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1. Introduction

We keep notations as in [HO] and [H]. In those papers we studied the
following differential operator L(k) associated with a (possibly non-reduced)
root system R :

where d = (/CI) e K à Cm and m the number of Weyl group orbits in R. A
crucial role in [HO] was played by the hypothesis that the "Harish-Chandra
homorphism"

is an isomorphism onto. For R of type Az or BC2 this hypothesis is known
from the work of Koornwinder. Under the assumption that the map (1.2)
is onto we investigated in [HO] the system of differential equations

Note that if the parameter 4 E Cm is fixed it is sometimes dropped in the
notation. It tums out that, viewed on a toroidal completion of the torus H,
the system (1.3) is holonomic on Hreg with simple singularities along the
hyperplanes at infinity. For generic parameters we have shown in [HO] that
the system (1.3) has a Weyl group invariant, analytic solution on some
tubular neighbourhood of A c H intersected with Hreg. This solution is
unique up to a constant and with a suitable normalization we denote this
solution by F(Â, d; h), and call it the (multivariable) hypergeometric function
associated with the root system R.
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In order to avoid the hypothesis that (1.2) is an isomorphism a différent
construction of F(03BB, .4; h) is given in [H] using the Riemann-Hilbert corre-
spondence. In our example the Riemann-Hilbert correspondence amounts
to the fact that - at least for generic parameters Â and 4 - the function
F(03BB, 4; h) is characterized by the single differential equation

together with the monodromy representation. The fundamental group
03C01(WBHreg) of the complement of the discriminant has been described in
terms of generators and relations by v.d. Lek and Looijenga ([L]). The
crucial point, four our purpose, of their description is that the relations
(braid relations and push relations) allow a reduction to rank two.
The main goal of this paper is to prove that the Harish-Chandra homo-

morphism (1.2) is onto for R a root system of type G2, thereby filling in the
missing link in the construction of F(03BB, 4; h) for an arbitrary root system
R. In order to do this we study the concept of shift operators, which is a
multivariable analogue of relations of the form

For the root systems of rank two we give a complete description of the
shift operators. A first application is a proof of the Harish-Chandra isomor-
phism for type G2. A second application is the verification of the conjecture
that F(03BB, d; e) = 1 in the case that either 03BB E P_ and k03B1  0 (the multivari-
able Jacobi polynomials) or F(03BB, d; h) "contiguous" to a case where the
conjecture is known (e.g., the group case).

2. Shift operators for rank one and rank two root systems

Let R be a possibly non reduced root system. Let m be the number of
conjugacy classes of roots in R. Denote by K ~ Cm the k03B1 - parameter space
(see [HO], Section 2). As in [HO] we write P for the weight lattice of R0 (the
"inmultiplicable" roots of R) and H for the torus with characterlattice P.
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The Weyl denominator A is the function on H given by

Put Hreg = {h E H|0394(h) ~ 01, the set of regular points of H.

DEFINITION 2.1. Let D ~ C[K] (D O(Hreg) ~ U(b) (where f9(Hreg) means the
ring of holomorphic functions on Hreg ). We will call D a shift operator with
shift ~ ~ K if it satisfies:

(b) D has a convergent asymptotic expansion of the form:

on A_ (observe that we assume that Q(e) E P).

We will use the notation S(~) for the C[K] - module of all shift operators
with shift t.

PROPOSITION 2.2. Let D c- S (e). Then D is W-invariant and, viewed on WBH,
it is contained in C[K] ~C An (where An is the Weyl algebra in n variables
with coefficients in C).

Proof. If À satisfies (À, 03BAv) ~ 1, VK E Q+, K :0 0 then ~(03BB + Q (k), k) is
the unique solution of the equation:

Therefore it is clear that:

if D satisfies Definition 2.1. If we restrict ourselves to the case

03BB + Q(k) E P_ and k a 0, ~(03BB + q(k), k; h) is in fact a W-invariant
Fourier polynomial P(03BB + Q(k), 4) (the so called Jacobi polynomials) (see
[HO], Definition 3.13). So if 03BB + Q(k), 03BB + Q(k + ~) E P_ equation (2.4)
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becomes

If À + Q(k) E P_ but À + Q(,4 + t) Í P_ then p0(k; 03BB + Q(k)) = 0,
because otherwise ~(03BB + e (4 + ~), k + e; h) would be an element of
O(Hreg) while rank one reduction shows that this cannot be the case. Thus
(2.5) holds for all 4 generic, + Q(k) E P_. Because the Jacobi poly-
nomials form a basis for the space of W-invariant Fourier polynomials
Proposition 2.2 follows. D

We will use the following notation for elements of the Weyl algebra: if

We obtain a P-gradation on An:

where A03BBn is the span of the elements

with

So

is a filtration on An.

PROPOSITION 2.3. Let D ~ S(~). Then D E An,Q(~).
Proof. Write D = 03A303BB,03BC~P_ a03BB,03BCZ03BB(~/~z)03BC. Use induction on (Jl, Jl) and for-

mula (2.5) to prove:

Let L be the algebra of functions on Hreg generated by the functions:
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PROPOSITION 2.4. Suppose D E C [K] (8) f/ Qx U(b) is a differential operator
that satisfies (a) of Definition 2.1. Then D ~ S(~).

Proof. We have to show that D has an asymptotic expansion as required
in (b) of Definition 2.1. In order to do so we consider the set S2 of subsets
of P that are of the form S + Q+ for some finite subset S of P. It is easy
to see that Q is in one to one correspondence with the set of non ordered
finite subsets of P and that Q is closed under the operation of taking finite
unions. Therefore there exists a unique finite non ordered subset S(D) of P
such that:

We must show that S(D) = {Q(~)}. If we let D operate on ~(03BB + e(d),
k; h) we obtain:

with

and this has to be an eigenfunction for with eigenvalue

PROPOSITION 2.5. Consider the covering n: H’g -+ CnB{03942 = 01 (see [HO],
Section 2). Let D ~ An. Then 1t* (D) E (L 0 U(b))W. In particular; if
D E C [K] Q An and D satisfies (a) of Definition 2.1 then D E S(~).

Proof. Observe that zi, ô (Ãj) z, andà -’ are in L. This is sufficient to prove
7r*(D) E (L Q U(b))). The W-invariance of n* (D) is trivial. p

For the rank one and two root systems we will give a basis B of K and
~~ E B a shift operator G(6) with shift il. In fact these operators form

generators for all shift operators of these root systems, as will be shown in
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Section 3. We have found these operators using ad hoc methods and
computer calculations. The results can be checked (in principle at least) by
elementary but lengthy calculations. We will present the operators as
elements of An.

Table 2.6

The case BC1: We have roots {±03B1, ± 203B1}. Take(03B1, 03B1) = 1. As coordinate on

WBH ~ C we use z = 1 2 - 1 4 (h03B1 + h-03B1) . Pu t k1 = k03B1, k2 = i2cx. Then we
have (see also [HO], Section 4):

and:

The weight function t5(l; a) becomes (in the coordinate z)

and :

We have the following shift operators G(~i) (i = 1, 2)

If we take 03B6 = ha. + h-" as coordinate the operators become :
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The rank two cases: As in ([HO], Section 2) we will use

as coordinates on WBH ~ C2. It is convenient to write Di instead of ôlôzi.

Let 4 = k03B1. Take (a, 03B1) = 3 (~03B1 E A2). In the coordinates (z,, Z2) we have :

and

The weight function c5 (l; a) becomes:

and the square of the Weyl denominator A:
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Fig. 2. The locus ¿B2(Z) = 0, drawn in the plane z, - z2 = x + iy, x, y E R.

There exists a shift operator G(~) for :

This operator was found by Vretare (see [V], Section 8).

BC2

Define
We have :
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and

The weight function 03B4(k; a) in the z coordinates:

and the square of the Weyl denominator:

We have the following shift operators G(¿¡):
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Fig. 4. The locus 03942(z) = 0 for BC2 drawn in the plane (z., z2) E R2.

For el the shift operator was found by Koornwinder (see [K], page 61, formula
(5.4)). For t2 the operator was found by Sprinkhuizen (see [S], page 505,
formula (4.4).

G2

Fig. 5.
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Take Then:

and

The weight function 03B4(k; a) takes the form :

and

(see Fig. 6). We have shift operators G(~i) for:
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Fig. 6. The locus 03942(z) = 0 drawn in the plane (z, , z2 ) E R2 for the root system G2 . ((6,6) is
intersection point of order 3).
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REMARKS. A: The Jacobi polynomials corresponding to these root systems
are orthogonal on a proper region bounded by {03942(z) = 0} (see Figs 2, 4,
and 6) with respect to the measure 03B4(k; z) . |03942(z)|-1/2. dz.

B: If one tries to verify the operators G(~i) for G2 it is helpful to observe
that these operators reduce to the operator G(1) for A2 (contained as
subsystem of long or short roots in G2) when they are restricted to certain
lines in the parameter space K.

3. Some algebraic properties of shift operators

In this section we will study the structure of the spaces S (e ~ C [K] Qx An
and the relations between them. Using the operators given in the previous
section this leads to a complete description of S(~), in particular of §(0)
(the commutant of L in C[K] Qx AJ, for the rank two root systems. For
l E K fixed we use the following notation:

DEFINITION 3.1. (Generalization of Definition 2.5 of [HO]). Let D ~ S(~, k).
Then D = hQ(~) 03A303BC0 hJl. o(PJl). We call the mapping:

the Harish-Chandra mapping. (Remark: if e = 0 this is just the mapping
03B3(k) as defined in [HO] (Definition 2.5)).

PROPOSITION 3.2. ~(~, k) is injective and deg(D) = deg(po) (with deg(D) we
mean the usual degree of D as differential operator).

Proof. Analogous to Lemma 2.7 from [HO] we obtain that D =

hQ(~) 03A303BC0 hPo(pp) ~ S(~, l) if and only if the polynomials p03BC E C [b* ]
satisfy the recurrence relations:

The proposition follows from (3.2).
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Consider the following weight function on A

(see [HO], Proposition 2.2). On A_ Ô (,4; a) has a series expansion of the
form:

DEFINITION 3.3. For D ~ S(~) we define:

viewed as differential operator on A"g. (D* means: formal transpose as
differential operator on A with respect to the Haar measure da).

PROPOSITION 3.4. D ~ S(-~).
Proof. From (3.4) we conclude that D has the right asymptotic expansion

on A_ . Recall ([HO], Corollary 2.3) that L(k) is symmetric with respect to
the measure 03B4(k; a) da on A, i.e., L (4) = 03B4(-k)03BF L*(k)03BF03B4(k). Hence:

PROPOSITION 3.5

Proof. On A - we have:
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with In other words:

THEOREM 3.6. ~(0, k) : S(0, k) ~ C [b*]W is an isomorphism (~k E K) for all
rank two root systems.

Proof. For A2 and BC2 this was proved by Koomwinder in his thesis (see
[K]). For G2 we take the operator G = C((0, 1), (11, ’2 + 1))03BF((0. 1),
(il, i2» (see Table 2.6). Obviously C ~ S(0) (according to Proposition 3.4).
~(G(0, 1)) can be calculated with the formula:

We obtain

Using Proposition 3.5 we see:

terms of lower degree

Now it is easy to see that q (G ) and ~(L) generate C[b*]W.

We have bilinear mappings:

So we can view S(~) as a module over the algebra S(0). We will study this
module structure in the sequel of this section. Observe that
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LEMMA 3.7 (rank one case). Suppose D is a rank one shift operator with shift
t = (trx’ t2rx) = (el, ~2). D is an element of A1, so we can write D =

03A3mj=0 aj 2022 ~j (with aj polynomials in z and,4). Then m  max (1 tl + ~2|, 1 t2 1)
and am = c. zl/2(m - 

(t) + ~2)). (1 - Z)1/2(m - ~2) with ~1, m - t 2 E 2Z, c E

C[K]B{0}.
Proof. Looking at the highest order part of the equation D(l) 0 (L(k) +

Because D is also in the Weyl algebra we have:

As we have seen in Table 2.6 we have in rank one:

Since,e, E 2Z we can decompose C with respect to (0, 1) and (2, -1) with
integral coefficients:

with
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Observe that max Define

The operator

is a shift operator with shift e and highest order part:

With induction on m we conclude:

PROPOSITION 3.8. Every rank one shift operator D c- S (t) is of the form :
D = G(~, l) 0 P (L (,4» with P a polynomial in one variable. r-i

COROLLARY 3.9. In the rank one situation we have:

(a) 1ft E Z . (0, 1) + Z . (2, -1) then S(~) is a free rank one S(0) module
with generator G(t).
(b) If ~ ~ 7L . (0, 1) + 7L . (2, -1) then S(~) = {0}.
(c) Between the generators G(e, l) we have the relations:

Define r(e, 4; x) as the polynomial such that

So we have
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and for other values of e, r(e; x) can be calculated using Proposition 3.5,
(3.10) and (3.15). For convenience we define r(~, 4; x) - 0 if ~ ~ Z. (0, 1) +
Z . (2, -1).
The rank one calculations enable us to describe what one may expect for

the higher rank situation. Let R be a possibly non reduced root system. k
is reduced and we choose a basis of simple roots {a1, ... , 03B1n} of R°. Denote
by Ç (i = 1,..., mo) the conjugacy classes of Ro. For,4 E K we write for
the multiplicity function restricted to (Ç w 1 2 Ci) n R. The following
theorem generalizes Proposition 2.9 in [HO].

THEOREM 3.10. Let D ~ S(~). Then 1 (D) is of the following form :

with p E C[b*]W, where r(~i, ki; x) is the polynomial defined by (3.18). In
particular:S(t) = {0} if not all ~i are in Z . (0, 1) + Z . (2, - 1) . (with ~i =
(~i,03B1/2, ~i,03B1)).

Proof. We may assume that t¡ E Z. (0, 1) + Z. (2, - 1) (Vi) because, if
this is not the case, rank one reduction with respect to a suitable simple root
shows that D has to be 0. Let us consider the rational function

First we will show that p is W-invariant. Take a simple reflection rj in
{03B1j = 0}, 03B1j simple root of R0, 03B1j E Ci for certain i. By rank one reduction (as
in [HO], proof of Proposition 2.9) we see that ~(D) (Â) is divisible by
r(~i, ki; (otj’ , 03BB)) and that the remainder is rj-invariant (see Proposition 3.8).
The expression

is also r,-invariant because R0+B{03B1j} is rj-invariant. The conclusion is that
p(03BB) is W-invariant. The set of poles P of p(À) is a W-invariant set of

hyperplanes contained in:



39

and therefore P is empty. Hence p(Â) is a polynomial.

COROLLARY 3.11. Let R = U7’=1 1 Ci be the decomposition of R in conjugacy
classes and define e, E K by ei(Cj) = 03B4ij . Let B = {~i} be the following basis
of K

for a conjugacy class

for conjugacy classes 

Then S (t) = 0 unless we have :

We obtain from 3.10, Proposition 3.2, 3.4 and 3.5:

COROLLARY 3.12. Suppose that:
(a) 03B3(k) (S (0, k)) = C[b*]W (~k) (see [HO] Conjecture 2.10)
(b) For i = 1,..., m we have an operator G(~i) ~ S(~i) with deg (G(~i)) =

03A303B1~R+ (~i)03B1.
Then Ve E 7L . B, S(~) is a free rank one S(0) module generated by an operator
G (e ) with

(so (3.24) is an equality for D = G (E )). The generators G(~) are products of
the operators G(uli) and (~i) = G(-~i) as in the rank one case (see (3.15)).
They satisfy the relations:

if the coefficients of e and m in their decomposition with respect to B all have
the same sign. If p ~ C[b*]W and D(k) = 03B3(k)-1(p) then
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THEOREM 3.13 (the rank two case). For all rank two root systems the con-
ditions (a) and (b) of Corollary 3.12 are satisfied. ~

REMARK 3.14. For BC3 Vretare has found one shift operator (see [V],
section 7, Theorem 7.1) namely G(0, 1, 0)) (with conventions as for BC2, see
Table 2.6). Beerends has found the generator G(1) for A3 ([B]). Together
with the result of Sekiguchi that y: S(0) ~ [b*]W is an isomorphism for A"
(see [Se]) this implies that (a) and (b) of Corollary 3.12 are also satisfied for
R=A3.

It is easy to calculate ~(G(~i)) for the shift operators given in Table 2.6.
We obtain in accordance with formula (3.25):

Table 3.15. Let À = n103BB1 + n203BB2. For the operators G(~i) of Table 2.6
1 (G (ili » equals:

REMARK 3.16. A calculation shows that the expression

where c(Â, 4) is Harish Chandra’s c-function (see [HO], section 6), does
not depend on Â. (In the next section we will give its precise value for
rank (R) = 2).
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4. Behaviour of shift operators at the identity element

Let F be the ring of functions on 1)reg generated by the ring C [b] and the
functions 1 /ce (oc E R). We denote by E the Euler vectorfield on b:

where {X1, ... , Xn} is an orthogonal basis for a. The operator ad (E) acts
semisimply on the algebra of differential operators 1 Qx U(b) and its eigen-
values are in Z. So we have a Z-gradation on F ~ U(b):

with

(Notation: h.d. (D) = k, the homogeneous degree of D). For example:

If f ~ F (see (2.11)) then f has a unique series expansion:

that is convergent in some neighbourhood of 0 ~ b with (possible) exception
of {03A003B1~R+ a = 01 and which satisfies:

is a polynomial.
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Essentially this is just the powerseries expansion at 0 E 1) of f. If fk0 ~ 0 we
define the lowest homogeneous degree of f (l.h.d.) as:

and the lowest homogeneous part (l.h.p.) as:

If D ~ F ~ U(b) we can expand the coefficients functions in F as described
in (4.4), (4.5) to obtain the unique series expansion

such that

Vf analytic in a neighbourhood of 0 E 1), Df = 03A3kk0 Dkf is a con-
vergent series in a neighbourhood of 0 E 1) with exception of

{03A003B1~R+ a = 0}.

So we obtain a mapping

ko is called the lowest homogeneous degree of D (l.h.d.(D) = ko). s has

the following properties: let DI, D2 E f/ Qx U(b), with 1.h.d.(Di) = k;
(i = 1, 2). Then:

PROPOSITION
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Proof. The function (a/2)cth a/2 is analytic in a neighbourhood of 0 E 4
and its value at 0 is 1. Hence a (cth a/2) = 2/a. ~

LEMMA 4.2. Consider the following elements of 9- (8) U(b):

(where ( . , . ) is the inner product on a).
They satisfy the sI(2) commutation relations, i.e.

Proof. The first two relations follow from the definition of homogeneous
degree. The relation [e, f] = h is verified by an easy direct calculation. D

PROPOSITION 4.3. Suppose D ~ S(0) is a differential operator of degree m.
Then the following holds:

(where lik means: the elements of U(b) of degree
Here p is a homogeneous W invariant polynomial of degree m on 1)*

Proof. (a) was already proved in [HO], Corollary 2.8. For the proof of (b)
we consider the operator e(D). It follows from (4.11) (ii) that [ f, e(D)] = 0.
Furthermore we see from (a) that 1.h.d. (D)  -m, or equivalently:
[h, 03B5(D)] = -m’. e(D) with m’  m. Now we apply sI(2) representation
theory to conclude that (ad(e»’(e(D» * 0. Hence: 0  deg((ad(e))m
(03B5(D)))  deg (03B5(D)) - m = deg (03B5(D)) - deg(D)  0 and we obtain

that deg(E(D)) = m. By virtue of (4.11) (i) this means that 1.h.d. (D) = -m.
With induction on m one proves: (ad(e))m(~(p)) = (m !j2m). p* (see also
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[HC] page 99): it is clear for m = 1 and for general m one has:

We have:

The last term O(X;*)2p has degree (m - 2) so from the induction hypo-
thesis we get :

Thus:

Using again sI(2) representation theory we see: (ad(f))m(p*) = 2mm !e(D)
n

Let us again assume (a) and (b) of Corollary 3.12, so we have, for all
e e Z. B, the generator G(t) for S(~).

THEOREM 4.4. If t e Z0. B. Then we have :

Proof. Consider the operator
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From Proposition 3.2 and Corollary 3.12 it follows that:

So we conclude from (4.11) (ii) and Proposition 4.3 that:

Furthermore from Definition 3.3:

because

The Theorem follows from (4.17) and (4.18). D

COROLLARY 4.5. Let f E Coo (03A9) where Il is a neighbourhood of e E A. Suppose
that G(t).fE C(ÇI) with e E Z0. B. Then :

Here G(~)(1)(e) denotes the constant term ofG(t) evaluated at the identity
element e of A.

Proof. Write G(~) = 03A3k fk . ~ (Xk) with Xk = Xk1l .... X;n. Theorem 4.4
insures that

Choose a vector X E a outside the set {03A003B1~R+ 03B1 = 0}. Because G(t)1 E
C(Q) we have:
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In view of (4.21 ) we see that limt-oh (exp tX) = 0 if k ~ 0. 0

Theorem 1.1 of [H] and Theorem 3.6 of the previous section guarantee us
the existence and uniqueness of a W-invariant analytic solution on a tubular
neighbourhood of A c H of the equation

and
of the form:

Here 0(wÂ + e) is a solution of (4.22) as described in (2.3), and

with

and Co e C such that:

We will use the shift operators given in Section 2 and Corollary 4.5 to
calculate, in the rank two cases, the value of F(03BB, 4; e) for those values of
03BB, k that can be shifted to parameter values for which this value is known.

It is easy to see that for D ~ S(~):

On the other hand we know that for ~ E Z_ . B :
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(see Corollary 4.5). Consequently:

A calculation gives the following values for D(k) (1) (e), with D (k) =
G(t, k), G(t) the operators given in Table 2.6:

Table 4.6

From Table 4.6 and Table 3.15 and formulas (4.24), (4.25) and (4.26) we
check that:

THEOREM 4.7. Let R be of type A2, BC2 or G2. Then F(À, l; e) = 1 for:

(a) À generic, d E i’ + Z. B with i’ the multiplicity function of a symmetric
space G/K with restricted root system of type R (see [HO], Remark 2.11).

(b) À + Q(k) E P_ , k03B1  0 (Jacobi polynomial case).

Proof. We can reduce (a) to 4 = l’ by repeated application of (4.29) and
(4.30). In this case (a) is known to be true (F(Â, l’; a) is the spherical
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function for the symmetric space G/K ). For G2 and BC2 we can prove (b) in
the same manner but now we use (4.29) and (4.30) to shift to the situation
À + Q(k) = 0, in which case (b) is obvious. To prove (b) for A2 we have to
relate A2 to G2. If we think of A2 as the long roots in G2 we see that PA = Pc
(Px is the weight lattice of X) and that

for 03BB E PG, + and certain d E C.
d can be calculated as follows:

with

Using the duplication formula for the r-function this becomes:

Now for A2 (b) follows from (4.31) with d = 1/2. D
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