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Let e be a connected semi-simple algebraic group defined over Q such that
the symmetric space D of G := e(R) is Hermitian, and let r be an arithmetic
subgroup of y(Q). Then X° := 0393/D is a complex analytic space with only
quotient singularities which is naturally compactified as a projective variety
X by means of the Satake, Baily-Borel compactification [BB]. Let further be
given a finite dimensional representation E of G. It determines a metrized
local system E over the regular r-orbit space Xreg in X° [Z3]. Let 2x(E)
denote the sheaf complex on Xreg which assigns to every open subset U of X
the space of smooth differential forms a on U n Xreg with coefficients in E
having the property that for every compact subset K of U, ce K n Xreg and
dot K n x:.eg are square integrable (the definition is recalled below). By the
generalized De Rham theorem its restriction to Xreg is a resolution of the
local system E. Zucker proved in [Z3] that this complex is fine and verified
in a number of cases (where X - X ° is finite) that it represents the inter-
section complex on X with coefficients in E. He conjectured this to hold in
general. Since then this has been verified when G has Q-rank one or two by
Borel and Casselman [B2], [BC2], and for some other cases by Zucker [Z4].
Here we prove his general conjecture:

THEOREM. 2x(E) represents the intersection complex on X with values in E.

The proof hinges on a purity property of the intersection complex on X
with values in E (Thm. 3.8), which yields a stronger vanishing theorem than
is actually necessary for proving Zucker’s conjecture. We first prove the
corresponding property for the intersection complex on a toric resolution of
X whose exceptional divisor has normal crossings (4.1). This in tum, is
derived from the analogous result for variations of polarized Hodge struc-
ture over a product of punctured unit discs, which is due to Cattani-

Kaplan-Schmid [CKS] and Kashiwara-Kawai [KK]. Purity on X then
follows from an application of the decomposition theorem, in the form as
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proved by M. Saito [S3, S4]. Our proof also identifies the weight filtration
on the local intersection cohomology groups (relative their canonical mixed
Hodge structure) with a natural filtration defined on the local L2-intersection
cohomology groups which is defined in representation-theoretic terms and
is ubiquitous in previous work on the subject (4.2).
Almost simultaneous with our announcement [L], a proof of Zucker’s

conjecture was announced by Saper and Stern [SS]. Their proof appears to
be completely different from ours.

Some conventions. If M is a smooth manifold of dimension m, then we
denote its de Rham sheaf complex of smooth forms by BM. In case M is
oriented and has a Riemann metric then we have the star operator
*:BkM ~ 8Z-k. If also is given a metrized local system V on M, Le., a local
system on M of finite dimensionless complex vector spaces equipped with a
hermitian metric on the underlying vector bundle, then for 03B1 e 8t @ V,
denote by |03B1|2 E 8Z, the m-form obtained from a and (* ~ 1)(a), by taking
the exterior product in the first entry and applying the inner product of V in
the second. This form is  0 relative the volume form on M and (by definition)
a section a of 6§§ Q V over an open U subset of M is square integrable if |03B1|2
is integrable over U. The generic meaning of the subscript (2) (as for instance
in H(k2) (M, V) will be that we are only considering (or computing with) forms
which are square integrable and have ditto exterior derivative.
We shall follow the custom of denoting a Lie group by a Roman capital

and its Lie algebra by the corresponding gothic lower case letter.

1. A first réduction

The theorem holds for r, whenever it holds for a subgroup of r finite index,
essentially because both intersection cohomology and L2 -cohomology
behave in the same (expected) way under passage to finite quotients. Hence
we can assume from the outset that r is neat in the sense of [B1] and
that G is simply-connected. Then r is torsion free and X’ = Xreg. If

G = G, x ... x Gk is a decomposition into irreducible components over
Q, then (r n G, )  ··· x (r n Gk ) is of finite index in r. So we may (and
will) assume that G is irreducible over Q.
We recall that X is obtained as the orbit space 17 B D*, where D* is the

union of the rational boundary components of D, equipped with the Satake
topology. Since r is neat, the partition of D* into boundary components
induces a Zariski constructible stratification of X. We make the inductive

assumption that it has been shown that LX(E) is an intersection complex on
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union of the strata of complex codimension smaller than d. Fix a connected
stratum S of complex codimension d, and let F be a rational boundary
component dominating it. So the G-stabilizer of F is a maximal proper
Q-parabolic subgroup of G; we denote it by P. The unipotent radical N of
P is also defined over Q. Hence rN := r n N is a cocompact discrete
subgroup of N, so that rNB N is a compact nilmanifold. In what follows we
shall do little more than quoting from [Z3] (see also [C]).
For every point of D, there is a unique geodesic emanating from that point

which has a limit on F. This is also true if D is replaced by any of its rational
boundary components which have F in its closure. So on the union of those
boundary components (denoted by Star(F)), these maps make up a «geodesic
deformation retraction» 1tF: Star(F) - F. Set ZF := Zr (F) B Star(F). Accord-
ing to Satake and Baily-Borel, ZF is a locally compact Hausdorff space and
admits a natural structure as a normal analytic space, so that each boundary
component in Star(F) maps analytically into it. Furthermore, 03C0F induces a
projection 1 IF: ZF ~ F which is analytic too. The group (r n P)/Zr (F) acts
freely and properly discontinuously on ZF as a group of analytic auto-
morphisms. So Zs := (r n P) B Star(F) has also the structure of a normal
analytic space and likewise 1tF induces an analytic retraction ns: ZS ~ S.
According to Satake there exists a closed neighborhood BF of F in Star(F),
invariant under both N and 0393P := r n P, such that every r-orbit intersects
BF in a rP -orbit. Then Bs := rp BBF may be regarded either as a closed
neighborhood of S in Zs or as one in Star(S). By shrinking BF we can
ascertain that the following two conditions are also met (cf. [Z3]).

(a) The restriction ns: BS ~ S is proper and locally trivial in the stratified
sense, such that the same trivializations make (Bs n XI, E |BS n X°) loc-
ally trivial in the quasi-isometric sense.

(b) Every geodesic emanating from a point of BF and having a limit on F,
stays inside BF, and together they give each fiber of ns 1 Bs the structure of
a topological cone.

Because of the L2 -Künneth formula [Z3], these properties allow us to
concentrate on a single fibre of ns when proving the inductive step. More
precisely, if we fix oo E S and let Z denote the fibre of ns over oo, and B its
intersection with Bs, then it is enough to prove that Hk(LM(E)(B)) maps
isomorphically onto Hk(LZ(E)(B - {~})) for k  d and vanishes other-
wise. From an analytic point of view these L2 -cohomology groups become
more manageable if we exploit a natural fibration of BI := B n X° with
typical fibre the nilmanifold i’N B N, cf. [Z3] and [C]. To this end, choose
oo’ E F over oo, and let n denote the fibre of the geodesic projection
03C0F : D ~ F over oo’. As a domain with ZG(F)-action, fl is perhaps best
understood when realized as a Siegel domain of the second kind. This is
what we shall do in the following section.
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2. The Siegel model for fi

We recall some properties of P. The group N is connected 2-step unipotent,
so its center U and V := N/ U are both vector space groups. The identity
component of the maximal connected Q-split torus A’ of P/N is one-
dimensional (and hence Q-isomorphic to (R )03BF). On u := Lie(U) resp.
v := Lie(V), A’ acts (via the adjoint representation of P) with character X/2
resp. x’, where X’ generates the character group of A’. For every (J) E Star(F)
there is a unique lift A03C9 of A’ in PjZp(Foo), where Foo denotes the boundary
component containing co, such that A03C9-conjugation leaves the P/ZP(F03C9)-
stabilizer of cv invariant. So A’ acts naturally on the right on Star(F). This
action induces one on Zs. Since the A"-orbit of cv is the unique geodesic
through 03C9 which has a limit point on F, this action is called the geodesic
action in [BS], see also [Z3]. From now on we fix some lift A of A’ in P which
is defined over Q and let ~ : A ~ (R X)O denote the composite of A - A’ 
with X’. So the adjoint action of A on n := Lie(N) is semi-simple with
characters x and x2, and its eigen spaces split n as a Q-vector space:
n = v Q u. Clearly, the centralizer ZP(A) of A in P maps isomorphically
onto P/N, so that P = N. Zp(A) is a Levi decomposition (defined over Q).
We are now ready to describe Q as a Siegel domain of the second kind.
The element aJ ’ E F determines a complex structure J on v which is invari-

ant under ZG(F). Let E : v x D ~ u denote the anti-symmetric bilinear map
induced by the Lie bracket on n multiplied by 1/2. Then E is J-invariant and
so H:v ~ uC, H(vl , v2) - E(Jv1, v2) + iE(Vl’ v2) is a Hermitian map.
The adjoint representation of ZG(F) has a distinguished open orbit C in u
which is a nondegenerate open convex cone in u, and H is positive with
respect to C, i.e., H(v, v) := cl(C ) - {0} unless v = 0. The following rule
realizes N as a group of affine-linear transformations of v x uc :

If we let ZG(A x F) act diagonally on v x uc, then together these groups
determine an actionof ZG(F) on v x uc as a group of complex affine-linear
transformations. This group leaves invariant the domain

The point of this construction is that there is a ZG(F)-equivariant iso-
morphism of n onto this domain. In what follows we shall simply identify
the two.

By means of the Siegel model the geometry of n as a Zr (F)-space becomes
more transparant. For instance the A-action on S2 is given by
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a. (v, z) = (x(a)v, ~2(a)z). The geodesic action is most conveniently
described via the diffeomorphism N x C - Q, (n, y) - n. (0, iy): on
N x C it is simply (n, y). a = (n, x(a)2y). This diffeomorphism also shows
that N acts freely on Q and that the orbit space of this action can be
identified with C. The image of ZG(F x u) in GL(v) leaves the hermitian
map H invariant, hence is compact, and as is clear from the Siegel descrip-
tion of 03A9, the kernel of this representation is just N. So Zr (F x u) maps to
a finite subgroup of GL(v). As this subgroup preserves the rational structure
on v, the fact that r is neat implies that this group is trivial, so that
Zr(F x u) = 0393N. If we denote the image of Zr(F) in GL(u) by ï’(u), the
projection of Q onto C defined above induces a projection

It follows from the preceding that p is a fibre bundle of which each fibre has
the structure of a homogeneous space isomorphic to 0393NBN. We shall write
Z° for its total space.

This restricts to a fibered structure on B’ = B n X’: just notice that
BF n Q is a covering of B° with covering group Z0393(F), and that, since BF
was chosen N-invariantly, Q n BF will be the pre-image of some r(u)-in-
variant subset K of C. So B’ = p-1(0393(u)BK)).

Since B° is a union of geodesic half rays, so is K; in other words K is
invariant under multiplication by scalars  1. It is known that every half ray
in C meets K [AMRT]. Moreover, we can choose K so that its boundary
is smooth and meets every half ray transversally. So there exists a smooth
map f:0393r(u)BC ~ (0, oo ), such that r(u) B K is defined by f  1 and

3. Réduction to purity

In this section we will show that the result we are after, and which was stated
at the end of section 1, can be phrased in topological terms. The main
ingredient is Zucker’s Künneth theorem for L2 -cohomology (or rather a
special case of it), which we shall reformulate in a form which is convenient
for our purpose.
A notational convention first. If A’ acts linearly on a vector space H, then

we denote Ifl the subspace of H where A’ acts with character (~’)-l(note the
sign!), and refer to it as the weight 1 space. Similarly for a linear A-action on
h. Notice, that if N. A happens to act on H, and H is finite dimensional, then
the weight filtration WH := ~l’  l Hl’ is independent of the lift A of A’; this
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is because any two such are conjugate under an element of N, and A acts on
n with negative weights. Although we will hardly use this remark, it is

helpful for recognizing intrinsic properties.
Let d. denote the subcomplex of p*(BZ03BF 0 E) consisting of the forms

which, when pulled back to 03A9 are N-invariant. A generalization of the
van Est Theorem [Z3, B3] proves that the inclusion is a quasi-isomorphism.
The double-sided A-action on fl, z e 03A9 ~ a . 03C9 . (a’)-1 e Q preserves N-
orbits. If we lift that action to Q x E, by letting A act on E via G, then it
preserves the N-invariant E-valued forms, and thus induces an A-action on
A. We shall denote this action by 03A8. It is semi-simple, so that A = ~ dl*.

(3.1 ) LEMMA. This decomposition is orthogonal in the sense that a E Al,~ and
fi E Al’,~ with 1 ~ l’are orthogonal in every point of p-1(~).
Proof Let co E 03A9 be of the form (0, iy), with y E C, so that A = AOO. The

derivative of ZG(F) ~ Q, g - g . cv, identifies the orthogonal complement
of the Lie algebra of ZG(F)03C9 in that of ZG(F) with the tangent space of n
at cv, and this identification is a metric one. Now Ad(A) acts self-adjointly
on the Lie-algebra of ZG(F), and virtually by construction the same is true
for the A-action on E, when the latter is equipped with the Hermitian inner
product defined by co. From this the lemma readily follows.

The averaging argument also works in an L2 -setting: it produces for every
open Win r(u) B C, a quasi-isomorphism A(W)(2) ~ (BZ03BF ~ E)(p-1 W)(2).
It follows that A’ acts semi-simply on Hk(2)(p-1 W, E), and determines a finite
grading on it. This grading prescribes the behaviour of the L2 -integrand
under geodesic translation as the following lemma shows.

(3.2) LEMMA. For a E di and a’ E A’, we have |03B1 . 03B1’|2 = ~’(a’)2d-2l(|a|2 . a’).
Proof. As the left-action of A on 03A9 x E preserves the metric and |03B1|2

pulls back to an N-invariant 2d-form, the lemma is equivalent to

|03A8(a) . 03B1|2| = ~(a)2l-2d(03A8(a) . |03B1|2). The weight of any N-invariant 2d-form is
the same as that of the top exterior power of the dual of n. This is clearly
equal to 2 dim u + dim v = 2d. Whence the lemma.

In particular geodesic translation does not affect the L2-cohomology
groups. We give C the metric induced by C ~ Q, y - (0, iy). This metric
is ZG(F)-invariant. Zucker shows [Z3] that for every &#x3E; 1 there exists a

smooth function on C with values in [0, 1] which has support in K, is

constant 1 on 03BBK, and has bounded derivative. This is equivalent to the
condition that f has bounded logarithmic derivative (in fact, this is what he
proves).
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3.3. LEMMA. For every compact interval I in A’, the map (oBO, E) x
I ~ (BO, E ) given by the right action of A’, is a quasi-isometry onto its image
(relative any metric on A’).

Proof. For ôi, D2 E Lie(ZG(F)), let DI, D2 denote the correspond-
ing vector fields on Q. Then for all a E A, we have (DI. a’, D2. a’~ =

Ad(a-1)~1, Ad(a-1)~2)~, which remains bounded as long as a stays in
the pre-image of I in A. Similarly, if ~, ~03C9 denotes the hermitian metric on
E defined by cv E 0, then there exist constants cl , c2 such that

c, ~ , ~03C9  ~, ~03C9,a’  c2 ~, )00 for all co E 03A9 and a’ E I. This is because A03C9 acts

self-adjointly on (E, ~, ~03C9).
It remains to show that the infinitesimal generator D’ of the A’-action on

Z° normal to the foliation defined by f (oriented by the condition

~D, D’~ &#x3E; 0), is bounded from below by a positive number. Since the pull
back of D’ to 03A9 is ZG(F)-invariant, ~D, D’~ is constant and hence is
bounded. Consider the identity D, D’) = D(log(fop»jJ«d log (fop),
d log (f03BFp)~). The numerator is just 1, because f(y. a’) - ~’(a’)f(y). The
denominator equals the square root of ~d log f, d log f~ 03BFp, which we know
to be bounded from above. So ~D, D’~ is bounded from below by a positive
number.

(3.4) COROLLARY. We have canonical isomorphisms Hk(2) (~B03BF, E) ~
IHk(oB, E) z IHk(Z - {~}, E).

Proof. If I is a relatively compact in A’, then it follows from the preceding
lemma and the L2-Künneth theorem that there is natural map from

Hk(2) (~B03BF, E) to Hk(2) (~B03BF . I, E) which is an isomorphism. Since
OB x A’ ~ Z - {~} is a stratified homeomorphism, we have the anal-
ogous result for intersection homology. The corollary now follows from our
induction hypothesis, which allows us to identify Hk(2) (~B03BF . I, E) with
IHk (OB. I, E).

In particular Hk(2) (~B03BF, E) is finite dimensional. Since Z° is complete as a
Riemann manifold, so is its submanifold ôB° . As is well-known [G], the
E-valued L2-cohomology of ôB° is then (uniquely) harmonically represented:
the space of harmonic forms hk(2) (~B03BF, E) maps isomorphically onto

Hk(2) (~B03BF, E). Every such harmonic form pulls back to a form on n n ô UF,
so is certainlyN-invariant. It is clear that the 03C8-action of A maps harmonic
forms to harmonic forms. With the resulting action of A on hk(2) (~B03BF, E) the
isomorphism of the latter onto Hk(2) (~B03BF, E) is A-equivariant. We orient OB’
as the boundary of the complex manifold B°. This defines a *-operator
which maps hk(2) (~B03BF, E) anti-isomorphically onto h2d-1-k(2) (~B03BF, E); in
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somewhat more intrinsic terms, the natural bilinear map

given by the exterior product and the hermitian form on E, is perfect. It is
also graded. As h2d-1(2)(~B03BF) has the same weight as the top exterior power of
the dual of n, i.e., 2d (see the proof of lemma (3.2)), this identifies hk(2)(~B03BF, E)l
with the anti-dual of h2d-1-k(2)(~B03BF, E)2d-l.

(3.5) PROPOSITION (Zucker [Z3]). For 1 &#x3E; d, Hk(2)(B03BF, E)l vanishes, for 1 = d
it is naturally isomorphic to Hk-1(2)(~B03BF, E)d Q H1(2)(A’+), whereas for 1  d,
it maps isomorphically onto Hk(2)(~B03BF, E)l. Here A’ is equipped with a transla-
tion invariant metric, and A’+ denotes the semi-group A’ defined by ~’  1.

For our set-up the line of argument given in [CKS] is perhaps most
appropriate. Since the result is well covered in the cited references, we limit
ourselves to a description of the basic idea: lemma (3.3) allows the construc-
tion of a «relative» Green operator, which produces a quasi-isomorphism of
(BZ03BF Q9 E)(B03BF)(2) onto the subcomplex of forms which are harmonie when
restricted to any fibre of f03BFp. This subcomplex is invariant under the

03C8-action, and thus is graded by that action. Lemma (3.2) then enables us to
interpret l th graded piece as the tensor product of the corresponding piece
of H(2)(~B03BF, E) with (BA’ Q9 L(l - d))(A’+)(2), where L(m) denotes the con-
stant local system A’ x C on A’, metrized by the condition that the section
"1" has norm (X’)m. The proposition then follows from the known values of
the groups Hk(2)(A’+, L(m)): they vanish unless m  0 and k = 0 (we get C)
or m = 0 and k = 1 (for which we get an infinité dimensional space).
Via (3.4), IHk(Z-{~}, E) acquires a grading. Following an idea occur-

ring in [CKS] and [KK], we will show that this grading admits a topological
interpretation. This is based on the following lemma.

(3.6) LEMMA. If a e A such that x(a) is a positive integer with ~(a) - 1

sufficiently divisible, then a0393Pa-1 is contained in rp.

Proof. Let y e rp and write y according to the decomposition P =

ZG(A) . exp(d) . exp (u) : 03B3 = 03B3003B3103B32. Then a03B3a-1 =03B3003B3~(a)103B3~(a)22=03B303B3~(a)-1103B3~(a)2-12.
Since the decomposition is defined over Q, log (yi) and log (03B32) are rational
elements of n, and hence there exists a positive integer k such that yl and 03B3k2
belong to r ~ N. So if x(a) - 1 is an integral multiple of k, thenaya-l e rp.
Since rp is finitely generated, the lemma follows.
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Fix a E A such that ~(a) - 1 is a sufficiently divisible positive integer as
in the lemma. Then the lemma implies that the left action of a on

Star(F) x E respects 0393P-orbits and (hence) Zr (F)-orbits. So this induces an
endomorphism 03A6a of (Z, E) (in fact, (Da can be interpreted as a «local» Hecke
correspondence; see the final remarks of Section 4). If we use the right-left
action instead (cv, e) ~ (a. 03C9. (a’)-1, a. e), then the resulting endomorphism
’Pa is just 03A6a composed with geodesic translation over (a’)-’ . Evidently ’Pa
preserves each fibre of p. The induced endomorphism 03C8a* of p(BZ03BF Q9 E)
is simply 03C8-1a. So 03C8a* acts semi-simply on Hk(2)(~B03BF, E), and Hk(2)(~B03BF, E), is
its ~(a)l-eigen space. Since the right-left action preserves each boundary

component of Star(F), ’Pa preserves each stratum of Z; in particular
03A8-1a(~) = {~}.

(3.7) LEMMA. The endomorphisms (Da and 03A8a of Z are finite (i.e., are proper
and have finite fibres.).

Proof. One easily verifies that 03A8-1a(B) = B. Since B is compact, va is
proper over B. Combining this with the fact that 03A8-1a(~) = {~}, yields
that 03A8a is finite over some neighborhood of oo in Z. As 03A8a commutes with
geodesic translation, we may take this neighborhood to be A’-invariant. But
clearly such a neighborhood coincides with Z. The corresponding statement
for 03A6a follows from the fact that it is the composition of Ta and geodesic
translation over a’ (which is a homeomorphism of Z onto Z).

The above lemma implies that ’Pa induces endomorphisms (all denoted by
%Y*) of IHk(~B03BF, E), IHk(B03BF, E) and IHk (Z, E). Similarly, 03A6a induces endo-
morphisms 03A6*a of IHk(Z, E) and IHk(Z - {~}, E). Since the geodesic
translations establish an isotopy between ’Va and (Da, they induce the same
endomorphisms of IHk(Z, E) and IHk(Z - {~}, E). The isomorphism
Hk(2)(~B03BF, E) ~ IHk (Z - {~}, E) of (3.4) is natural and hence 03A8a*-equivariant.
It follows that the endomorphism 03A8a* = 03A6*a of IHk(Z - {~}, E) is semi-
simple and that under the isomorphism Hk(2)(~B03BF, E), corresponds to the
~(a)l-eigen space of 03A6*a in IHk (Z - {~}, E). Virtually by definition,
IHk(Z, E) maps isomorphically onto IHk(Z - lool, E) for k &#x3E; d and
vanishes otherwise. So 03A6*a acts also semi-simply on IHk(Z, E).

Clearly, if A acts on finite dimensional vector space h with character X’,
then its contragradient ( = transpose inverse) representation on the dual H*
of H has character X-’, whereas the transpose of the automorphism of H
induced by a acts on H* as multiplication by x(a)’. This justifies extending
our weight conventions to situations where 03A6*a acts naturally on a vector
space, but A possibly no longer does. For instance, such a vector space is
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said to have weights k, k e R, if every eigen value of 03A6*a is of the form x(a)’
with 1 an integer  k.

(3.8) THEOREM (Purity). The weights of IHk(Z, E) (with respect to 03A6*a) are
 k.

We show how this theorem (whose proof we postpone to section 4)
completes the inductive step in the proof of Zucker’s conjecture. In view of
the reduction discussed in section 1 and lemma (3.3), we must show that
H(k2) (B’, E) maps isomorphically onto Hk(2)(~B03BF, E) for k  d and vanishes
otherwise. Referring to proposition (3.5), we see that this follows if we can
show that H(k2) (OB’, E), = 0 for (k  d, 1  d), and (k  d, 1  d).
Because of the (Poincaré) duality property mentioned above, the second
vanishing condition follows from the first one. The discussion which

preceded (3.8) implies that this is equivalent to IHk(Z, E) (for k  d)
having weights  d. But this is clearly a consequence of the theorem.

4. Proof of the purity theorem

We shall need a toric resolution Z of Z as described in [AMRT]. Let us write
uz for the lattice log(0393 n U) in u. Let C+ denote the convex hull of
cl(C) n uQ. It contains C and according to Ash and Mumford there exists
a r(u)-invariant collection 1:+ of simplicial cones in C+ such that

(i) The relative interiors of the members of E+ form a partition of C+.
(ii) Every face of a member of 1:+ belongs to 03A3+.
(iii) The intersection of two members of E+ belongs to 1:+ .
(iv) r(u) has only finitely many orbits in E+ .
(v) Every member of E+ is spanned by part of a basis of uz.
Condition (iv) implies that E+ is locally finite on C. Since every a e E+
contains a canonical «barycentric» half line, namely the one spanned by the
sum of its integral generators, we have a well defined barycentric subdivision
of1:+. It is clear that this barycentric subdivision also satisfies the properties
(i)-(v). Since r is neat, so is r(u), and hence we can (by taking a sufficiently
fine subdivision of 03A3+) also arrange that:

(vi) No r(u)-orbit meets any member of 1:+ in more than one point, and if
Q, tE1:+ , then I(u)T n (1 is a face of (1.

So 1:+ determines a decomposition of (u) B C+ whose members are isomor-
phic images of those of E+, and which is closed under intersection. By
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property (iv) this decomposition is finite. Likewise, the collection

03A3 : = {03C3 ~ C : 03C3 ~ 03A3+} determines a decomposition of 0393(u) B C with similar
properties. We denote that decomposition by 1:/, and 6 E 03A3 H d E E’ will
be the obvious map (but occasionally we also denote a general member of
E’ by Q’). Given cr E E, let St(Q) denote the union of the relative interiors of
the members of E which have a nonempty intersection with a. This is an

open neighborhood of u in C, and we have St(Q) n St(i) = St(Q n r).
Another barycentric subdivision gives:

(vii) For all a, 03C4 ~ 03A3, the T’(u)-orbit of St(r) meets St(o) in a subset of the
form St( u 1 ).

Then we have defined an open covering {St(03C3’): d E 1*’l of rBC whose
members are the isomorphic images of members of {St(03C3): a E 03A3} and
satisfy St(d) n St(i’) = St(Q’ n 03C4’). So the collection of St(u’) for which a’
has the maximal dimension n already covers.

Let T denote the algebraic torus (0393 ~ U) ~ZC  ~ uc /uz. We assume
the reader to be familiar with the fact that E determines a nonsingular torus
embedding T03A3 ~ T. The collection E+ of faces of members of E indexes the
T-orbits in TE: each orbit is of the form T(Q) := uc /(uz + ~03C3~c) for a
unique a E E+ . Let T,, be the kernel of the natural homomorphism
T ~ T(Q), and let tu denote its closure in T03A3 . Property (v) implies that the
pair (tu’ Tu) is isomporphic to (Ck, (C )k), where k = dim(u). The union
~{T(03C4): 03C3 ~ 03C4} is a stratified T-invariant neighborhood of T(03C3) in T03A3 ,
which naturally retracts onto T(03C3). This retraction is (algebraically) trivial
over T(Q) with fibre 03C3. In particular, TE - T is a normal crossing divisor
on T03A3 .

Let ord: T ~ u be the map x + iy + uz i-- y and put T = ord-’(C)
and T,, = ord-1(03C3). Notice that both are semigroups. Let TE denote the
T03A3-interior of the closure of T in T. If a E 03A3 then it is easily seen that TE
contains T(03C3). It will be of interest to consider a certain open coverings of
C and TE which we presently describe.

Let T(Q) denote the T03A3-interior of the closure of ord-1(St(03C3)) in T03A3. Then
one verifies that:

(a) T(03C3) is a neighborhood of T(a) in ~{T(03C4): a :D 03C4},
(b) the natural retraction of ~{T(03C4): 03C3 ~ 03C4} onto T(03C3) restricted to T(03C3) is

topologically locally trivial such that each fibre can be identified with a
contractible neighborhood of the punctual stratum of tu in tu, and

(c) {T(03C3): 11 E 03A3} is an open covering of TE such that T(03C3) n T(03C4) =
T(03C3 n ï).

Since 03A3 is r(u)-invariant, TE comes with an action of that group which
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preserves the above covering. It follows from property (vi) that no orbit
meets T(03C3) in more than one point. So r(u) acts freely on TE, its orbit space
is an analytic manifold, and every T(Q) maps isomorphically onto its image
in I’(u) B T03A3 .

Let M denote the rN-orbit space of v x uC. Notice that M is in a natural
way a Tprincipal bundle over the complex torus vz) Bvc (where vz is of
course the image of log (rN) in Ue). Without any difficulty a relative version
of the preceding can be carried out for M (with the map «ord» being
replaced by the composition of the diffeomorphism of M onto (rNB N ) x u
and the projection of the latter onto its second factor). Thus we set

M Y:= M x T TE, M := 0393NB03A9 (=the pre-image of C under this projection)
and M03A3 be the M03A3-interior of the closure of M in ME. All this comes with
a natural r(n)- action. The stratum M(Q) := M x T T(6) of M, is acted
on by the quotient N(03C3) of N by its central subgroup exp(~03C3~R). If we
denote 0393N(03C3) the image of ï’N in N(6), then each orbit is isomorphic to
the compact nilmanifold 0393N(03C3) B N(03C3), and is a deformation retract of M(03C3).
For every 6 E E we get an open subset M(03C3) of M. satisfying the following
properties:

(a) M(03C3) is a neighborhood of M(03C3) in ~{M(03C4): 03C4 ~ al,
(b) the natural retraction of u {M(03C4): 03C4 ~ ul onto M(03C3) restricted to M(6),

ru: M(03C3) ~ M(03C3), is topologically locally trivial and each fibre can be
identified with an open convex neighborhood of the punctual stratum of
Tu in Tu,

(c) {M(03C3): 03C3 E 03A3} is an open covering of M. such that M(Q) n M(r) =
M(Q n T).

Also note no r(u)-orbit meets M(03C3) in more than one point. So r(u) acts
freely on ME, its orbit space (denoted 2j is an analytic manifold, and every
M(Q) maps isomorphically onto its image (denoted Z(r(u). u» in Z.

In [AMRT] it is shown that the identity map of Z° extends to a resolution
n:  ~ Z of Z, and that for a suitable choice of E, n will be even projective.
As this last property is invariant under barycentric subdivision, we can
assume this to be the case. A straightforward verification shows that the,
endomorphism 03A6a of Z° extends to one of Z, while preserving every (03C3’).
Also, 03A6a acts on T(6) and M(03C3), and commutes with ru.

(4.1) THEOREM (Purity on Z). The weights of IHk(Z, E) are  k.

Before we begin the proof, we state and prove a lemma:
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LEMMA. Let Y-’ be an n-dimensional simplical complex whose simplical
realization |03A303BF| is a PL-manifold, and let A:03C3 ~ A, be a contravariant
functor from the POset of simplices of 03A303BF to category of abelian groups. Let
C. denote the alternating Cech complex associated to A and the (closed)
covering {|03C3|: dim J = nl of |03A303BF|, and let Cp denote the subcomplex of co-
chains f E C’ which vanish on ordered tuples (u., al, 03C32, ...) with

codim (ao n 03C31 n 03C32 ...)  p. Then the cochain map C ~ C /Cp is injec-
tive on cohomology in degrees  p.

Proof. Clearly C« = C"-1 1 ~ C0 ~ ··· ~ Cn-1 ~ Cn = 0. We first notice
that Cp /Cp+ 1 splits naturally as a complex: it is the direct product of
subcomplexes of the form Hom(Du’ A03C3) (for certain chain complexes D03C3),
where J runs over the simplices of 03A303BF of codimension p + 1. In fact Du can
be described as follows: if A denotes the abstract simplex whose vertex
set is the collection n-simplices in Star(03C3), and A’ denotes the subcomplex
of A consisting of those faces ([03C30], [03C31], ...)(03C3i ~ Star(u» with

Jo n 03C31 ~ ··· ~ 03C3, and 0394. resp. 0.’ denote the chain complexes generated
them, then D, is simply 0394. /0.’ . Now 0394. resp. 0.’ has the integral homology
of Star(03C3) resp. Star(03C3)-int(|03C3|). So Hk(Cp/Cp+1) is the direct product of the
relative cohomology groups Hk(Star(03C3), Star(03C3)-int(|03C3|); A03C3) where J runs
over the simplices of S’of codimension p + 1. Since all these summands are
trivial in degree # p + 1, it follows that the natural cochain map from Cp+1 1
to C. /Cp is injective on cohomology in degrees  p. The lemma follows by
induction.

Proof of (4.1). Consider the Cech spectral sequence of the intersection
complex relative the covering (2(J’): dim J’ = n} :

where the sum extends over the collection of oriented (distinct) (p + 1)-
tuples (03C3’0, ... , 03C3’p) in l’ of dimension n with non-empty intersections. We
apply the lemma above by taking for Z’ the abstract simplicial complex
defined by E’ and for A the functor a’ H IHq((03C3’), E). If we let C and Ç
have the meaning of that lemma, then C ’ = E1,q, Hp(C) = E2p,q, and
(C. /Cp) is obtained from the left hand side of (1) by restricting the sum-
mation to those ( p + 1 )-tuples (03C3’0, ... , 03C3’p) which have the property that
codim(03C3’0 ~ ··· n 03C3’p)  p. In view of the lemma only such summands
contribute to Ep,q2 As Oi acts on the sequence (1), and respects each
summand of Ef,q, it therefore suffices to show that IHq(2(a’), E) has weights
 codim (03C3’) + q. We choose u over (r’ so that 2(u’) may be identified with
M03A3(03C3), and prove the corresponding result for M03A3(03C3).
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Remember that ru exhibits the pair (M1:(u), M03A3(03C3) ~ M) as a topologi-
cally locally trivial fibration over M(03C3) with fibre a neighborhood of the
punctual stratum in (tu, T03C3). Consider the Leray sequence for ru:

where LB03C3 (E) denotes «the» intersection complex of tu with values in E| 1 Tu.
Now Rqr03C3*LB (E) is a local system over M(a) with stalk IHq(tu, E). Since
M(03C3) admits a compact nilmanifold ~ rN(u)BN(a) as a deformation retract,
we can replace in the spectral sequence M(03C3) by that nilmanifold. This
identifies E2p,q with pth (Lie algebra) cohomology group of the standard
complex A.n(a)* ~ IHq(tu, E), where n(a) acts on IHq(tu, E) in such a
way that it is compatible with the monodromy representation of rN(u). The
obvious Oi-actions on n(03C3), tu and E Tu determine one on the standard
complex and it is easily seen that the induced action on its cohomology is
equivariant with respect to the previous identifications.
At this point we wish to apply the purity theorem of Cattani-Kaplan-

Schmid [CKS:1.13] and Kashiwara-Kawai [KK:4.0.1], and conclude that
IHq (tu, E) has weights  q. Their hypotheses require E 1 Tu to be a polarized
variation of complex Hodge structure with unipotent monodromy. (In
[CKS] it is assumed that the variation of Hodge structure is real, but this is
of no consequence-e.g. pass to E QR C.) Following Zucker [Z2], E is a
polarized variation of complex Hodge structure on X° , and the same holds
therefore for E 1 Tu. If we identify the fundamental group of T,, with
(ah n uz, then the monodromy corresponding to u E (ah n uz is given
by the action of exp (u) on E, in particular it is unipotent. Let n uz be
spanned (as a semi-group) by the linear independent elements ul , ... , uk
(so k = dim (03C3)), and denote by Nl , ... , Nk the endomorphisms of E they
induce as elements of g. Then Ni, ... , Nk commute and are nilpotent.
Following Deligne (cf. [KK: §3]), IHq(tu, E) is naturally isomorphic to the
qth cohomology group of the subcomplex

of the Kosul complex A’ (~03C3~*R) ~ E. Since the transpose action of a on ~03C3~*R
is just multiplication with x(a)2, the purity theorem quoted above asserts
that the eigen values of Oi on IHq(Ï:, E) are as claimed.

If we split tt(Q) = u ~ u(6) as an A-representation, then it is immediate
from the fact that m* resp. u(6)* has weight 1 resp. 2, that APn ; 03C3)*
has weights  (p - r) + 2r = p + r, with r  dim u(6) = codim (a).
Hence the Lie algebra cohomology group Hp(n(03C3), IHq;T(1» has weights
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codim(03C3) + p. Feeding this in the spectral sequence (2) gives that

IH’(M’£(u), E) has weights codim (03C3) + r. The proposition now follows
since it had already been reduced to this last result.

We can now prove the purity theorem (3.8). We derive it from purity on Z
by means of the decomposition theorem.

Proof of (3.8). As is well known, the representation E admits some
number field K ~ Q as a field of definition. Hence it occurs as a direct
summand in the finite dimensional representation E(K) (8)Q C, which is
defined over Q. So without loss of generality we may assume that K = Q.
Then E acquires the structure of a variation of polarized Q-Hodge structure.
Recalling that n: 2 - Z is projective, it follows from M. Saito’s version of
the decomposition theorem ([S3: remark (5.4)] and [S4: Thm. 3.21]), that
IHk (Z, E) is a naturally (in particular 03A6*a-equivariantly) isomorphic to a
subquotient of IHk(, E). Hence purity on 2 (4.1) implies purity on Z (3.8).

The proofs of the above purity results also enable us to identify the weight
filtration on IH* (Z, E) and IH’ (Z, E) in the sense of mixed Hodge theory.

(4.2) PROPOSITION. If m is the weight of E as a variation of Hodge structure,
then the eigen spaces of 03A6a* split these mixed Hodge structures into pure Hodge
structures: the weight 1 subspace of either cohomology group is a pure Hodge
structure of weight 1 + m. If E can be defined over a certain subfield of C, then
the splitting is defined over the same fzeld (Remember however that the splitting
depends on the lift A of A’, and therefore might not expected to be canonical !).

Proof. Since a E G(Q), its eigen space decomposition in E is defined over
the same field as E and so the last clause is clear. Hence as in the proof of
(3.8), we may without loss of generality assume that E is defined over Q, so
that E can be regarded as a variation of polarized Q-Hodge structure. Let
us now return to the proof of (4.1 ). Fix some 03C3 E 1. Any half line in C (e.g.,
the barycentric halfline of 03C3) determines a (limiting) mixed Hodge structure
on E. According to [CKS], its underlying weight filtration is precisely the
filtration defined by the A-action, shifted over m. If we give u the pure Hodge
structure of type (-1, - 1), then the Koszul complex AO (~03C3~R)* (8) E is a

complex of mixed Hodge structures, and so is its subcomplex (4.1-3). This
puts a mixed Hodge structure on IHQ(tt1’ E). It is clear that the two weight
filtrations still only differ by a shift over m. Since (Da induces in IHq(03C3, E)
an endomorphism of mixed Hodge structure of (by functoriality or by a
straightforward computation), each eigen space IHq(03C3, E), is a mixed

Hodge summand. From the preceding it follows that it is pure of weight
1 + m. We next give v the pure Hodge structure of type «- 1, 0), (0, -1))
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defined by its complex structure J (see section 2). Since the bilinear map
D x b ~ u induced by the complexified Lie bracket of n is J-invariant, the
corresponding map v Q n - u is a morphism of Hodge structures. The
A-eigen space decomposition n = v Q u gives n a (split) mixed Hodge
structure, and similarly for n(03C3). This induces a mixed Hodge structure on
the Lie algebra cohomology group Hp(n(03C3), IHQ(T(1»’ for we have one on
the standard complex by means of which it is computed. It is clear that
Hp(n(03C3), IHq(03C3))l is a pure direct summand of weight 1 + m. Since the
spectral sequences (4.1-1.2) are spectral sequences of mixed Hodge struc-
tures with 03A6*a-action (with in fact the first sequence degenerating at the
E2 -term), the proposition follows for IHk (Z, E). According to Saito [SI, 3],
IHk(Z, E) is a direct summand of IHk(, E) in the mixed Hodge category
and so the proof is complete.

In view of the identification of L2 -cohomology as intersection cohomology,
the previous proposition implies that Hk(2)(~B03BF, E) j carries a natural pure
Hodge structure of weight 1 + m. It would be interesting to describe its
Hodge filtration in «classical terms», e.g., in terms of automorphic forms.

Final remarks. Recall that the Hecke algebra H(G(Q), r) defined by r in
G(Q) is the space complex valued functions on G(Q), which are constant on
double cosets modulo r and have support in a finite union of such cosets.
The product is defined by convolution relative a Haar measure which is
assigns 1 to r-left cosets. As is well known, each double coset GgG,
g E G(Q), defines a correspondence of X to itself:

(where the first map is induced by translation over g and the other arrows
are the obvious ones). If we replace D* by D x E (with G(Q) acting
diagonally on it), then we see that this correspondence lifts to - what we
might still call - a correspondence of the pair (X, E). As the maps in the
above diagram are finite, this correspondence induces an endomorphism of
every sufficiently natural incarnation of the intersection complex on X with
values in E and the resulting endomorphism IH* (X, E) is independent of
that incarnation. This defines a representation of H(G(Q), r) in IH. (X, E)
(compare [BL]). Similarly H(G(Q), r) acts on H(2)(X, E). Since the Hecke
algebra already acts on the complex £f 1(E), it follows that the identification
of H(2)(X, E) with IH. (X, E) (resulting from our main theorem) is

H(G(Q), r)-equivariant.
The same construction can be carried out locally. For instance, we find a

representation of the Hecke algebra H(ZG(Q)(F), Zr(F» in IHO (Z, E) (or
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more intrinsically in the local intersection cohomology group at 00 with
values in E, to which IH(Z, E) maps isomorphically) and likewise on
H(LZ(E)(Z)). Here too, the identification between these cohomology is
Hecke-equivariant. It is worth noting that if a E A(Q) is as in the lemma
(3.6), then the local correspondence of (Z, oo ) to itself defined by it, is in fact
a morphism and equals 03A6a.
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