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Introduction

Let P c- 0 [Xo, ..., Xn] be a quasi-homogeneous polynomial with an
isolated singularity. For any pair of monomials m, m’ the asymptotic
expansion§ when s - 0 of the function

where o E C~c(Cn+1) satisfies o - 1 near 0, has at most one term which is
not in C[s, s]. Moreover this "non C~" term does not depend on the choice
of Q. So let c(m, m’) be the coefficient of this term which will be equal
now to c(m, m’)susv if u = v =1= 0 modulo Z or to c(m, m’)susv Log
ss if u, v E N (u, v depend on quasi-homogeneous weights of m and m’
relative to the quasi-homogeneity type of P). 
Now choose a monomial basis of the Q-vector space

and let 03BB be an eigenvalue of the monodromy operator acting on the
cohomology of the Milnor fiber of P. The choice of 03BB corresponds to the
choice of monomials in our basis having weights¶ a, a + 1, ... , a + k

§ The existence of an expansion (in a "general" context) is proved in [B.0]; here, use that
P(dx/dP) is Coo on C"I’ to fit the general result.
1 Here the weight of the monomial m is by definition the quasi-homogeneous weight of
m(dx/dP), assuming the weight of P is 1.
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where e-"1"" = 03BB: these monomials induce in cohomology a basis of the
eigenspace of the monodromy, corresponding to the eigenvalue 03BB. Now let

(mi)1~i~N be the list of monomials in our basis corresponding to 03BB and 03BB and
define:

Although the numbers c(mi, mi ) are in general highly transcendental, we
have:

THEOREM. For any 03BB, 0394(03BB) is a rational number.
The idea of the proof is to consider two 0-lattices in the cohomology of

the Milnor fiber of P (with complex coefficients). The first one, L, is just the
lattice given by the integral cohomology; we shall call it the integral lattice.
The second one, L2, is defined by the cohomology classes induced by
monomial forms on cn+I 1 or, more generally, by polynomial forms with
rational coefficients; we shall call it the holomorphic lattice.
Then we shall prove that some nondegenerate bilinear form defined over

Q (so having rational values on the integral lattice L, ) has a rational
determinant on a basis of L2 - In fact we treat separately each pair of
conjuguate eigenvalues of the monodromy operator.

For the eigenvalues ~ 1 the bilinear form is simply the intersection form,
and its relation to the "residue form" given in [V3] achieves the computation
of the determinant. Then the relation between the intersection form and the

canonical hermitian form proved in [B 1 ] allows us to relate 0394(03BB) to the
square of the "volume ratio" of the two lattices LI and L2.
For the eigenvalue 1 we give the precise relationship between the residue

form and the canonical hermitian form in order to use the same strategy.
This is done by Loeser’s Theorem which asserts that the natural hermitian
extension of the residue form of [V3] is the canonical hermitian form of [B1]
for any isolated singularity of a hypersurface ([L], Theorem 2).
As an application of the theorem in the eigenvalue 1 case, we obtain the

following:

COROLLARY. Let Yt be a smooth hypersurface in IPn(C) defined over Q. Denote
by Hn-1pr (H, C) the primitive part of the cohomology of H in the middle
dimension; denote by LI the topological 0-lattice Hpr 1 (e, C) n Hn-I 1 (e@ Q)
and by L2 the 0-lattice generated in Hpr 1 (H, C) by the residues of mero-
morphic differential n forms on Pn(C) with rational coefficients and with poles
in e.
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Then for any 0-basis BI and B2 of LI and L2, respectively, we have

where 1 = dimc Hn-1pr(H, C).
Section 1 is devoted to the relationship between the residue form and the

intersection form. The theorem and its corollary are proved in §2.
This paper had been partially written when the second author was visiting

Nancy University in June 1986. He wants to thank the E. Cartan Institute
for hospitality.

§1

We consider the germ of a holomorphic function with an isolated singularity
at the origin ofcn+I and let f: X ~ D be a Milnor representative of it. This
means that D is a disc in C and that f induces a COO locally trivial fibration
of X - f-1 (0) over D* = D - {0}. We shall use a Scherk compactification
of this situation [S] (see also [V3] for a detailed description).

So we have a projective map f: Y - D with an open relative imbedding
X ~ Y over D, and Y gives a smooth polarized family of projective
manifolds over D*; the only critical point of lis the origin in X.

Fix a base point so E D* and let X(so ) and Y(so ) denote the corresponding
fibers of f and f Then the Scherk compactification has the following
properties:

1°) There is an exact sequence

where pn(y(so)) is the primitive part of the cohomology* Hn(Y(s0)) with
respect to the given polarization, where Inv pn(y(so)) is the monodromy
invariant subspace of Pn(Y(s0)) and where i* is the map induced by the
inclusion i: X(s0) ~ Y(so ).

2°) For any class a in Hn(X(s0))=1 there exists a global (n + 1)-holomorphic
form ro on Y such that the asymptotic expansion of the section

* When the coefficients are not precised, they are in C.
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in an horizontal basis of the Gauss-Manin bundle s ~ pn(Y(S))=l is

given by

higher terms

where k e N and the à, are horizontal (multivalued) sections with

i*(ã0|Y(s)) = a.
Let us remark here for later use in §2 that if f is a polynomial defined over

Q, it is possible to choose a Scherk compactification defined over Q such
that, if so is fixed in D* n Q, for any class a in Hn(X(s0))=1 induced by
monomial form m(dx/df), we can choose a global algebraic (n + 1)-
differential form ro on Y, defined over Q, with property 2° ) as before.

It will be important to notice that the Q-lattice in Hn(X(s0)) defined by
classes induced by monomial forms, is invariant under algebraic change of
coordinates in Cn+1 defined over Q.
We now introduce the monodromy operator T (resp. T ) on Hn(X(s0))

(resp. Pn(Y(s0))). Denote by Hn(X(s0))=1 (resp. Pn(Y(s0))=1) the spectral
subspace of Hn(X(s0)) (resp. pn(y(so))) corresponding to the eigenvalue 1

and define

and

Observe that Ker N is exactly the subspace Inv Pn(Y(s0)) of monodromy
invariant vectors in Pn(Y(s0)). So we also have the exact sequence

But from the exact sequence (1) we also have, by monodromy invariance
of i*

Comparison with (2) leads to a canonical isomorphism v: Hn(X(s0))=1 ~
Im 9 given by v(a) = Ñ(ã) for any à E Pn(Y(s0))=1 such i*(â) = a. By
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monodromy invariance of the map i* we have

Now let k be the hermitian intersection form on Pn(Y(s0))=1 normalized
by the following formula

LEMMA. For any a, b E Hn(X(s0))=1 and any ã, b in Pn(Y(s0))=1 such that
i*â = a _and i*b = b, we have

and this number depends only on a and b and defines a nondegenerate hermitian
form on Hn(X(s0))=1. We shall denote it by h.

Proof. First note that monodromy invariance of k (i.e., k(Tu, tv)
k(u, v) ~u, v E Pn(Y(s0))=1) gives k(Nu, v) = k(u, Ñv)(infinitesimal invari-
ance). To prove formula (5) it suffices to put u = à and v = b.

Let h(a, b) denote the number defined by formula (5); h clearly defines an
hermitian form on Hn(X(s0))=1 since k is hermitian. To establish the non-
degeneracy of h, it is enough to use nondegeneracy of k on pn(Y(SO))=I
which is well-known. So the lemma is proved.

THEOREM (Loeser [L]). The restriction of the canonical hermitian form h
introduced in [B 1 to Hn(X(SO))=I is equal to h.
For a direct definition of the canonical hermitian form from asymptotics of

integrals f=s~, ~ E C.°° (X) of type (n, n) we refer to [B1].

REMARK l. Because k induces the usual intersection form on the subspace
Et) = Image(Hnc(X(s0))=1 ~ Hn(X(s0))=1), the theorem is compatible with
the relation
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REMARK 2. The theorem shows that k(Ñã, b) does not depend on the choice
of the Scherk’ compactification: the canonical hermitian form is defined
locally around the singular point.

REMARK 3. F. Loeser pointed out to us that his paper [L] (or formula (5))
gives a definition, in terms of the monodromy and variation, of the canoni-
cal hermitian form inside the Milnor fiber. This shows that it is a topological
invariant of the singularity (see the final remark in [L]).

REMARK 4. On the rational cohomology Hn(x(so)’ Q) of the Milnor fiber,
there is a nondegenerate rational form given by intersection for eigenvalues
of the monodromy which do not equal 1 and by k(Nâ, b) for the eigenvalue
1. There are two ways to extend it to Hn(X(s0), C): take a C-bilinear
extension or a hermitian extension. The first gives the residue form (see [V3],
namely formulas (9) and (14)), the second the form introduced in [B1].

Proof. Let a and b be in Hn(X(s0))=1. Using property 2°) of the Scherk
compactification, we can find m and co" which are global holomorphic
(n + l)-form on Y such that the first terms in the expansions of 03C9/df and
03C9’/df induce a and b, respectively, in Hn(X(s0))*.

Let us consider the asymptotic expansions in an horizontal basis of the
Gauss-Manin bundle associated to s - pn(y(s)) of the sections defined by
oi and ai’ of this bundle (they are given by

respectively). The first terms of these expansions are given by

where k, k’ ~ N, the âi and 6 are horizontal (multivalued) sections of the
Gauss-Manin bundle s ~ Pn(Y(s))=1 and we have the relations (see [V1])

* See property 2° ) of Scherk compactification.
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because the first terms must be invariant by T (ro and 03C9’ and uniform !).
Then, by the definition of the canonical hermitian form in [B1], the value
h(a, b) is the coefficient of sksk’ Log |s|2 in the expansion at s - 0 of the
function

But the difference between F and the function

is Cx because of the transversality of the fibers of f to ôX and because f has
no critical point in Y - X. So h(a, b) is also the coefficient of sksk’ Log 1 S 12
in the expansion at s = 0 of G. Now using (7) and (8) we obtain

higher terms.

But for any s ~ 0, we have

because of the horizontality of the intersection form.
Using formula (5), we see immediately that the coefficient of sk sk’ Log |s|2

in the expansion of G at s - 0 is

But the choice of ru and 03C9’ is exactly such that we have

So we have shown that h = h on Hn(X(s0))=1, and the theorem is proved.

* Since ax is transversal to all fibers of f, up to a Coo function of s, this is the same as

where Q E C~c(X), Q = 1 near 0.



156

COROLLARY. For a, b in Hn(X(s0), Z)=1 we have

The corollary is an obvious consequence of the proof of the theorem.

REMARK: It is not possible in general to replace Q by Z in the conclusion
because the logarithm of a unipotent is not defined over Z. But, of course,
one can use the fact that Nk = 0 for some k  n to be more precise about
the denominators of these rational numbers!
The fact that (2in)n-I h is real on Hn(x(so)’ R) was already proved by

F. Loeser (see [L], corollary 1 of Theorem 2).

§2

Consider a quasi-homogeneous polynomial P with isolated singularity and
assume that P is defined over Q (i.e., P has rational coefficients).
Let be an eigenvalue of the monodromy acting on the cohomology of

the Milnor fiber of P. Set k = Q(03BB) and K = C. Denote by El the eigen-
space of the monodromy corresponding to the eigenvalue Â (E03BB is defined
over k) and let

Let L2 be the k lattice in V = LI ~k C generated by all monomial

differential forms m(dx/dP) whose weights correspond to the eigenvalues 03BB

and 03BB of the monodromy (these weights satisfy e-2i03C0w = 03BB or e-2i03C0w = 03BB).
First assume that 03BB ~ 03BB and choose a monomial basis of

Let et, oc + 1, ... , et + k be the weights of the monomials in this

basis satisfying e-2i03C0w = Â and let fi, fi + 1, ... , fi + 1 those satisfying
e-2i03C0w = 03BB.

Let Hrx, H,+ 1, ... , H,+k and H03B2, H03B2+1,..., H03B2+l denote the correspond-
ing k-subspaces of L2 generated by the cohomology classes induced by thèse
monomials (a monomial m induces m(dx/dP) by definition).

* Of course, since h coincides on Hn(X(s0))~1 with the intersection form, we have
(2i03C0)nh(a, b) ~ Z for a, b ~ Hn(X(s0), Z)~1.
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Then we have the following orthogonality relations for the k-bilinear
intersection form on L2 (see [V3])

For monomials à and  which induce classes a and b in H03B1+i and H03B2+j
respectively with (03B1 + i ) + (f3 + j ) = n we have from [V3] formula (9)

where Cn+1 is an universal (explicitly given) constant depending only on n
(see [V3], p. 35). 
We shall only use the fact that (2i03C0)-nCn+1 ~ Q.
So the restriction of the intersection form to L2 is given by the following

picture, where it is known that k = 1 and a + 03B2 + k = n and where we
have 0 in the upper left side and where the "skew diagonal" blocks are filled
in with the help of formula (10).
Now, for the monomials à and b, the numbers Resp,0 (â dx, b dx) are

rational: for instance the residue can be defined as the value at 0 of the trace
of the form âb dx via the finite map, defined over Q, given by aP/aXo , ... ,
êplaxn -
So the entries of the "skew diagonal" blocks are in Cn+1 · Q; that is to say

in (2in)n. Q. The determinant of the C-bilinear extension of the intersection
form in this basis B2 of L2 is in (2in)nl _ Q where d = dim(E. + E03BB).
Now let B, be a real k = Q(03BB) basis of LI and denote by C the matrix of

the intersection form in BI. Then
1 ° ) C has coefficients in Q(03BB) m R and the matrix D* CD of the C-bilinear

intersection form in the basis B2 (here D = G1d(C) is unknown) satisfies
2°) det (D* CD) E (2in)nd. Q.
If we look now at the matrices of the hermitian intersection form

(normalised by l/(2i7r)" oc u 03B2) in the bases B1 and B2 they are

and
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Fig.

Because the determinant of an hermitian form is real and C has real
coefficients we get (2in)nl E R; that is to say nd is even (this is trivial in our
case 03BB ~ 03BB because d = 2 dim E. is even).
So we deduce from 2° ) that (det D)2 E R and so det DI2 = ± (det D)2.

So we get 0394(03BB) = det DI2 det (1/(2i03C0)n C) E Q by 2°).
This proves the result in this case.
For 03BB = -1 the fact that det (1 /(2i7,)n C) is real shows that nd is even and

we can argue along the same lines.
The case 03BB = 1 is slightly different.
First of all C is no longer real because of the corollary of Loeser’s

Theorem in §1. But of course det (1/(2i03C0)n C) is still real, and so, if we know
that D*[1/(2i03C0)n] CD has a determinant in Q we can again conclude that
(det D)2 e R and so det DI2 = ± (det D)2 and so A(l) e Q.



159

So for the case 03BB = 1 we can again choose a decomposition L2 = (D 0’ H,, + " i
corresponding to integral weights in our basis, but we have to change the
polynomial P* to have a nice Scherk compactification (as in §1) in order to
use results of [V3] in the case of a degenerate intersection form (§3). Of
course this can be dône algebraically over Q** and so we can conclude again
that the determinant of the C-bilinear intersection form in our basis B2
belongs to

(2i03C0)nd · Q where d = dimo El.

Now we can finish the proof in this case as before if, instead of [Bl]
Theorem 3, we use the Theorem of §1 and [V3], §3.

This completes the proof of the Theorem.

REMARK 1. Let f be any polynomial having an isolated singularity at
0 E Cn+1 and defined over Q. For fixed define the integral lattice L1 =
Ea + E03BB and let L2 be the lattice defined by the cohomology classes induced
by spectral projections on LI Ok C of polynomial (n + 1)-forms with
rational coefficients. Then it is possible to prove again that vol (B2/B1)2 ~
Q(À) for any Q(03BB) basis of LI and L2. Just replace the picture we have used
to compute the determinant in our monomial basis of L2, by the picture
given in [V3], §4, no. 6. But of course, it is more complicated to define 0394(03BB)
(the determinant of the canonical hermitian form in a basis of L2 ) in such
a case, because its expression in terms of asymptotics of integrals on the
fibers of f is much more involved.

REMARK 2. Let P E 0 [Xo, ..., Xn, 03BE1, ... , 03BEp] a family of quasi-
homogeneous polynomial (parametrized by 03BE) with an isolated singularity at
the origin. Assume that the Milnor number 03BC(03BE) is constant for 03BE near 0
(in Cp). Then working over the field Q(03BE) leads to an analogous theorem. In
fact, the only point where 03BE appears (because monomials are defined over 0)
is in the residue. Computing trace via the map

leads to coefficients in C(03BE). Then the use of conjugation leads to

0394(03BB)2 e Q(03BE, Z).

* By an algebraic change of coordinates defined over Q.
** As noticed before, this preserves the L2 lattice.
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EXAMPLE (see [B3]). Let P03BE(X, Y, Z) = X3 + y3 + Z3 + 303BEXYZ and
look at À = 1. Then L2 is generated by monomials 1 and XYZ. The remark
above says concretely the following:

Let Q) = Xd Y 039B dZ + YdZ 039B dX + ZdX A dY and for e E C~c(C3)
such that Q =- 1 near 0 we have the following asymptotics when s - 0

Then the square of

is in Q(03BE, Z) (the rationals function on 03BE and Z with coefficients in Q).
The function c,,, (ç) is given in [B3]:

where A(03BE) is the area of the fundamental parallelogram of the elliptic curve
X3 + Y3 + Z3 + 303BEXYZ = 0 in P2 (C). The coefficients CI,2(Ç), C2,1 (ç) and
C2,2(03BE) can be deduced from c,,, (ç) by the following remark: 
We have d03C9/d03BE = 2013 3XYZro on the family P, = s (s fixed). This gives

and

and so
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As one can clearly see in the previous example the matrix of the canonical
hermitian form in a basis of the holomorphic lattice L2 is not "skew

triangular" and has highly transcendantal entries. This comes from the
conjuguation map which does not preserve the L2 lattice.

Proof of the corollary. Denote by (Xo, ..., Xn, t) homogeneous coordi-
nates on Pn+1(C) and identify Pn(C) with the hyperplane {t = 0} in

Pn+1. Let P e Q [Xo, ..., Xn] be an irreducible homogeneous polynomial
of degree ô such that {P = 01 n Pn = Je. Then C(Jf’) = {P = 01 is the
cone over XI in Pn+1,
We shall consider the smooth hypersurface V of Pn+1 defined by P(X) = t03B4.

Then for m ~ C [Xo, ... , Xn] a monomial of degree kô - (n + 1)
(k e N*), the meromorphic differential form (defined over Q) on Pn+l 1

with poles in {P = 0}, satisfies

Then we have the commutative diagram of restrictions and residues (see
Leray [2])

since

As is known (see [G], Theorem 8.3), the image of the residue map ResPnH
is the primitive part Hpnr 1(H, C), so the lattice L2 is generated (as a Q vector
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space) by elements of the following type

for m e Q [Xo, ... , X,, monomial of degree k03B4 2013 (n + 1).
Now it is clear that the map 2in ResvH (which is defined over Q as the

adjoint of the tube map Hn-1(H, Q) ~ Hn+1(V - 9V, Q)) sends the two
lattices of the monodromy invariant part of the cohomology of the Milnor
fiber V - e of the affine hypersurface {P = 01 in Cn+1, to the lattices L,
and 2i03C0L2 of the group H;r-I (:Yf, C). So, as a by product of the proof of the
theorem, we obtain

where 1 = dimCHn-1pr(H, C), for any Q-basis BI and B2 of L, and L2
respectively.

REMARK. This implies of course, that the determinant in any basis B2
of L2 of the hermitian intersection form on Hn-1pr(H, C) normalized by
1/(2i03C0)n-1 Hu tB D is rational.

EXAMPLE. For an elliptic curve in P2(C) defined over Q (Y2 Z = 4X3 -
g2XZ2 - g3Z3 with g2, g3 E Q) we have n = 2, 1 = 2 and L2 is generated
by (Z/Y)d(X/Z) and(X/Y)d(X/Z).
The matrix of this basis in the toplogical basis coming from the standard

parametrisation

where cv, , ro2 are the periods and ~1, 112 the coperiods; the classical Legendre
equation is

which is compatible with the statement of the corollary; namely ((~203C91 -
111 ro2))2 E (2in)2 Q.
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