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1. Introduction

Suppose given an algebra D. Does there exist an abelian variety Y over some
field K such that

D = Endy(Y) ®, Q?

This question can be made more precise by fixing the characteristic of K and
the dimension of Y.

Just to mention one example (cf. 1.5.1): let D be a quaternion algebra over
Q, and let Y be an abelian variety over a field K with

D < End (Y) ®, Q.

If char(K) = 0 this implies that dim(Y’) is even. However this situation can
appear in case char(K) = p > 0, and dim(Y) is odd.

In order to study such type of questions we look for methods of construct-
ing abelian varieties. It is clear that reduction modulo p of examples con-
structed in characteristic zero does not always lead to satisfactory answers.
A method introduced by Gerritzen, cf. [G], also is not sufficient. However
a generalization of this method using the Mumford-Faltings construction of
degenerating abelian varieties will provide a satisfactory answer, as will be
shown in this paper.

In the construction in [G] we find an abelian variety over a field K, where
K is the field of fractions of a complete valuation ring R such that the
reduction of the abelian variety is stable and totally degenerated: the connec-
ted component of the special fibre of the Néron minimal model over R is a
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(split) torus over the residue class field k£ of R. A construction of such
degenerations was given by Mumford, cf. [M2]. This was extended by
Faltings to the case of a construction of an abelian variety with a given
stable reduction. This applied to the idea underlying Gerritzen’s construc-
tion provides us with the methods we are looking for.

1. The results, some notations and survey of the proof

For an abelian variety Z over a field K, we denote by Z' the dual abelian
variety. Its endomorphism algebra is denoted by

End’(Z) = End%(Z) = Endy(Z) ®, Q.
If moreover u is a polarization of Z over K we obtain an involution
End’(Z) - End’(Z), a+ o,

the Rosati involution, which is determined by

4 t

u' = o'
Our main result is the following:
(1.1) THEOREM. Let (Z, u) be a polarized abelian variety over a field k. Let
D < End}(Z)

be a Q-subalgebra stable under the Rosati involution o +— o’ induced by p. Put
n = [D: Q)] and let m be a positive integer. There exists an abelian variety Y
over k(()) with a polarization A such that:

(I) D = End},(Y) = End}(Y ® K), where K = k((£)) denotes an
algebraic closure of k((?));

2) dim(Y) = dim(Z) + m.n;

(3) the Rosati involution with respect to A on D coincides with 6 — ¢’

(4) the formal group Y of Y over k((2)) is isomorphic to the product of
Z ®, k((£)) with mn copies of the formal group of G iy -

The theorem has interesting consequences:

(1.2) CorOLLARY. For every Q-algebra D, free of finite rank over Q, provided
with a positive definite involution, for every integer m > 1, and every integer
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p that is zero or prime, there exists an abelian variety Y over an algebraically
closed field of characteristic p such that

D = End’(Y) and dim(Y) = (m + 1).[D: Q]
(1.3) In (1.8) we prove that (1.1) implies (1.2). The result (1.2) is in [G];
in case (D, %) is not “symmetrically generated” (in the terminology of
[G, p. 113)) it is the best possible general result (cf. [O2, Th. (3.4)]).

If char(K) = p > 0, and Y is an abelian variety over K, we write

p-rank(Y) = f

in case

Y[P)K*) = (Z/p);
here Y] p] is the scheme-theoretic kernel of multiplication by p on Y, and K*

is an algebraic closure of K. The p-divisible group (scheme) of Y is over K*
isogenous with

F = Z (Gn,,m, @ Gm,.n,) @ S Gl,] @f' (GI,O @ GO,I)
(Dieudonné-Manin theory). The sequences of pairs of integers
Z ((n;, my) + (m;, n)) + s(1, 1) + f((1, 0) + (0, 1))

is called a symmetrical formal isogeny type (cf. [02]), and the number f is
called the p-rank of this type.

(1.4) COROLLARY. Let p be a prime number and let F be a symmetrical formal
isogeny type with positive p-rank. There exists an algebraically closed field K
with char(K) = p, and an abelian variety Y over K such that the p-divisible
group of Y has formal isogeny type F and such that End(Y) = Z.

This gives a partial answer to Question (12.7) of [O1]. The implication
(1.1) = (1.4) is proven in (1.9).

(1.5) Examples

(1.5.1.) Letchar(k) = p > 0 and let E be a supersingular elliptic curve over
an algebraically closed field k. Then End°(E) = D is the quaternion algebra
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over @ ramified at p and at co. The theorem shows that for any g > 5 there
exists an abelian variety Y over a field extension of k with dim(Y) = g, and
End’(Y) = D.

Indeed, apply the theorem with Z = E#~*, with diagonal action of D, and
with m = 1.

This was the motivating example which led us to the theorem. Note that
if an algebra of Type III acts on an abelian variety Z in characteristic zero
then dim(Z) is even (for the definition of types cf. [M1, §21], and also see
[M1, pag. 202]). We see that this is not true in positive characteristic (and
cf. [02, Th. 4.8] for all possible End’(X) = D of Type III(1)).

(1.5.2) Let D be a definite quaternion division algebra over Q. Choose a
maximal subfield L of D. Then L is imaginary quadratic over @ and

D®oL=~M2x2L).

There exists an elliptic curve E over a field k o F, such that
L < End(E).

Then
D < End’(E x E),

and for a polarization A on E the polarization (3 ) induces the involution
on D. Thus the theorem gives for any integer m > 1 the existence of an
abelian variety Y over k((¢)) with

dim(Y) = 2+ 4m, and D = End’(Y)
(for details, cf. [02, Lemma 4.4]).

(1.5.3) Letd > 3 be an integer, and let a and b be integers with0 < a < b,
such that a + b = dand (a, b)) = 1. We choose an abelian variety Z over
a finite field with formal group (over an algebraically closed field) equal to
G,, X Gy, as in [T, pag. 352-04, “Probléme de Manin”]. Then
D = End’(Z) has centre F, which is a quadratic imaginary extension of Q,
and p is split in F > Q. Further [D: F] = d? and dim(Z) = d. By the
theorem we can construct for any m > 0 an abelian variety Y with
dim(Y) = d + 2md?* and D = End°(Y). We note that d? does not divide
dim(Y). According to [M1, pag. 202] such examples do not exist in charac-
teristic zero.
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(1.6) REMARK. For a more systematic description which algebras can occur
as End’(T) for some abelian variety Y over an algebraically closed field we
refer to [O2].

We note that the method of construction in (1.1) basically concerns
deformation of a (partially) degenerated abelian variety. Choose a point on
the boundary of the moduli space such that D = End’(Y,) and such that the
““quasi-polarization” on ¥, induces a given involution on D. Then a defor-
mation is found which preserves the action of D, such that the generic fibre
Z has exactly D = End’(Z).

Another method is to take an appropriate abelian variety Y, with
D <= End’(Y,) (this time it corresponds with an interior point of the moduli
scheme), and apply deformation theory. See [O2] for some details.

(1.7) The idea of the proof of Theorem (1.1). The construction of the abelian
variety Z in the theorem is inspired by [G, Th. 12]. We use furthermore the
construction of semi-abelian varieties as initiated by Mumford and com-
pleted by Faltings, cf. [M2], and [F, §3].

We make a slight change in notation: instead of (Z, u) we now write
(Z,, uy)- We write

Z = Z, ® Al

for the “constant’ abelian scheme over this complete discrete valuation ring.
Let

D, = D n End,(Z,).
Let T denote a split torus over k{[¢]] with character group (D,)", viewed as
a right-D,-module. Then T has dimension mn and T is provided with a
left-action of D,. It is shown in Lemma (3.1) that there exists an extension
0-T->G->Z-0
given by a D,-equivariant homomorphism
© X(T) - Z'(k[[11])

where X(T) is the character group of T, such that

D = End(G) ® Q.
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The next step is to find a free subgroup A of G(k((?)) of rank mn such that:

(i) all data in Faltings’ construction [F, §3] are available for A and G,
(ii) A is Dy-invariant.

Let Y denote the general fibre of the semi-abelian variety “G/A”. Then Y is
an abelian variety over k((¢)) with dim(Y) = dim(Z) + mn. Part (4) of the
theorem follows at once from the Faltings’ construction. It can be seen that

End(Y) = {o € End(G)|a(A) = A}.

Using (ii) one obtains part (2) and (3) from the theorem.

In §2 we construct for a given extension G/T = Z of an abelian scheme
Z over a complete discrete valuation ring R all “lattices” A satisfying (i)
above.

In §3 the extension G with End(G) ® Q = D is constructed and D,-
invariant lattices are derived.

In fact the contents of the Sections 2 and 3 remain valid if R is replaced
by a normal, excellent ring which is complete with respect to some non-zero
ideal.

We conclude this section by giving the proofs of (1.2) and (1.4) starting
from the theorem.

(1.8) Proof of (1.2.). Let n be a positive integer, and suppose s € GL(n, Q)
is a symmetric non-singular matrix. We denote by a’ the transpose of a
matrix o (and s being symmetric we have s = 5”). Note that

o s la's
is an involution on GL(n, Q).

Suppose (D, *) and m be given as in (1.2). We write n := [D: @], and we
choose a Q-base D = Q" for D. This gives an embedding

D c M(n x n, Q).

Let ( , ) denote the standard inner product on @". On D an inner product
is given by the formula

xyp = TrOxy* + yx*).
Then there exists an s € GL(n, Q) such that

X y> = (sx,p) forall x,yeD.
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Because {x, y> = {y, x> it follows that s is symmetric. By {dx, y) =
{x, d*y> we conclude that

s7'd’s = d* forall de D.

We choose some elliptic curve E over some field £ > F,, and a polarization
7 on E. With the matrix s constructed above we choose

which is a polarization on Z := E". For € End’(Z) we have

upt = pu,
where B — B%is the Rosati involution induced by u. For

aeMn x n,Q) =« M(n x n, End°(E)) = End’(2)
we have

of = pla'y, = s 'a's.
Thus d* = d® for all d e D = End’(Z). Hence (1.2) follows from (1.1).
(1.9) Proof of (1.4). The isogeny type of the p-divisible group has the form
F=F ® (G, ® G,,) since F has positive p-rank. According to the
Honda-Serre solution of the Manin problem, cf. [T, pp. 352-04] there exists
an abelian variety over a finite field of characteristic p with formal isogeny

type F,. Now apply (1.1) with m = 1 and D = Q. The statement follows
from part (1) and (4) of the theorem.

2. The Faltings—-Mumford construction

In this section R denotes a complete discrete valuation ring with maximal
ideal m and with field of fractions K.

(2.1) The data for the Faltings-Mumford construction [F, §3] can be stated
as follows:
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(1) An abelian scheme Z over R together with an ample line bundle M on
Z (and as usual ¢,:Z — Z' denotes the morphism induced by
ar—t,MQ M™).

(2) An extension G of Z by a split torus T over R. This is an exact sequence

0—2F—>G>5Z—0
given by a homomorphism of groups

7. X(T) -» Z'(R),
where X(T') denotes the group of characters of T. We choose further for
each x € X(T) a line bundle ¢, on Z such that 0, ,,, = 0, ® 0O,, for all
X;, X, € X(T') and such that 7(x) € Pic’(Z)(R) is the class of the line bundle
0?3) A bilinear form

b: X(T) x X(T) » K
satisfying

b(x,, x,) = b(x,, x;) forall x,,x,e X(T)
and

b(x,x)em forall xe X(T) with x # 0.

(4) An homomorphism of groups c: X(T) — Z(R) with t = @, .c and a
family of isomorphisms

o(x;, x,): t4,)0,, > O,,,
additive in x, and x,, i.e.,
o(x1, X + x3) = @(x, x;) @ ¢(x1, x3) and
o(x + X, x3) = @(x, xs)-(t:fx.)‘P(xp X3)).

(5) A family of isomorphisms

Y(x): oM > m @ O,, all xe X(T)
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such that Y(x, + x,) equals the composition (which is an isomorphism)

* — %k g%
tc(X1+xz)M - tc(x:)tc(xz)M 1) (W(x2))

* % -

tc(xl)M ® tdxl)(oxz Y(x)) ® o(xy,x3) M ® @Xl ® (Oxl

for all x,, x, € X(T).
(2.2) Remarks

(2.2.1) These data differ slightly from those in [F, §3]. We will show however
that they are equivalent. First of all we have no need for a subgroup of finite
index of X(T') and we will not consider more general rings than complete
discrete valuation rings. The bilinear form 5 in (2.1) part (3) induces a
homomorphism #: X(T') - T(K) given by

B(x), X0 = blxy, x;) for all x,, x, € X(T).

Let aeZ(R) and let an additive family of isomorphisms
o(x): X0, — 0O, be given. The extension n: G — Z is equal to Fpec(® 0,)
and n*0; = @ O,. There exists a unique element b € G(R) such that
n(b) = a and such that the natural isomorphism f: t}0; — O, satisfies
*(f) = @ ¢(x). Hence part (4) of (2.1) is equivalent to giving a homo-
morphism ¢ X(T) - G(R) with n.c¢ = c¢. The homomorphism
i=¢.¢: X(T) > G(K), given by i(x) = #(x)c’(x) is injective because
b(x, x) € m for all x € X(T') with x # 0. In this way we have obtained the
data of [F, §3]. The converse is shown in a similar way.

(2.2.2) Let A = G(K) denote the image of i. The semi-abelian variety over
R constructed in [F, §3] will be (abusively) denoted by G/A since it is obtained
by dividing a certain formal scheme over R, corresponding to G, by the
action of A. The general fibre (G/A) ® K = Y is an abelian variety over
K. Let L be any finite field extension of K with ring of integers S. Since S
is a discrete valuation ring one has

(G/M(L) = G(L)/A and (G/A)S) = G(S).

(2.2.3) The family of isomorphisms in (5) can be interpreted as a family of
isomorphisms of @;-modules

P (x): thyn*M — n*M
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satisfying
l;(xl + x,) = J’(xl)-(t:(x,)';(xz))

for all x,, x, € X(T). In particular this defines an action of the group
A < G(K) on the line bundle 7*M on G @, K.

The abelian variety ¥ = (G/A) ® K depends only on the extension G
and on the lattice A = G(K). In particular one can multiply b with a
symmetric bilinear s: X(T') x X(T) — R* and ¢ with the corresponding
4. X(T) —» T(R) and ¢’ with s~! without changing Y.

Further we will assume that b: X(T') x X(T') - K* has the form

b(x,, x,) = 1°°" where B: X(T) x X(T) -» Z

is a bilinear, symmetric and positive definite and where m = ¢R.
In the next proposition we show that the data Z, M, 7, B can be completed
to the full data of (2.1).

(2.3) PROPOSITION. Let the following be given:
(1) an abelian scheme Z over R and an ample line bundle M on it;
(2) an extension

0—>T—>GCSHZ—0

corresponding to a homomorphism ©. X(T) —» Z'(R);

(3) a symmetric bilinear positive definite B: X(T) x X(T) — Z.

Then there exists a homorphism ¢’: X(T) - G(R) and a family of iso-
morphisms {Y/(x)|x € X(T)} such that:

“) oy.m.c’ = 1, and

) Y(x): thyM - M @ O, (with c = m.c’) has the property

Vi + x) = W) ® o(x, x,)). (1) (x2))

where ¢ corresponds to ¢'.

Moreover the y is unique up to multiplication by a homomorphism
X(T) - T(R) derived from a bilinear symmetric form X(T') x X(T) - R*
and up to torsion coming from Ker @,,.

In the proof we fix a homomorphism ¢: X(T) — Z(R) with ¢, .c = 1.
This homomorphism is unique up to elements in Ker ¢, (R). We need
several lemmas.
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(2.4) LEMMA. Let L be a line bundle on Z such that the class of L belongs to
Pic®(Z). Then there exists an additive family of isomorphisms

P(x): thyL — L,
ie.
o(x, + x3) = @(x)). (1%, 0(x2))
for all x,, x, € X(T).
Proof. The notation M(a) for any 0,-module and any point @ € X means

M(@)= ®g,,Ox./my,. Since the class of L belongs to Pic’(Z) the line
bundle

m*L @ ptL™' @ pfL™' @z L(0) = 9,(L)

on Z x Z is canonically isomorphis to ¢, ,. This isomorphism induces
canonical isomorphisms

Lix + y) @r L(x)™' ®x L(»)™' ®x L(0) > R.
Further we have canonical isomorphisms
L= L ®g L(x) ®, L)™'

for every x € X(T') we fix an isomorphism of R-modules g(x): L(c(x)) - R
and we define @y (x): t%x L — L by

il = L @ (c(x)) @ L(O)™

—_—
id, ®e(x) ®e(0)!

Consider the following diagram:

L L » (L ® L) ® LO)™)

h g

L ® Lc(x) ® LO)™' ® L(c«(y) ® LO)™!

k a

L ® L(c(x + ) ® L(0)™! f > L.
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The morphisms f, g, 4 and k are induced by the isomorphism 9,(L) — 0, ,
and hence the upper triangle is commutative. Further « is the map

id; ® o(x) ® 2(0)™' ® o(y) ® 0(0)'

0
and
B = id, ®olx +y) @0
One easily sees that f.h = ¢@,(x + y) and
%.g.f = @o(x). (1 Po(¥))-
It follows that
@o(x + ) = alx, »)o(x). (L% ®e (1))
where a: X(T) x X(T) - R¥* is symmetric! Since X(T') is a free Z-module
there exists a function b: X(T') —» R* with b(x + y) = a(x, y)b(x)b( y) for
all x, y e X(T). Then ¢(x) = b(x)"'¢p,(x) for all x € X(T) satisfies the

condition of the lemma.

(2.5) COROLLARY. There exists a bi-additive family of isomorphisms
o(x, y): 13,0, = 0,.

REMARK. Corollary (2.5) follows from (2.4). The description G =
Fpec(® 0,) implies that n: G(R) — Z(R) is surjective. Hence there exists a
homorphism ¢: X(T') - G(R) with n.c¢” = ¢. From ¢’ we obtain a bi-
additive family of isomorphisms %, 0, — 0,.
(2.6) LEMMA. Let a family of isomorphisms

o(x, y): %0, > 0,
and a family of isomorphisms

Y(x): oM - M Q 0,
be given. The function f: X(T) x X(T) — R* given by the formula

Yix +y) = fix WPE) @ o, ). (¥(»)
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satisfies the cocycle relation

f(x + Z)f(x’ y) = f(x9y + Z)f(y’ z).

Proof. We may assume that ¢(x, y) is bi-additive. Consider the sequence
of isomorphisms induced by ¥ and by ¢:

tc’?X+y+Z)Ma—4’ t:EXer)(M ® (92) 0!—3)
M ®0,)R® th0, > 50,8 0,5 MQ®O0,,,,..
Then

S p)ama = Yx + ) ® olx + ,2)

and

S+ y, 2) f(x, y)a o050,

SOx 4+ p, D)W (x + ») ® o(x + p, 2)). (s y¥(2))

v(x + y + 2).

Similarly
f(y, Doy, = ¥ (y + 2).
Since ¢(x, ) ® o(x, z) = @(x, y + z) we have
S,y + 29f(y, Do a0,
= f(x,y + DY) ® o(x,y) ® o(x, 2)). (X ¥ (y + 2)
= yYx+y+ 2.
The cocycle relation now follows.
(2.7) End for the proof of (2.3). Let @,(x, y) be bi-additive and let yy(x)

(arbitrary) be given. They determine f; X(T) x X(T) — R* as in Lemma
(2.6). take gq: X(T) - R* arbitrarily and take a: X(T) x X(T) - R*
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bilinear and antisymmetric. Put y(x) = g(x){(x) and o(x,y) =
a(x, y)@o(x, ¥). Then ¢, Y satisfies (5) in Lemma (2.3) if and only if

. _qx+y)
( )f(x’ y) - q(x)q(y) a(x’ y)

Instead of working with R* we take an arbitrary commutative group A (with
additive notation) with trivial X(7T)-action. By definition we have:

H*(X(T), 4)

_ {1 X(T)x X(T) > A| f(x+ y,2) + f(x,p) = f(x,y + 2) + f(y,2)}
{dq|q: X(T') - Aarbitraryand dg(x, y) = q(x + y) — q(x) — q(»)}

It is well-known that
H*(X(T), A) = Hom(A’X(T), A)
= {a: X(T) x X(T) » A|a is bilinear and antisymmetric}.
It follows that (x) has a solution. Moreover the bilinear antisymmetric form
a in the solution is unique and ¢ is unique up to multiplication by a

homomorphism X(7') — R*. This proves (2.3).

(2.8) DEFINITION. A homomorphim ¢: X(T') —» G(R) with n.c¢" = ¢ is
called M-symmetric if there are isomorphisms

Yx): thoM - M ® 0,
satisfying
Yx +p) = W) Q olx, y). dy¥(»))
for all x, y € X(T') and where ¢(x, y) corresponds to ¢'.
(2.9) ReMArk. For any homomorphism ¢”: X(T) - G(R) with n.¢" = ¢
there exists a unique bilinear, antisymmetric a: X(T') x X(T) — R* such

that @ .c¢”: X(T) > G(R) is M-symmetric. Here « denotes the homomorphis
X(T) - T(R) induced by a.
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3. D-invariance

Let R, m, Kbe asin §2 and let K = R/m. Let the abelian scheme Z over R
be given and let D, be an order in D such that D, = End(Z). The action of
o € End(Z) on Z' is denoted by o € End(Z'). We suppose in the sequel that
the right End(Z)-module Z‘(R) has rank >m. In the situation of §1 we
choose R = K|[[f]]) and Z = Z, ®, k[[?]]. Then Z'(k[[t]]) is uncountable.
Thus Z'(k{[]]) has an infinite rank as End(Z)-module.

The group of characters X(7') of T'is identified with D, x - -+ x D,,1i.e.,
m copies of the right D;-module D,.

(3.1) LEMMA. There exists a homomorphism t. X(T) — Z'(R) such that the
corresponding extension Z = G|T has the property that End(G) ® Q = D.

Proof. Any a € End(G) satisfies a(7") = T. Furthermore o, = /T and
o, = (the induced endomorphism on Z = G/T') are determined by «. The
action of «; on X(T') is denoted by «} and the action of «, on Z* is denoted
by o). One easily sees that

End(G) = {(o, &,)|e, € End(T), a, € End(Z), ta} = o1}.

Let e, ..., e, be a basis of the right D,-module X(T). Take elements
a,...,a,¢€ Z'(R), linearly independent over End’(Z). Define 7: X(T') —
Z'(R) by

T <Z eidi*) =
i=1 i

Clearly D, = End(G). Choose a = (2, ;) € End(G) ® Q. Then e,af =
X ¢;d, for certain d; € D and hence X a,d! = a,05. Because a,, . . ., a,, are
linearly independent this implies that «, = d,. After subtracting d, from
o = (o, o) we may suppose that o, = 0. Since 7 is injective, we conclude
that also «, = 0, and hence a = 0. This shows that D = End(G) ® Q.

M=

a;d! for d,,...,d,eD,.

1

(3.2) LeMMA. Let Z, 1, G be as in (3.1) and let M be an ample line bundle on
Z such that the Rosati involution R on End’(Z) satisfies R(D) = D. There
exists a Dy-invariant homomorphism ¢’: X(T') — G(R) satisfying:

) oy.m.c’ = 1,

(2) ¢ is symmetric with respect to M.
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Proof. There exists a homomorphism ¢”: X(T') - G(R) where ¢” is D,-
invariant and @,,.7m.c” = 1. According to (2.9) there is a unique anti-
symmetric bilinear a: X(T) x X(T) — R* such that

¢ = ¢".a: X(T) > G(R)
is symmetric with respect to M.

We have to show that « is also D,-equivariant. The equivariance of ¢” can
be expressed as ¢"(xd*) = R(d)c"(x) for x € X(T') and d € D,,. Let

o(x, yd*): t1,0, - 0,
denote the family of isomorphisms corresponding to ¢”. The equivariance of
¢” can be expressed in the ¢ as: ¢(x, d*) = d*(e(x(Rd)*, y)). Indeed, we
note that 0, = d*(0,). The isomorphisms

(P(x, yd*): tc"(:x)(gyd“ - (9yd‘
together with

thyd* = d*t},, and dc(x) = c(xR(d)*)
induce an isomorphism

which coincides with d*(@(x(Rd)*, y)).
Let the cocycle f(—, —) be given by the formula

Yx +y) = S W) ® ox, y). (¥ ().
The alternating bilinear a: X(T') x X(T') - R* satisfies
ax, y7 = f(x f(y %"
The D,-equivariance of = can be expressed as
a(x(Rd)*, y) = a(x, yd*) forall de D,.
The Dy-equivariance of a(x, y)*> follows at once from ¢(x, yd*) =

d*(@(x(Rd)*, y)). After changing D,into Z .1 + 2D, (or similar changes of
7, M, etc.), the equivariance of « follows.
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(3.3) LEMMA. There exists a positive definite symmetric bilinear form
B: X(T) x X(T) » Z satisfying B(xd*, y) = B(x, yR(d)*) for all
x,y € X(T) and d € D,.

Proof. Let e, . . ., e, be a Dy-basis for X(T'). Define

B(Yedr Y edt)= § T @ray.

where Tr denotes the reduced trace of End’(Z) over Q. According to [M1,
§21, Th. 1] we see that B has the required properties.

(3.4) End of the proof of (1.1). Let R = k[[f]] and put Z = Z, ®, R. Then
Z,t,G, M, ¢, Basin (3.1)-(3.3) determine an abelian variety Y over the field
k((2)). We still have to show that End°(Y) = End’(Y ® k((¥))*) = D.

The inclusion D < End’(Y) follows at once from the following state-
ment:

“Let fori = 1, and i = 2 the set of data (Z,, M,, T;, G,, b;, ¢;, ¥;) as in
(2.1) be given. Let Y, denote the resulting abelian variety over K = k((¢))
and let A; = G;(K) denote the subgroup introduced in (2.2.2). A morphism
of algebraic groups a: G, —» G, satisfying &(A,;) < A, induces a unique
R-morphism of semi-abelian varieties a: G,/A, — G,/A, such that under the
canonical isomorphism of m-adic completions of G, and G;/A; one has that
a and & are formally identical”.

In the special case Z, = Z, = 0 this statement is contained in [M2,
p. 257, Th. 4.6]. The general case is asserted in [F, §3, p. 342].

Let L be a finite field extension of k((¢)). Let S denote the integral closure
of k[[#]] in L and let mg be the maximal ideal of S. Let & € End(Y ®y, L)
Then o induces an endomorphism of the Néron minimal model N of
Y ®qy L and also an endomorphism of the unit component M of the
mg-adic completion of N.

From the construction it follows that M is isomorphic to the mg-adic
completion of G ® S. Hence a € D,. It follows that End°(Y ® L) < D,
and hence

End’(Y ®yy k(®)*) = D.

Thus Theorem (1.1) is proved.
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