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Introduction

The main purpose of this paper is to show that the moduli space for

plane curves of given degree D is rational, provided that either or D - 1

(mod. 9) and D  19, or D - 1 (4). This we approach as a problem in
invariant theory, for the moduli space is the quotient variety PD /SL3 , where
PD is the ((D+22)) - l)-dimensional projective space of homogeneous
polynomials of degree D in three variables and SL3 acts by contragredient
substitution on the coefficient. In particular, however, we are unable
to solve the problem when D = 4, in which case the moduli space is

(birationally equivant to) that for curves of genus three. (Recall that
for g  6, Jtg can be described birationally as an orbit space P/G, where G
is some reductive group acting linearly on a projective space P; from
this description we have shown that Jt4 and m6 are rational, while for -6i
and Jt2 this was established by the invariant theorists of the last century).
We also show that if X is the space of pencils of binary forms whose degree
K is even and at least ten, then the quotient XIPGL2 is rational and, using
a result of Mukai [8], that the moduli space for polarized K3 surfaces of
degree 18 is rational.

This general question of whether P/G need be rational has been answered
negatively by Saltman [11]; in his counter-examples G is finite, and it
is still unknown whether quotients of projective spaces (or other homo-
geneous varieties) by connected, or even classical, groups are rational.
However, Bogomolov has shown [2] that for many groups, including the
simply connected classical ones, these quotients are stably rational (in other
words, their products by suitable projective spaces are rational). On the
other hand, Beauville, Colliot-Thélène, Sansuc and Swinnerton- Dyer [1]
have constructed irrational threefolds X such that X x p3 is rational.

* Partially supported by an NSF grant.
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Preliminaries

NOTATION. (i) Whatever the group G, 1 will denote its trivial one-dimensional
representation.

(ii) If the reductive group G acts linearly on the quasi-projective variety
X, a point x E X is very stable if it is stable and its stabilizer is trivial. The
locus of very stable points will be denoted by Xvs. (If we need to emphasize
the G-linearized polarizing sheaf 2, we shall write X’VS(2).) We shall say
that X is a good G-space (or simply good) if Xvs ~ QS. If V is a representa-
tion of G and Z the kernel of the action of G on P(V), then we shall say that
V is very good if V is a good G-space, P(V) is a good (G/Z)-space and Y is
not an eigenspace for any one-parameter subgroup of G (so that Z is a finite
subgroup of the centre of G).
By Mumford’s theory [8] and Luna’s étale slice theorem [8, Appendix 1],

G acts freely on Xvs; a geometric quotient Xvs/G exists and the map n:
Xvs ~ Xvs/G is a principal G-bundle. See [8] for the details.

(iii) We let the symbol ~ denote birational equivalence.

THEOREM 1 [8, §7.1]. Suppose thatf. X - Y is a G-equivariant morphism of
quasi-projective k-varieties and that 2 E Pic Y, m E Pic X are G-linear
sheaves where 2 is ample and m is ample relative to f Suppose that
Yvs(L) ~ 0. Then for all n ~ 0,

Set YVS(2) = Yo . Then there is a Cartesian diagram

and there exists 21 c- Pic (YOIG), m1 E Pic (XOIG) such that

The birational triviality of certain principal bundles

If G acts on X, then the quotient map n: Avs ~ Xvs/G is a G-bundle in the
étale topology. We shall be concerned in this section with the question of
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whether n is a bundle in the Zariski topology; it is well-known that this is
equivalent to 03C0 having a section defined generically, and to 1t being generi-
cally a bundle in the Zariski topology.

PROPOSITION 2. If G is a connected reductive group, then the following state-
ments are equivalent.

(i) There exists a good representation W such that the morphism Wvs ~
W’elG is a Zariski G-bundle.

(ii) Every principal G-bundle X - Y carrying an ample G-linearized
invertible sheaf is a Zariski bundle.

(iii) For any very good representation V of G, the morphism P(V)vs ~
P(V)VSjG is a Zariski (GjZ)-bundle, where Z is the kernel of the action of G
on P(V) (Z is a subgroup of the centre of G).

Proof. (i) ~ (ii): By Theorem 1, there is a commutative diagram

whose top and bottom squares are Cartesian. Moreover, using Theorem 1
to descend a suitable line bundle cutting out O(1) on fibres of a, it follows
that a is a ruling. (We have blurred the distinction between regular and
rational maps on one hand and that between S and Svs for a G-variety S on
the other, in an abuse of notation that will recur throughout this paper.) By
hypothesis, Q is a ruling, and so by pull-back 03C3 is also a ruling. So there is a
generic section y: Y - X x P( W 0 1); then pl o y is a generic section of n.

(ii) =&#x3E; (iii): By hypothesis, the map a: Vvs ~ VVS j G is a Zariski bundle.
Recall a result of Hall [7] and Rosenlicht [10]: if a torus T ~ (C*)r acts

with finite kernel on a variety X, then X - (X/T ) x pr. Let T = C*; then
there is an obvious action of T on V, commuting with that of G, and we have
P(V)vs ~ VVSjT, canonically. Consider the commutative diagram



54

where the vertical maps are quotients by T; by hypothesis, a is a ruling, and
03B2 is also a ruling by the result just quoted. Hence y has a generic section, and
so is a Zariski bundle.

(iii) ~ (i): Take any good representation W (which certainly exists, since
for any semi-simple group there are, up to isomorphism and the addition of
trivial factors, only finitely many faithful representations that are not good).
It follows from the hypothesis that P(W ~ 1) ~ P( W E9 1)/G is a Zariski
G-bundle, and so W - WIG is a Zariski bundle. Q.E.D.

Here are some examples of pairs (G, W ) satisfying the hypotheses of
Proposition 2, (i):
G = SLn or Spn and W is the space of n x n matrices on which G acts by

left multiplication. Using the description of the ring of invariants given by
Weyl [ 13], it is easy to see that W is ruled over W/G.

It is worth pointing out that in contrast to the case of G = SLn just
mentioned, if V is a representation of PGLn containing a very stable
vector, the quotient map V - VIPGLN is never a bundle in the Zariski
topology. For by Proposition 2, it is enough to produce one such repre-
sentation V. The conjugation action of PGLN of Mn gives a homomor-
phism PGLn ~ Aut(Mn) = GLn2, and GLn2  V = Cn4; the left multi-
plication of GLn2 by PGLn extends to a linear action on V. Now let P

be the stabilizer of a point in the action of PGLN on pn-1. Consider
the map a: GLn2/P ~ GLn2jPGLn; Haboush has shown [6] that this is

generically a universal Severi-Brauer scheme. Since non-trivial Severi-
Brauer schemes over function fields exist for all dimensions, it follows that
a cannot be uniruled, or else a would be generically trivial, by Châtelet’s
Theorem. Hence the quotient map V - V/PGLn cannot be ruled, as we
said above.

Plane curves

Our aim in this section is to prove the following result:

THEOREM 3. The orbit space of the family of degree D plane curves, modulo
the action of SL3, is rational, provided that D ~ 1(9) and D  19.

Note. The hypotheses on D arise because the technique requires that D be
prime to 3, and that D be sufficiently large; moreover, there are computa-
tional difhculties that have only been overcome when D - 1(9).
We begin by setting up some notation. We denote by V(D) the space of

temary forms of degree D (so that V(D) = SymmD(C3)v, where C3 is the
standard representation of SL3, and set PD = P(V(D)), the family of plane
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curves of degree D. Throughout, G will denote the group SL3 and G will
denote PGL3.
The idea behind proving that PD ISL3 is rational is the following. Suppose

that D - 1(3). Then we shall construct a G-equivariant rational map 0:
PD ~ P4 given by a linear system of quartics, and establish various things:

(i) ~ is dominant.
(ii) The generic fibre F of 0 is geometrically reduced and irreducible, so that

F is a component of the complete intersection F’ of fourteen quartics.
(iii) There is a linear space L contained in the triple focus of each quartic

containing F’ such that dim L  13. Thus if we project F’ away from
L to a complementary linear space M in PD via a map n the fibres of n
are linear.

(iv) The restriction of n to F is dominant. (We shall express this by saying
that the linear space L is non-degenerate.)

From (i)-(iv), it follows that F is rational over the function field C(P4).
Pass now to the quotients by G. Set X = PD/, Y = P4/, and let 03C8:

X ~ Y denote the induced map. Since G acts generically freely on P4, the
generic fibre F* of 03C8 is geometrically isomorphic to F. If K = C( Y), the
invariant subfield ofC(P4), then F* lies naturally in (PD) x K, and we show
that F* is rational over K by finding a non-degenerate linear space L* as in
(iii) above that is defined over K. To do this, we use the birational triviality
of the principal G-bundle P4 ~ Y. It now follows that F* is rational over

K; say F* - Y x PN. To complete the proof, we use the fact that although
the rationality of Y is unknown (of course, Y - m3), the product Y x p8
is rational; since N &#x3E; 8, it follows that X is rational over C.

The construction of ~. The existence of 0 is equivalent to the appearance
of V(4) as a component of the representation Symm4 (V(D)) of G, a fact
which can presumably be checked by a computation of characters. However,
to prove the statements (i)-(iv) above, we must know 0 explicitly; its mere
existence is insufhcient. To achieve this, we use the symbolical method,
which we now outline; for a full and lucid description, see [4].

First, some more notation. For a multi-index i = (i1, i2, i3) of non-

negative integers, we write i = il + l2 + i3; if # i = D, then (Di1 , i2, l3
denotes the trinomial coefficient D!/(i1!i2!i3!). Let (x1 , x2, x3) be homo-
geneous co-ordinates on P2, and let xi denote the monomial xi11xi22xi33. Then

for f ~ V (D), we can write f = 03A3#i=D (il i2 i3) Ai. xi, since char C = 0.
For us, the symbolical method provides a way in which to write down

covariants, i.e. G-equivariant morphisms from V(D) to other G-spaces. It pro-
ceeds by writing f "symbolically" in several different ways as a D’th power of
a linear form ax = a x + x + a3x3’ so that f = axD = bxD = c D - ... ,
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then taking a suitable formal expression in the symbols x, a, b, c, etc. (and
maybe various contragredient variables as well, although we shall not need
this generality) and finally substituting in the identities A; = ai11ai22ai33 =
bi11bi22bi33 = ... to rewrite the expression as a function only of the coefficients
A; and the variables XI , X2, x3. The action of G on the sets a, b, etc. of formal
coefficients is contragredient to that on the variables xl , x2 , x3, so that the
linear forms ax, bx ... and the determinants

which will be denoted by (abc), etc., are G-invariant.
Now we can write down the map 0. Say D = 9M + 1. Then we define

0: V(D) ~ V (4) by

Since all the terms (abc), ax, etc. are G-invariant, we see that 0 is

G-equivariant. By abuse of notation, we also let 0 denote the induced
rational map PD ~ P4. Write ~(f) = 03A3#a=4 G03B1x03B1; then 0 is defined by the
linear system of quartics generated by the G(I.
We need some more notation:

For any i, j, k, l ~ 7 and for P = 1, 2, 3, set p03B2 = i03B2 + jfJ + kfJ + 1,. For
any subset S ~ I, we let P(S) denote the linear subspace of PD defined by
the equations (Ai = 0~i~ S). If S = {i}, we write P,. for P((i}).
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T denotes the maximal torus of SL3 consisting of diagonal matrices.
Define weights w1, w2 of monomials xk by w1(xk) - kl - k2 and w2(xk) =
kl - k3.

Finally, let B denote the base scheme of the map 0. The proof of (i)-(iv)
hinges upon an analysis of B.

LEMMA 4. There is a point P at which B is smooth of codimension 15.
Proof of Lemma 4. Since ,SL3 acts covariantly on the variables x and

contravariantly on the coefficients {Ai}, it follows that w1(Ai 2022 Aj 2022 Ak 2022 Al) =
p2 - p, and w2(Ai 2022 Aj 2022 Ak - Al) = p3 - pl . Also, for a E A, WI (xOt) =

a 1 - (X2, w2(x03B1) = 03B11 - OE3. Hence if the term AjAjAkAl 2022 x03B1 appears in the
covariant 0 (f) with non-zero coefficient, we must have P2 - Pl = a2 - OC 1
and P3 Pl = a3 - a, . Since 1, 03B103B2 = 4 and E, po = 4(9M + 1), it follows

that p03B2 = 03B103B2 + 12M for p = 1, 2, 3. In particular p1  4 + 12M, and so
every one of the quartic hypersurfaces {G03B1 = 01 is triple along the linear
space P(J). In particular, P(J) c B ; we shall analyze B by projecting away
from P(J). So consider the diagram

where a, n are the projections with centre P(J). Notice that every fibre
03C3-1(P), P E P(H), is (at least set-theoretically) a linear space.

Consider the vector j = (M + 1, 4M, 4M). Note that for every a E A,
the vector i = a + 12M (1, 1, 1) - 3j lies in J (provided that M  2)
and the term A; A3j 2022 xat is T-invariant. We shall need the following result:

PROPOSITION 5. Provided that M  2, then for every a E A and for i =

a + 12M (1, 1, 1) - 3j, the term A; 2022 A3j 2022 x" occurs in the covariant ~ (f)
with non-zero coefficient.
The proof of Proposition 5 is postponed.
Assuming Proposition 5, we see that the fibre 03C3-1(Pj) is a reduced linear

space of codimension 15 in the linear space 03C0-1(Pj). Then there is a unique
irreducible component BI of B such that J induces a dominant map
B1 ~ P(H), and moreover B, is of codimension 15 in P(I). Also, since
(J-I (IJ) is reduced, it follows that B is reduced at the generic point of B1.
Then take P to be a geometric generic point of BI. This completes the proof
of Lemma 4.

Proof of Theorem 3. For any r, put P(V(r)) = Pre Let t/J: PD ~ P4 be the
rational map induced by ~. Let y: D ~ PD be the blow-up along B and let
: D ~ P4 be the induced morphism;  is PGL3 -equivariant. We have a



58

commutative diagram

where prl, pr2 are the projections.
Since B is locally a complete intersection at P,  induces an isomorphism

03B3-1(P) ~ P4. Since also B is smooth at P, it follows that PD is smooth along
03B3-1(P). Let v: Pg - PD be the normalization. Put v-1(03B3-1(P)) = X; then v
induces an isomorphism 03A3 ~ 03B3-1(P), and so an isomorphism 03A3 ~ P4.
Hence the induced morphism 03C8*: P*D ~ P4 has a section, and so is equal to
its Stein factorization. Then by Bertini’s theorem, the geometric generic fibre
of 03C8* is normal and connected, and so irreducible; hence the geometric
generic fibre of  is reduced and irreducible.

Let 03BE denote the generic point of P4 . Then the generic fibre Fç = -1(03BE)
maps isomorphically to its image F’03BE in PD ~ k(03BE) via y. By construction, F’03BE
is an irreducible component of the intersection E03BE of 14 quartics in

PD p k(03BE) all of which are triple along P(J) Q k(03BE). Let r denote the
projection away from P(J) ~ k(03BE). Since F’03BE contains B, (8) k(03BE), 03C3:

Bi - P(H) is dominant, and B1 is the only component of B on which u is
dominant, it follows that r induces a dominant map F’03BE ~ P(J) and E’03BE is the
only component of E03BE on which r is dominant. Since every fibre of r L is a
linear space, at least set-theoretically, the same is true of r IF¿. Pulling back
to PD x P4, we see that projection away from P(J) 0 k(03BE) induces a
dominant map F03BE ~ P(H) p k(03BE) whose fibres are linear.
We now pass to the quotients. The locus X c P4 of very stable points is

open and non-empty. (The sheaf &#x26;(3) is PGL3-linearized.) Put Y = -1 (X),
Z = PD x X, m = pri w(1) 0 pr*2O(2) E Pic Z. PGL3 acts on Y and Z,
and m is linearized. Set X1 = XIPGL3, YI = YjPGL3, ZI = ZjPGL3; by
Theorem 1 these quotients exist and there is a commutative diagram

where every square is Cartesian. Moreover, JII descends to a sheaf JIll E
Pic Z, that induces O(1) on each fibre of 03B41. Hence Z1 ~ X1 is a P’-
bundle in the Zariski topology. Let ~ be the generic point of Xl. Put
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m = dim P(J) = # (J) - 1. Consider the algebraic k(’1)-scheme W =

{m-planes L in (Z1)~ = PD Q k(’1) such that projection away from L onto
a complementary (N - m - 1 )-plane L’ induces a dominant map (Y1)~ - L’
with linear fibres, and L lies in the triple locus of every member of some
14-dimensional linear system of quartic hypersurfaces containing (Y1)~} . W
is a locally closed subscheme of the Grassmannian of m-planes in PN. It
follows from our discussion of F03BE = (Y1)~ ~ k(03BE) that W has a k(03BE)-point.
By Proposition 2, k(03BE) is a rational extension of k(’1), and so W has a
k(~)-point, say II. Then projection away from II shows that (Y1)~ is rational
over k(’1). Since XI x p8 is rational and dim Y - dim Xi a 8, it follows
that Y, is rational. Q.E.D.

It remains to prove Proposition 5.
Write D = 9M + 1. Recall that j = (M + 1, 4M, 4M), and that

for each vector x with #03B1 = 4, we define i = a + 12M(1, 1, 1) - 3j.
Proposition 5 will follow from a stronger result.

PROPOSITION 6. The coefficient C03B1 of Ai - Aj3 - x03B1 in the covariant ~ ( f ) is given
by C03B1 = (-1)M(3MM,M,M) 2022 (6M2M,2M,2M) 2022 03C303B1(M), where each 03C303B1 is a rational func-
tion that does not vanish for any integral value of M  2.

Proof. We define r1, ..., r6 to be the coefficients of certain monomials in
the symbolical expression

ri is the coefficients of

r2 is the coefficients of

r3 is the coefficients of

r4 is the coefficients of

rs is the coefficients of

r6 is the coefficient of 

Then each C. is an integral linear combination of r1 , ... , r6; we have the
relations
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The other Ca are given by symmetry.
The key to computing the quantities rl, ... , r6 is an identity involving

Laguerre polynomials which was pointed out to me by Noam Elkies. Recall
that the Laguerre polynomial L03B1n(x) of degree n and index a is

The identity in question is

([5], p. 1089). Differentiating this with respect to y and using the fact that
(Lf7.)’ = - L03B1+1n-1, we get

Differentiating once more with respect to y gives
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We deduce various combinatorial identities from those above by setting
x + y = 0 and comparing coefficients of powers of x, remembering that
L03B1n(0) = (T). Then from (*) we get

multiplying through by r ! and comparing the coefficients of xr gives

From (**), we derive

by comparing coefficients of x2k, and

From (***), we derive

by considering the coefficients of X2k; comparing the coefficients of x2k-1
yields
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We shall use these identities, for various values of n, k, a, to compute
rl,...,r6.

Fix some more notation: for any monomial N in the symbols al , a2, a3,
... , d3, let C(N) denote the coefficient of N in A. Here need not be a
number, if the degree of N is small. Also, let (bc) denote

So for example, Hence

Expansion of this last
expression shows that

using (A) with r = n = 4M, oc = 0, we see that

(Identity (A) in this case is well-known and due to Dixon.)
Rather than expand determinants to evaluate the other ri, we shall use the

fact that A is annihilated by the Lie algebra sl3 (although some expansion,
similar to that above, will be required). Put

Recalling that a,, ... d3 are contragredient variables, we have x(a,) = a2,
x(a2) = 0, x(a3) = 0. Since the only monomials Z such that

a9M-11a2bM1b4M2b4M3cM1c4M2c4M3dM1d4M2d4M3 appears in x(Z) are a,9m - b’ ......
d34M,a9M-11a2bM+11b4M-12b4M3cM1 ...... d34m and the two monomials obtained
from the latter by permuting the h, c and d, it follows that 9M 2022 r1 +
3(M + 1). r2 = 0, and so
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We next compute 73. For this, we consider the action of lX. The only
monomials Z such that a9M-11a2bM+11b4M-12b4M3cM+11c4M-12c4M3dM1d4M2d4M3 = W1,
say, appears in tx(Z) are

and

We have C(W2) = r3, C(W3) = C(W4) = r2, and

The only monomials differentiating under tx to

Note that C(Wo) = r, and C(W6) = C(W7). Expansion of the determinants
show that

Now
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and

applying identity

Also, the action of lx shows that

So

and so since we get

So

We next consider ’4. Let W8 denote the given monomial whose coefficient
is r4 ; then rx(W8) contains

The other monomials whose images under contain this are W2 and the two
other monomials obtained from W2 by permuting the vectors b, c and d.
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Then 3 2022 r4 = 3 2022 4M 2022 C(W2), and r4 = - 4M. r3 ; hence

Now consider rs. Let

and let W9 denote the given monomial whose coefficient is rs. Then the
monomials Z for which a9M-11a2 2022 bM1b4M2b4M3 2022 CM+11C4M-12C4M3. dM+11d4M2d4M-13
appears in y(Z) are ?9, ?4,

and

We must find C(Wlo) and C(W11).
The monomials Z for which

appears in ’x(Z) are W o,

and

Expansion of the determinants shows that
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using identity (B) with

Similarly,

Using (B’) with k = 2M, n = 2k - 1, a = 0. Also,

The first sum is 1 2 (6M2M,2M,2M) as above, while the second is
by identity (C’) with n = 2k, k = 2M, a = 0. So
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Since

we get

The monomials Z for which ’x(Z) contains

Again expanding we see that

The first sum is zero. Denote the second sum by Y; then

Also

So and so
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Similarly,

Applying identity (C) with n = 2k + 1, 03B1 = - 1, k = 2M, we see that

Since

we have

Now we can compute rs = C(W9), using the fact (coming from the y-
invariance of A) that

So

Finally, we consider r6. Let W18 denote the given monomial whose coef-
ficient is r6. Then the monomials Z such that y(Z) contains

and
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Note that C(W2.) = C(W21) = r3. Next, notice that the monomials Z for
which

appears in ’x(Z) are W9, W,o,

and

Note that C(W22) = C(W11).
The monomials Z such that tx(Z) contains

and

Note that C(W24) = C(W16), while expanding the determinant shows that

The second sum vanishes, while the first is
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by applying identity (B’) with n = 2k - 1, k = 2M, 03B1 = 1, and so

Now

and so

Next, we compute C(W19) from the equation

we get

Then from the equation

we deduce that

and so
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Bearing in mind the relations between the coefficients C. and r1 , ... , r6 , we
have proved that indeed every C03B1 = (- 1)’ (M,3ffM) . (6M2M,2M,2M) 2022 03C303B1(M),
where each 03C303B1 is a rational function which it remains to determine.

It is clear that none of these functions vanishes for any integral value of
M  2. This completes the proof of Proposition 6.
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REMARK. For hypersurfaces of degree D in P", we reduce the question of
whether the quotient is rational to a problem of showing that certain
coefficients do not vanish, provided that (D, n + 1) = 1 and D is sufficiently
large. However, the coefficients seem to be much harder to compute; for
example, for surfaces of degree 16M + 1 in P3, the most accessible coef-
ficient required is that of

On the other hand, if D is not prime to n + 1, then the argument breaks
down, even for binary forms of even degree (this latter problem has been
solved by Katsylo and Bogomolov [3], using a different idea) since whatever
covariant V(D) ~ W we construct, the map P(W) ~ P(W)ISL is not
ruled. Using other techniques, however, we can also prove the following
result.

THEOREM 7. The quotient P(Vd)/SL3 is rational if d ~ 1(4).
The proof will be based upon the following key result.

PROPOSITION 8. Suppose that W is an odd-dimensional representation of the
reductive group G, and that there is a finite subgroup Z of the centre of G so
that G = GIZ acts generically freely on P(W). Suppose that V is a G-subspace
of A 2 WV such that G acts on P(V), dim V  dim W and such that given
any w E W, there is an element v of V such that v(w) = 0 and v has
maximal rank. Assume that there is a line bundle 2 on P(V) x P(W) that
is G-linearized and that cuts out O(1) on the fibres of the projection onto P(W).
Then P(V)IG - P(W)/G x P’, where r = dim V - dim W.

Proof. Since dim W is odd, there is a G-equivariant rational map n:
P(^2 Wv) ~ P(W) given by associating to each 2-form its kernel. The
locus of indeterminancy of n is the set of forms whose rank is not maximal,
and the fibre 03C0-1(w) can be identified with P(^2(W/~w~)v). After blowing
up, n is a G-equivariant projective bundle. By hypothesis, n induces a
rational dominant mapping Q: P( V ) - P(W) that is generically a projective
bundle. By restricting the bundle L to the graph of a, descending the result
to P(V)/G and using Theorem 1 as before, we see that P(V)/ is generically
a projective bundle over P(W)/G, as required.
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COROLLARY 9. Suppose that G is a symmetric group S2n and that V ~ C2n -1
is the representation of G as the Weyl group W(A2n-l). Then the quotient
P(^2V)/G is rational.

Before proceding with the proof of Theorem 7, we shall recall how to give
a symbolical description of other representation of SL3, and how to use this
description to given explicit decompositions of various tensor spaces.
The irreducible representations of SL3 will be denoted by V(p, q), corre-

sponding to the diagram pq, where p, q are non-negative integers. Here,
V(p, 0) = Vp, the space of ternary forms of degree p, and V(0, p) = Vpv.
We can describe V(p, q) as a subspace of V(p, 0) Q V(0, q) in symbolical
terms, as follows:

where xl, x2, x3 are cogredient variables, U,, u2, u3 are contragredient
variables and uA = Al Ul + A2 u2 + A3u3 . In non-symbolical terms, we can
write an element f of V(p, q) as

where aij = ai 2022 Aj, and the coefficients ai,, satisfy the linear relations implied
by the condition that aA ap-1x Q uq-1A = 0. We can interpret V(p, q) as
the space of sections of a line bundle OF(p, q) over the flag variety
F = {(x, l)| x ~ P2, ~ ~ (P2)v and x E /}, as predicted by the Borel-Weil
theorem, as follows:
F is a divisor of bidegree (1, 1) on p2 x (P2)v . Let prl , pr2 be the

projections of P2 x (P2)v onto its factors, and put O(p, q) = pri O(p) (D
pr2*O(q) . Then from the exact sequence 0 ~ O(-1, -1) ~ O ~ (9F -+ 0,
we get 0 ~ O(p - 1, q - 1) - O(p, q) ~ (9F(p, q) - 0; then the sym-
bolical description above gives an explicit splitting of the map V(p, 0) (8)
V(0, q) = H0(O(p, q)) - H0(OF , q» = V(p, q). From this description,
we see that dim V(p, q) = 1 2(p + 1) (q + 1) (p + q + 2).

Proof of Theorem 7. Set W = V(1, 2n), so that dim W = (2n + 1) x
(2n + 3) = N, say. There is an embedding of V = V(4n + 1, 0), the space
of ternary (4n + 1 )-ics, into 039B2Wv, given symbolically by the formula
a4n + 1 (bx 0 u2nB, cx ~ u2n) = (abc) a2Bn ac. To prove the theorem, it will

be enough to check that the hypotheses of Proposition 8 hold for this
embedding.

There is a G-equivariant embedding F  pN-1 = P(v(1, 2n)v), so
that (9F(I) = OF(1 , 2n). Letting prl, P2 denote the projections of F onto p2
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and (P2) v , we see that under pr2 F is embedded as a scroll over (P2)v; i.e.
the fibres of pr2 are embedded as lines. Let Gr denote the Grassmannian of
lines in PN-1, and let X c Gr be the subvariety corresponding to the fibres
of pr2. Clearly X ~ p2 and we wish to determine its degree via the Plücker
embedding X  Gr  Pp-1, where p = (N2).
Put 2 = pr*1O(1), m = pr2*O(1), so that OF(1) = 19(2 + 2nm).
Note that ,p3 = m3 = 0, and L2 2022 m = L 2022 Jl2 = 1.

Put A = {l E Gr|l lies in a given hyperplane},
B = {l E Gr| l meets a given linear space of codimension 3},
C = {l E Gr| l meets a given linear space of codimension 2},

Then C is a hyperplane section of Gr in its Plücker embedding, and C2 =
A + B. Note that deg X = X C2 = X 2022 A + X B.

LEMMA 10. X B = 12n2 + 6n.

Proof. X 2022 B = deg F, and

LEMMA 11. X. A = 4n2 + 2n + 1.

Proof. Let 5’e 1 F n H| be a smooth hyperplane section of F. Then
X A is the number of fibres of pr2 that lie in H, which is the number
of exceptional curves contracted by the birational morphism pr2: S ~ P2.
This number in turn is 9 - K2S. By the adjunction formula, O(KS) =
OS(-L + (2n - 2)m), and so A£ = (-2 + (2n - 2)m2 2022 (L +
2nm) = -4n2 - 2n + 8. The lemma follows.

It follows from these two lemmas that

Since the embedding X « Gr « pp-l is G-equivariant, X must be
embedded by a complete linear system, and so is embedded by
H0((OP2(4n + 1)). In other words, the linear span of X in Pp-1 must be
P(V4n+1). We shall use this description and the connection with the pro-
jective geometry of F to prove that the hypotheses of Proposition 8 do
apply to the embedding V « 1B 2 WV. For this, we shall need two
lemmas.

LEMMA 12. Say N = 2k + 1, where as above N = (2n + 1) (2n + 3). Sup-
pose that PI’ ... , Pk are generic points on X, corresponding respectively to
lines L1 ... , Lk in PN-’ and to 2-forms xl , ... , xk . Then the linear span
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~L1, ... , Lk~ is a hyperplane PN-2 in PN-1, or equivalently for generic
scalars 03BB1 ,... , Âk, the 2-form 03BB1 XI + ... + 03BBkXk is of maximal rank.

Proof. Suppose in fact that there is a positive integer r  k - 1 such that

given generic pl , ..., p,,, 1 as above, the linear span ~L1 , ... , Lr~ is

(2r - 1 )-dimensional, but L1, ... , Lr+1~ is at most 2r-dimensional. If
dim L1, ... , Lr+1~  2r-1, then given L1, ... , Lr, every line L’+I 1
lies in ~L1, ... , Lr~, which contradicts the irreducibility of the G-action on
PN-1. So we can suppose that dim ~L1, ... , Lr+1~ = 2r; i.e., that L, + 1
meets ~L1, ... , Lr+1~ in a point.
Now suppose that LI, ... , Lr+1, M are lines corresponding to generic

points of X. Put 03A0 = (LI, ... , Lr~, 03A0’ = ~L1, ..., Lr-1, Lr+1~; both II
and II’ are (2r - 1 )-dimensional. We know that M meets both II and Il’,
and so either M is contained in ~L1, ... , L, + 1 ) or M meets 1-1 n II’. Hence
either every line corresponding to a point of X lies in a fixed p2r, or every line
meets a fixed P2r -2; both of these, however, contradict the irreducibility of
the G-action, and the Lemma follows.

LEMMA 13. Given a generic w E W, there are points PI’ ... , pk E X corre-
sponding respectively to 2-forms xl , ... , xk such that for generic scalars
Âl, ... , Âk, the 2-form 03BB1x1 + ... + ÂkXk has maximal rank and xi(w) = 0
for all i.

Proof. By the previous Lemma, there is a rational map Q: Xk = X x
... x X - P(W) given by Q(p1, ... , Pk) = ker (x1) n ... n ker (xk),
where xi corresponds to Pi. We need to show that e is dominant.
Suppose that Q is not dominant. Then given generic pl , ... , pk in X,

there is a one-parameter deformation {(p1,t, ... , px,t)}r~0393 of (Pl 9 ... pk)
such that for all t ~ 0393, Q(p1,t, ... , pk,t) = Q(p1, ... , pk). I.e. if Li, Li,t
are the lines corresponding to pi, Pi,t’ then the linear spans ~L1, ... , Lk~,
~L1,t, ... , Lk,t~ are all equal. Denote this common linear space by H,
a hyperplane. Then F n H contains a one-dimensional family of lines,
parametrized by a cover of r. Denote the total space of this family by
0394. Then QF(0394) ~ pr*2QP2(d), some d. Also, QF(1) ~ pri w(1) 0 pr2*Q(2n),
and so d  2n. So we have k generic points pl , ... , pk on p2 and a curve
of degree d  2n through them. However, k = 2n2 + 4n + 1, while

h0(OP2(2n)) = 2n2 + 3n + 1; so this is impossible, and the Lemma is

proved.
Completion of proof of Theorem 7. Let Y g P(039B2Wv) be the subvariety

swept out by the linear spans ~L1, ..., Lk~, as L,, ... , Lk run over the
lines corresponding to points pl , ... , pk of X. Since P(V) is the linear span
of X, we see that Y z P( V ), while by the previous two Lemmas the generic
point of Y corresponds to a 2-form of maximal rank, and the rational map
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P(039B2Wv) ~ P(W) is dominant when restricted to Y, and so a fortiori
when restricted to P( V ).

Next, we need a sheaf Y. For this, let a: P(V) x P(W) ~ P(V), 03B2:
P(V) x P(W) ~ P(W) be the projections. Then 03B1*O(1) Q 03B2*O(2) is

PGL3-linearized and cuts out O(1) on the fibres of fi. It is known that PGL3
acts generically freely on P( W), and so by Proposition 8 we have P(V)/G ~
P(W)/G x P’, where r = dim V - dim W = 2n(2n + 1). To complete
the proof, we must consider two cases separately.

(i) 4n + 1 ~ 0(3). Then V(4n + 1, 0) and V(1, 2n) are representations
of PGL3. Let g denote the adjoint representation of PGL3; then PGL3 acts
generically freely on P(g ~ g) and the quotient P(g ~ g)/PGL3 is rational,
and so (P(W)IPGL3) x P(g ~ g) is rational. Since dim P(g ~ g) = 15
and 2n(2n + 1)  20, it follows that P(V)/G is rational.

(ii) 4n + 1 ~ 0(3). Let F again denote the flag variety with projections
prl, pr2 : F ~ p2. Put 2 = pr1*O(1). Consider G = PGL3 acting on
F x P(W) ; let a: F x P(W) -4 F and 03B2: F x P(W) ~ P(W) denote the
projections. Then ex* 2 Qx 03B23*O(i), where i = 1 or 2 according to whether
4n + 1 ~ 1 or 2(3), is G-linearized and descends to a line bundle that cuts
out O(1) on the fibres of (F x P(W))/G - (P’ x P(W))/G, the map
induced from pr2: F - P2. Hence (F x P(W»IG - (P2 x P(W))/G x P’,
and similarly (P2 x P(W))/ ~ P(W)IC x p2, so that (F x P(W))/G ~
P(W)IG x p3. On the other hand, (F x P(W))/G ~ P(W)IB, where B is
a Borel subgroup of G, and this is rational by a theorem of Vinberg [12].
Hence P(W)/G x P3 is rational, and so P(V)/G is rational Q.E.D.

Pencils of binary forms of even degree

It is frequently natural to study quotient spaces X/G, where X in some
homogeneous variety more general than projective space. In this section we
consider the case where X is the space of pencils of binary forms whose
degree is given, and G = PGL2.
We fix the following notation: V (D) = H0(OP1 (D)), PD = P(V(D)) and

Gr = Grassmannian of lines in PD. We assume that D = 2K is even.

THEOREM 14. If D  10, then GRIG is rational.
Proof. We have the Plücker embedding Gr  P(039B2V(D)) = pN, say.

We shall write down a linear covariant ~: 039B2V(D) ~ V (6), again using the
symbolic method. (The existence of 0 follows from examining the weights
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of the representation 1B 2 V (D), but to prove various non-degeneracy state-
ments we shall need to know 0 explicitly.) Let f E 039B2(V(D)); symbolically,
we can write f = aD Q bDx, an alternating tensor (so that interchanging ax
and bx transforms f into -f ). We write

Then the Plücker coordinates {03BBij} are given by 03BBij = AiBj - AjBi. Hence
f = 03A3ij(Di) (Dj)03BBij (xD-11xi2 039B xD-j1xj2) . Define the covariant ~ by
~(f) = (ab)D-3a3x 2022 b3x, where

Write 0(f) = 03A3603B1=0 g03B1({03BBij})x6-03B11xa2, where each g03B1 is a linear func-
tion of {03BBij}. Let T c SL2 be the maximal torus consisting of diagonal
matrices, and let w be its weight defined by w(xj , x2 ) = (1, -1). Then
w(Ai) = (D - 2i) = 2i - D, and so w(03BBij) = 2(i + j - D), w(g03B1) =
2a - 6. ~ induces a rational map 03C8: Gr - P6 ; let B be the base scheme
of gl.

LEMMA 15. There is a point Q E B at which B is smooth and has codimension
7 in Gr.

Proof Set I = {(i, j)|i, j ~ Z and 0  i  j  D}. For any subset
5’ c I, define P(S) ~ PN by the equations 03BBij = 0 ~(i, j) E I - S. Put
H = {(0, 1), ... , (0, D)}, J = I - H, and project B away from P(J) to
P(H) via the rational mapr. Consider the fibre 03C4-1 (P0,k+2) = B ~ P(J u
{(0, K + 2)}) as a subscheme of P(J u {(0, K + 2)}). This has homog-
eneous co-ordinates 03BB0,K+2; 03BB12,...., 03BB1D; ... ; 03BBD-1,D; the other Âj vanish.
Amongst the Plücker equations defining Gr, we have 03BB0,K+2 2022
03BBij - 03BB0,i 2022 03BBK+2j + 03BB0,j 2022 03BBK+2,i = 0 if i, j are both distinct from 0, K + 2. So
(03C4-1(P0,K+2) - P(J))- (the bar denoting closure) is contained in the locus
defined by the equations Âj = 0 whenever i, j are both distinct from 0,
K + 2, so the remaining coordinates are

Now 1 claim that for each a = 0, ... , 6, the variable 03BBK-5+03B1,K+2 occurs
in g03B1 with non-zero coefhcient; this will be verified later. Then from the
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equations g0 = ··· = g6 = 0, we deduce 03BBK-5,K+2 = ... = 03BBK+1,K+2 = 0.

Hence (03C4-1(P0,K+2) - P(J))- ~ PD-8. Take any point Q E 03C4-1(P0,K+2) -
P(J), and the Lemma is proved.
Proof of Theorem 14. Let 1t: Gr ~ Gr be the blow-up along B and 03C8:

Gr ~ P6 the induced morphism. As in the proof of Theorem 3, 03C8 is sur-

jective and its generic fibre is geometrically reduced and irreducible. Set
X = p6s, Y = 03C8-1(X), Z = X x Gr, W = X x PN, X1 = X/G, Y -
Y/G, Z1 = Z/G, W1 = W/G. We have a commutative diagram with
Cartesian squares:

Let ~, 03BE be the generic points of X, X1 respectively. Then by descending
a suitable line bundle as before, we have (W1)~ ~ PN Q k(pl), while (Z1)~ is
a form of the Grassmannian G(2, D + 1) Q k(~) and (Y1)~ n (Z1)~ is
defined as the intersection of (Zl )n with a linear space of codimension 6.
Denote G(2, D + 1) by r.

LEMMA 16. (Z1)~ ~ 0393 ~ k(l).
Proof. Let E - Gr be the universal rank 2 vector subbundle of the trivial

rank (D + 1) vector bundle F over Gr and let E, F be their pull-backs to Z.
Then E and F are PGL2 -linearized, and so Ê and F are also. Hence Ê
descends to a subbundle Él of the trivial rank (D + 1) vector bundle F-1
over Z, , and so there is a k(~)-morphism 1t: (Z1)~ - r ~ k(~) such that
03C0*U ~ El , where U is the universal bundle over r ~ k(l). After the base
change k(n) ~ k(ç),1t (8) k(03BE) is an isomorphism, and so n is an isomorphism.

Q.E.D.

Completion of the proof of Theorem 14. We now know that (Y1)~ is the
intersection of r 0 k(l) with a linear space of codimension 6. We shall
show that ( Y )n is rational over k(r¡).
Regard r Q k(~) as the set of lines in pD Q k(~). Let H c PD Q k(~) be

any hyperplane defined over k(~). Then there is a rational map y: r 0
k(~) ~ H defined by y(l ) = 1 n H whose fibres are linear spaces. The
base locus of y is a copy of the Grassmannian A of lines in H; it has
codimension 2 in r Q k(r¡). We wish to choose H so that y induces a
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dominant map (Y1)~ ~ H. This is certainly possible unless the subvariety Q
of PD ~ k(17) swept out by the lines corresponding to points of(Y1)~ is not
the whole of P’ Q k(~). We proceed to show that this is impossible.
We have a diagram

where E is the incidence relation and p, q are the projections onto the factors.
The subvariety Q is just p-1((Y1)~), and so has codimension six in E; since
q is a P1-bundle, it follows that the restriction of q to Q is surjective, which
is what we need.

So we can find a k(~)-hyperplane H so that the map (Y1)~ - H is domi-
nant ; the fibres are linear spaces, and so (Y1)~ is rational over k(~) . But
k(~) is rational over C, by the classically derived invariant theory for binary
sextics, and so to prove the theorem we have only to check the non-vanishing
of certain coefficients.
We have f = aD ~ bDx, ~(f) = (ab)D-3 a3x 2022 b3x. The Plücker coordinates

03BBij are given by 03BBij = aD-i1ai2bD-j1bj2 - aD-j1aj2bD-i1bi2, and so expansion of the
expression for ~(f) shows that the various coefficients are as follows:

(i) x61 2022 03BBt,D-t-3: : coefficient is 2 . (-1)t(D-3t);
(ii) x51x2 2022 03BBt,D-t-2: coefficient is 6 - (-1)t[(D-3t) - (D-3t-1)];
(iii) x41x22 2022 À1,D -1 -1: coefficient is

So if t = K - 3, the coefficient is

which is never zero for integral K;
(iv) x31x32 2022 03BBt,D-t: coefficient is
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So if t = K - 2, the coefficient is

which is never zero for integral K. By symmetry, the coefficients of

xf x1 . ÀK -1,K -2’ x1x52 2022 ÀK,K -3 and X6 2 ÀK + I,K -4 are also non-zero. This com-
pletes the proof of Theorem 14.

A special example

In this final section, our aim is to solve a problem in the invariant theory for
another group of rank two, namely the exceptional group G2.
Mukai has shown [8] that the moduli space k18 of polarized K3 surfaces

of degree 18 (equivalently, of genus 10) is birational to the orbit space
Gr(3, g)/G, where G is the exceptional Lie group G2 and g = Lie(G). Our
aim here is to show that this quotient is a rational variety. Notice that at the
moment, the only other space -lt’2d known to be rational is k10, while for
d ~ 5, 9 the problem is open, and in fact for d  10, the question of
unirationality is unresolved.
We shall show that k18 is rational in various stages as follows:

(i) We construct a covariant 03C8: Gr(3, g) ~ P(C°), where Co is the irreduc-
ible 7-dimensional representation of G, which is dominant; then if
x E P(Co) is generic, we have Gr(3, g)/G ~ 03C8-1(x)/Stab(x), since the
orbit of x is dense in P(C°).

(ii) Put S = Stab (x). Then the connected component S° is isomorphic to
SL3, and S = S° x (0), 02 = 1. As S°-modules, we have g - s ~
V ~ VV, where s = Lie S0 and V ~ C3 is the standard representation;
s and Y Q V’ are S-modules.

(iii) We construct a dominant S-covariant 03BB: Gr(3, g) ~ P(V ~ V’),
so that if w ~ P(V ~ VV) is generic, then 03C8-1(x)/S ~ (03C8-1(x) ~
03BB-1(w))/K, where K = Stab (w) n S.

(iv) There is a K-stable hyperplane H in g and a K-equivariant birational
equivalence 03C8-1(x) n 03BB-1(w) ~ Gr(2, H).

(v) Gr (2, H)IK is rational.

We begin by recalling some basic facts about the group G. Let C denote
the algebra of Cayley numbers; then G = Aut C. We shall refer to the basis
{c1, ... , c8} of C and the multiplication table for this basis given by
Humphreys [14, p. 105]. Define elements x2, ... , xg of C by x2 = c, - c2 ,
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Xi = Ci for i  3; then {x2, ... , xl is the basis of the space Co of elements
of C whose trace vanishes. The group G preserves Co.

Let n : C ~ Co be the G-equivariant projection and E: C0 ~ C the inclu-
sion. Then the composite Co Q Co  C Q C  C X Co, where m is
the multiplication in C, gives a G-equivariant algebra structure on Co, which
we denote by n. A glance at the multiplication table for C shows that n is
skew-symmetric, so that there is a G-linear map p: 039B2C0 ~ Co given by
p(u A v) = n (u, v). There is a non-degenerate symmetric bilinear form on C
given by the norm; it restricts to give another such form q on Co. Let H
denote the group SO (Co , q), and h = Lie H; then h ~ 039B2C0 as H-modules.
Specifically, define an action of 1B 2Co on Co by (a 039Bb) (z) = q(a, z) b -
q(b, z) a, which is just the adjoint representation of h. Via the isomorphism
h xé n 2 Co , we can identify the subalgebra g of h with ker p.

Referring to the basis {x2 , ... , x8} of Co given above, {x3 A x, , x3 039B X8,

is a basis of g, and the bilinear form
q is given by the matrix

Recall that g contains a copy s of the Lie algebra sl3 so that as s13-modules,
g -- sl3 O Y 0 Vv , where V ~ C3 is the standard representation of sl3 and
Vv is its dual. Explicitly, if

is the standard basis of V and {f1, f2, f3} is the dual basis of Vv, then we
can make the following identifications:
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LEMMA 17. Consider x2 as a point in P(C°). Let S denote stab (X2). Then
S ~ SL3  ~03B8~, where 03B8 is the involution given by 03B8(g) = tg-l,andtheorbit
O(X2) is dense in P(Co).

Proof. By considering the action of 1B 2CO on Co and the basis of g
described above, it is clear that Lie (S° ) - s, and so S0 ~ SL3 . By counting
dimensions, it follows that O(X2) is dense in P(C0). Then there can be at
most one G-invariant hypersurface in P(C°), and indeed there is one,
namely6 = {x ~ P(C0)| q(x, x) = 0}. Hence 03C01(O(x2)) = Z/2Z, and so S
has at most two components. It is clear however, that the élément 8 of G
defined by 03B8(x2, x3 , x4 , x5, x6 , X7, x8) = (X2’ X6’ X7, Xs, X3, x4 , xs) lies in S
but not S0, and that 8g8 = tg-1 for all g e SO. This proves Lemma 17.
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Define 03B1: 039B3(039B2C0) ~ 039B6C0 by a ((a A b) 039B (c 039B d) 039B (c 039B d) A
(e A f)) = a 039B b 039B c 039B d 039B e n f. Note that a induces a rational map
03B2: P(039B3(039B2C0)) ~ P(039B6C0) ~ P(C0), where the last isomorphism is

G-equivariant.

PROPOSITION 18. There is a dominant G-equivariant rational map VI: Gr(3, g) ~
P(Co ), obtained as the composite Gr(3, g)  P( A 3g) ~ P( 039B3( 039B2C0)) 
P(Co ), where is the Plücker embedding.

Proof. The only thing to check is that Vi is dominant. To see this, note
that 03B1((x3 039B x6 - X4 A X7 ) A (x4 n x8) A (xs n x7)) = X3 A X4 A xs n x6 n
x7 039B x8, which corresponds to x2 . Since O(x2) is dense, the proposition
follows.

Let y: Gr ~ Gr (3, g) be the blow-up along the base scheme B of 03C8 and
Gr ~ P(Co) the induced morphism. Put F = 03C8-1(x2) and F = 03B3(F); F
consists of components of the intersection of Gr (3, g) with a linear subspace
of codimension 6.

COROLLARY 19. Gr(3, g)IG is birationally equivalent to FIS.

Next, we can define a linear map ô: 039B3 (s ~ V ~ Vv) ~ s ~ 039B2V ~
s O 039B2Vv of S-modules by 03B4(x A y 039B z) = prl (x) ~ pr2(Y) /B Pr2 (Z) +
pr1(x) O pr3(y) 039B pr3(Z) - pr1(y) O pr2(X) A pr2(Z) - pr1(y) Ox
pr3(x) 039B pr3 (Z) + pr1 (z) ~ pr2(x) /B pr2 y) + pr1(z) ~ Pr3(x) 039B pr3( y),
where pri is the projection of s 0 V ~ Y" onto its i’th factor. Identifying
039B2V with V’ and 039B2Vv with V, and making the natural contractions
s 0 V’ VV and s ~ V ~ V, yields a linear S-map 1: 039B3g = A 3(s (D
V~Vv) ~ Y ~ Vv, and so an S-equivariant rational map 03BB: Gr(3, g) ~
P(Y ~ Vv). Let y: Gr* - Gr(3, g) be the blow-up along the base
scheme D of À, À *: Gr* - P(Y ~ VV) the induced morphism, X* =
03BB*-1(e1 +f1) and X = 1À(X*). Put Fo = F n X, and K = Stab (C(e, +
1.» n S. Put

then K = K1 x ~03B8~. In particular, the orbit O(e, + f1) is dense in

P(V (6 VV). For the moment, we make no claim that the rational map
F ~ P(V ~ Vv) is dominant.
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In g, the line C.

is K-stable, where in conformity with the notation above,

and the subspace H generated by

and the first twelve elements of the given basis of g is a complement.
There is a K-equivariant rational map a: Gr(3, g) ~ Gr(2, H) given
by L ~ L n H, which exhibits Gr(3, g) (birationally) as a scroll over
Gr(2, H); i.e., if n: Gr ~ Gr(3, g) is the blow-up along the base scheme
E of u, Q: Gr ~ Gr(2, H) is the induced morphism, W E Gr(2, H), Y =

û-l(W) and Y = Q(Y), then Y is a copy of P", embedded linearly in
P(039B3g).
The next Lemma is the key non-degeneracy statement that we shall

need.

LEMMA 20. There is an element W E Gr(2, H) for which there is a unique
3-plane L E Gr(3, g) satisfying the following conditions: (i) L ~ H = W; (ii)
L E F u B; (iii) L E X u D. (Recall that condition (ii) means that if {x, y, zl
is a bais of L, then 03B1(x A y A z) E C x3 A x4 A X5 A x6 A X7 A Xs, while con-
dition (iii) means that b(x A y A z) E C(e, + 1.).) Moreover, L e B, L 1= H
and L e D.
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Proof. Take W to be the 2-plane spanned by the elements

and

Suppose that z E g, z e W and x n y 039B z satisfies (i)-(iii) above. We can write
z = p + q + r, where p = (pij) ~ s, q = qlel + q2e2 + q3e3 ~ V and
r = r1f1 + r2f2 + r3f3 ~ Vv. Then 03B4(x 039B y 039B z) = (p12 - (r2 +r3))e1 +
P22e2 + (P32 + r, - r3)e3 + (P31 - q2 q3)!t + (P32 + q2 q1)f2 +
(p33 + 2q3)f3, and so having x 039B y 039B z ~ X ~ D is equivalent to the follow-
ing equations being satisfied: p12 - (r2 + r3) = P31 - ( q2 + (q3), p22 = 0,
P32 + r, - r3 = 0, p32 + q2 - ql - 01 P33 + 2q3 = 0. Also, having
x 039B y 039B z ~ F ~ B is the same as having 03B1(x 039B y 039B z) E C 2022 (x3 039B x4 039B
... A xg ), and calculation shows that
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Finally, replacing z by z + ax + by for suitable a, b E C, we may assume
that p12 + p23 + p31 + q1 + q2 + r1 + r3 = 0 and P13 + p32 + p21 +

q, + rl = 0. It is now a matter of checking the non-vanishing of various
determinants to see that (up to scalars) there is a unique non-zero vector z
satisfying the conditions (i)-(iii), and that then x 039B y 039B z ~ B, x 039B y 039B z ~ D
and x 039B y 039B z ~ H.

Put F ~ B = F’, X u D = X’. Since the base locus E of (1 is a copy of

Gr(3, H), identified with the intersection Gr(3, g) n P(039B3H), it follows
from Lemma 20 that X’ n F’ n Q(03C3-1(W)) consists of a single element, say
L, and that L ~ E.

COROLLARY 21. FIS is birationally equivalent to F0/K.
Proof. Since L 0 D, the map Â is defined at L, and Â(L) = (el + f1) E

P(V ~) Vv). Also, Fo = 03BC(03BB*-1(e1 + f1)), and since the orbit O(e1 + 1.) is
dense, the Corollary follows.

COROLLARY 22. F0/K is birationally equivalent to Gr(2, H)IK.
Proof. Let Ê. denote the strict transformation of Fo in Gr. By construction,

Fo meets q(03C3-1(W)) in only the point L, at which the rational map a is
defined. Also, since the equations defining Fo are linear and Q(03C3-1(W)) is
linear, this intersection is transverse. Since F0/K is irreducible, every com-
ponent of Fo is 22-dimensional, and there is a unique component that maps
dominantly under a to Gr(2, H). But also since F0/K is irreducible, the
components of Fo are permuted transitively by K, and the Corollary follows.

Notice that we can decompose H into a direct sum of K-spaces as follows:
H = sl2 Q W ~ W ~ Y, where sl2 = Lie(K0), W = U 0 U " where U is
the standard representation of SL2 and Y = C 2022 {e1 , f1,} . Since H - Hv as
K-spaces, we can identify Gr (2, H) with Gr(11, H). There is a K-equivariant
rational map t: Gr(11, H) ~ Gr(4, W’ ~ Y), where we have fixed a copy
W’ of W in H, given by t(M) = M n (W’ p Y). Put H’ - W’ Q Y.

LEMMA 23. Gr(2, H)IK is birationally equivalent to Gr(4, H’)/K x pl4.
Proof. Let v: Gr’ ~ Gr(11, H) be the blow-up of the base scheme of

i, and i’: Gr’ ~ Gr (4, H’) the induced morphism. Let Y be the line bundle
defining the Plücker embedding of Gr(11, H); then r’ is a P14 bundle,
and v* 2 is a K-linearized line bundle cutting out O(1) on each fibre of T’.
Since K acts generically freely on Gr(4, H), Mumford’s descent theorem
(Theorem 1 above) proves the Lemma.

LEMMA 24. Gr(4, H’)/K x p5 is rational.
Proof. Put P = P(H’). Then a descent argument as in the proof of

Lemma 23 shows that (Gr(4, H’) x P)/K is birationally a P’-bundle over
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Gr(4, H’ )/K; we want to show that (Gr(4, H’ ) x P)/K is generically a
Gr(4, H’)-bundle over P/K. So let X c P be the open subvariety of the set
of stable points on which G acts with trivial stabilizers (and so freely, by the
étale Slice Theorem). Put Gr (4, H’ ) x X = Y. Then we can identify Y with
the Grassmannian of rank 4 sub-bundles of H’ (&#x26; c(9x = .5F, say; let 9 be
the universal sub-bundle of H’ Q c(9y. Then we have a Cartesian diagram

and since S, F are K-linearized, they descend to vector bundles E1 and
F1 over x and Xl respectively. It follows that Y1 is a Grassmannian over
Xl , as required. Finally, we want to show that P/K is rational; this,
however, follows immediately from Castelnuovo’s criterion (or by elemen-
tary calculation).

THEOREM 25. k18 is rational.
Proof This follows from Corollaries 19, 21, and 22, and Lemmas 23

and 24.
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