a and write Ak = Xtl, ... , Xknn. Recall
the notation

(see [HO], Proposition 2.3). From (3.3) we obtain:

with a;. a series on A_ of the form

So we can rewrite D as follows:



205

with £ formal series on A _ of the form

Because we assume 4 to be generic

and e E Z_. B (so Q(t) E P_) we know that D maps Jacobi polynomials
with parameter k into Jacobi polynomials with parameter k + e (for Jacobi
polynomials: see [HO], Definition 3.13 or [H], section 8). It follows that

So we conclude that the formal series f are in fact W-invariant Fourier
polynomials and that D ~ An. D

Recall the notations of [Op]: for l, tEK we define S(~, 4) = {D E
An ID 0 (L(l) + (Q (,0, Q(k))) = (L(k + e) + (Q(k + e), Q (,4 + ~)))03BFD}
and the map ~ = u(1’ 4): S(e, k) ~ C[4*]

THEOREM 3.6. (Structure theorem for the spaces S(4, ~))
(a) For all,4 E K, 03B3(k) = ~(0, 4): S(O, l) = (f/ Q9 u(b))W,L(k) ~ C[b*]W is

an isomorphism of algebras.
(b) If ~ ~ Z . B then S(,4, t) = {0}. If tE ?L.B then S(e, l) = G(e, l).

S(0, ae). The generator G(e, ae) E An has degree LCXERO max(|~03B1|, |~03B1/2 +
1

(c) The dependence on 4 E K is of a polynomial nature: let p E C[b* x K]
such that p(., ae) E Im(~(~, k)), ~k E K. Then (~(~, 4»-’(p(., k)) E
C[K] ~ An, and its degree in 4 is equal to degk({(03BB, ae) - p(Â -
Q(k), k)}).

Proof. (a) is immediate from Lemma 3.4 and Lemma 3.5. From ([Op],
Proposition 3.4 and Corollary 3.12) it follows that we only need to prove (b)
for e = - ti (i = 1, ... , m) and in that case we can apply again the
Lemmas 3.4 and 3.5. (c) is a consequence of the recurrence relations (3.2).

- n
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REMARK 3.7. For more detailed information about shift operators we refer
the reader to [Op], Sections 3 and 4.

4. The generalized Calogero-Moser system

As was explained in ([HO], Section 2) there is a close relation between the
differential operator L(k) associated with some root system R and the
differential operator

on the torus H. This relation is a consequence of the automorphism of
f O U(b) given by P ~ 03B41/2 03BF P 03BF 03B4-1/2 with 03B4 = 03B4(k) = 03A003B1~R+ (h-03B1/2 -
h03B1/2)2k03B1 (viewed as Nilsson class function on WBHreg):

if we take

The asymptotic expansion of S(p) on A - is given by

In order to study the quantum integrals of the generalized Calogero-
Moser system it is useful to write down the recurrence relations that arise
from the equation [Sep), P] = 0 for a formal differential operator P =

LKEQ+ h03BAa~(P03BA).

PROPOSITION 4.1. [S(,,), P] = 0 if and only if the polynomials PK satisfy the
recurrence relations
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From Theorem 3.6 we know that, Vy E K, the recurrence relations (4.2) lead
to an element P E (f (x) u(b))W with [S(g), P] = 0 if we take po E C[b*]W.
The ph are polynomials in Â and y and we can use (4.2) to make an estimate
on the degree of p03BA(03BB, ?) in the following sense: define

Then we have:

PROPOSITION 4.2. Take po E C[b*]W homogeneous of degree k and p03BA(03BB, y)
defined by (4.2). Then PK E f!/Jk, VK E Q+.
Proof. Use induction on K with respect to the partial ordering  on Q+.

~

DEFINITION 4.3. For? E K we define the map

PROPOSITION 4.4. Let D be the algebra C[K] (D Y 0 U(b) of differential
operators on Hreg with coefficients in C[K] Qx 9. Put

Then!f/ = D0 c D1 c D2 c ... is a filtration of D, i.e. Dk1 . Dk2 ce Dk1 +k2 .
ri

THEOREM 4.5. The map 03B3’(g) is an isomorphism of algebras for all g E K.
Moreover, if po E C[b*]W is homogeneous of degree k then D(po) - {g ~
(y’(?))-l (p0)} E Dk. D

COROLLARY 4.6. The quantum mechanical systems on a described by the
Schrôdinger operators SA , ST or Sa (see Section 1, formulas (1.1), (1.2) and
(1.3)) are completely integrable for every root system R and multiplicity
function e. The integrals are of an algebraic nature. For every homogeneous
p E C[b*]W there exists an integral of the form ô(p) + lower order terms.
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To obtain results on the complete integrability of the classical systems
described by the Hamiltonians HA , HT, and Ha on a x a* (see Section 1,
formulas (1.5), (1.6) and (1.7)) we study the associated graded ring e of D
with respect to the filtration given above (Proposition 4.4). Denote by 6 the
symbolmap, thus for D e -9k we have 03C3k(D) = D(mod Dk-1) E Dk/Dk-1 =
ek c 6. It is obvious that [Dk1, Dk2] c Dk1 1 k, SO lff is commutative and we
can define the so-called Poisson bracket on e. First take two homogeneous
elements fi E ek1 and put {f1, f2} = (Jkl +k2 -1 ([F1, F2]) where F, E Dk1 such
that 03C3ki(Fi) = f, . Extend {., .} bilinearly to lff.

PROPOSITION 4.7. e ~ C[K] 0 Y ~ C[b*] and the Poisson bracket can be
calculated explicitly:

(where we interpret ÀÍ as coordinates on a*)
Proof. Easy and left to the reader. 0

THEOREM 4.8. The system described by the Hamiltonians HA , HT and Ho are
completely integrable with algebraic integrals. Let {p1, ... , Pn} be a set of’
homogeneous generators.for C[b*]W. Then there exists a complete set of
integrals of the form p, + terms of’ lower degree in {X1, ... , Xn} (i =

1,...,n).
Proof. Clear from Theorem 4.5 by taking symbols with respect to the

filtration D0 c D1 ce ... of D. 0

REMARK 4.9. There is an equivalent, but maybe physically more natural way
to describe the passage from the quantum level to the classical level. If we
take h, Planck’s constant, as an extra variable we have to take

Define a filtration by taking deg(h) = - 1, deg(~(X1)) = 1 and define

pi = symbol of - ~(- 1)1/2 ~(Xi). Now take symbols with respect to this
filtration (so in some sense we take the limit ~ ~ 0).
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