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1. Introduction

Suppose given an algebra D. Does there exist an abelian variety Y over some
field K such that

This question can be made more precise by fixing the characteristic of K and
the dimension of Y.

Just to mention one example (cf. 1.5.1): let D be a quaternion algebra over
Q, and let Y be an abelian variety over a field K with

If char(K) = 0 this implies that dim(Y) is even. However this situation can
appear in case char(K) = p &#x3E; 0, and dim(Y) is odd.

In order to study such type of questions we look for methods of construct-
ing abelian varieties. It is clear that reduction modulo p of examples con-
structed in characteristic zero does not always lead to satisfactory answers.
A method introduced by Gerritzen, cf. [G], also is not sufficient. However
a generalization of this method using the Mumford-Faltings construction of
degenerating abelian varieties will provide a satisfactory answer, as will be
shown in this paper.

In the construction in [G] we find an abelian variety over a field K, where
K is the field of fractions of a complete valuation ring R such that the
reduction of the abelian variety is stable and totally degenerated: the connec-
ted component of the special fibre of the Néron minimal model over R is a



104

(split) torus over the residue class field k of R. A construction of such
degenerations was given by Mumford, cf. [M2]. This was extended by
Faltings to the case of a construction of an abelian variety with a given
stable reduction. This applied to the idea underlying Gerritzen’s construc-
tion provides us with the methods we are looking for.

1. The results, some notations and survey of the proof

For an abelian variety Z over a field K, we denote by Z’ the dual abelian
variety. Its endomorphism algebra is denoted by

If moreover y is a polarization of Z over K we obtain an involution

the Rosati involution, which is determined by

Our main result is the following:

(1.1) THEOREM. Let (Z, 03BC) be a polarized abelian variety over a field k. Let

be a 0-subalgebra stable under the Rosati involution a  a’ induced by 03BC. Put
n = [D : Q] and let m be a positive integer. There exists an abelian variety Y
over k((t)) with a polarization Â such that:

(1 ) D = End0k((t))(Y) = End0K(Y ~ K), where K = k«t»Q denotes an

algebraic closure of k((t));
(2) dim( Y) = dim(Z) + m. n;
(3) the Rosati involution with respect to À. on D coincides with ô  03B4’;
(4) the formal group Y of Y over k((t)) is isomorphic to the product of

Z ~k k((t)) with mn copies of the formal group of Gm,k((t)).

The theorem has interesting consequences:

(1.2) COROLLARY. For every Q-algebra D, free offinite rank over Q, provided
with a positive definite involution, for every integer m  1, and every integer
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p that is zero or prime, there exists an abelian variety Y over an algebraically
closed field of characteristic p such that

(1.3) In (1.8) we prove that (1.1) implies (1.2). The result (1.2) is in [G];
in case (D, *) is not "symmetrically generated" (in the terminology of
[G, p. 113]) it is the best possible general result (cf. [02, Th. (3.4)]).

If char(K) = p &#x3E; 0, and Y is an abelian variety over K, we write

in case

here Y[ p] is the scheme-theoretic kernel of multiplication by p on Y, and Ka
is an algebraic closure of K. The p-divisible group (scheme) of Y is over K°
isogenous with

(Dieudonné-Manin theory). The sequences of pairs of integers

is called a symmetrical formal isogeny type (cf. [02]), and the number f is
called the p-rank of this type.

(1.4) COROLLARY. Let p be a prime number and let F be a symmetrical formal
isogeny type with positive p-rank. There exists an algebraically closed field K
with char(K) = p, and an abelian variety Y over K such that the p-divisible
group of Y has formal isogeny type F and such that End(Y) = Z.

This gives a partial answer to Question (12.7) of [O1]. The implication
(1.1) ~ (1.4) is proven in (1.9).

(1.5) Examples

(1.5.1.) Let char(k) = p &#x3E; 0 and let E be a supersingular elliptic curve over
an algebraically closed field k. Then End’(E) = D is the quaternion algebra
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over Q ramified at p and at oo. The theorem shows that for any g  5 there
exists an abelian variety Y over a field extension of k with dim(Y) = g, and
End°(Y) = D.

Indeed, apply the theorem with Z = Eg-4, with diagonal action of D, and
with m = 1.

This was the motivating example which led us to the theorem. Note that
if an algebra of Type III acts on an abelian variety Z in characteristic zero
then dim(Z) is even (for the definition of types cf. [Ml, §21], and also see
[M1, pag. 202]). We see that this is not true in positive characteristic (and
cf. [02, Th. 4.8] for all possible End°(X) = D of Type III(1)).

(1.5.2) Let D be a definite quaternion division algebra over Q. Choose a
maximal subfield L of D. Then L is imaginary quadratic over Q and

There exists an elliptic curve E over a field k ~ Fp such that

Then

and for a polarization on E the polarization (03BB0003BB) induces the involution
on D. Thus the theorem gives for any integer m  1 the existence of an
abelian variety Y over k((t)) with

dim(Y) = 2 + 4m, and D = End°(Y)

(for details, cf. [02, Lemma 4.4]).

(1.5.3) Let d  3 be an integer, and let a and b be integers with 0  a  b,
such that a + b = d and (a, b) = 1. We choose an abelian variety Z over
a finite field with formal group (over an algebraically closed field) equal to
Ga,b x Gb,a as in [T, pag. 352-04, "Problème de Manin"]. Then
D = End°(Z) has centre F, which is a quadratic imaginary extension of Q,
and p is split in F =3 Q. Further [D: F] = d2 and dim(Z) = d. By the
theorem we can construct for any m a 0 an abelian variety Y with
dim(Y) = d + 2md2 and D = End°(Y). We note that d2 does not divide
dim(Y). According to [M1, pag. 202] such examples do not exist in charac-
teristic zero.
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(1.6) REMARK. For a more systematic description which algebras can occur
as End°(T) for some abelian variety Y over an algebraically closed field we
refer to [02].
We note that the method of construction in (1.1) basically concerns

deformation of a (partially) degenerated abelian variety. Choose a point on
the boundary of the moduli space such that D c End°( Yo) and such that the
"quasi-polarization" on Yo induces a given involution on D. Then a defor-
mation is found which preserves the action of D, such that the generic fibre
Z has exactly D = End0(Z).
Another method is to take an appropriate abelian variety Yo with

D c End0(Y0) (this time it corresponds with an interior point of the moduli
scheme), and apply deformation theory. See [02] for some details.

(1.7) The idea of the proof of Theorem (1.1). The construction of the abelian
variety Z in the theorem is inspired by [G, Th. 12]. We use furthermore the
construction of semi-abelian varieties as initiated by Mumford and com-
pleted by Faltings, cf. [M2], and [F, §3].
We make a slight change in notation: instead of (Z, 03BC) we now write

(Zo, 03BC0). We write

for the "constant" abelian scheme over this complete discrete valuation ring.
Let

Let T denote a split torus over k[[t]] with character group (D0)m, viewed as
a right-Do-module. Then T has dimension mn and T is provided with a
left-action of Do. It is shown in Lemma (3.1) that there exists an extension

given by a Do -equivariant homomorphism

where X(T ) is the character group of T, such that
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The next step is to find a free subgroup A of G(k((t)) of rank mn such that:

(i) all data in Faltings’ construction [F, §3] are available for A and G,
(ii) A is Do-invariant.
Let Y denote the general fibre of the semi-abelian variety "G/A". Then Y is
an abelian variety over k((t)) with dim(Y) = dim(Z) + mn. Part (4) of the
theorem follows at once from the Faltings’ construction. It can be seen that

End(Y) = {03B1 E End(G)|03B1(039B) ~ 039B}.

Using (ii) one obtains part (2) and (3) from the theorem.
In §2 we construct for a given extension GIT = Z of an abelian scheme

Z over a complete discrete valuation ring R all "lattices" A satisfying (i)
above.

In §3 the extension G with End(G) Q Q = D is constructed and Do-
invariant lattices are derived.

In fact the contents of the Sections 2 and 3 remain valid if R is replaced
by a normal, excellent ring which is complete with respect to some non-zero
ideal.
We conclude this section by giving the proofs of (1.2) and (1.4) starting

from the theorem.

(1.8) Proof of (1.2.). Let n be a positive integer, and suppose s E GL(n, Q)
is a symmetric non-singular matrix. We denote by a’ the transpose of a
matrix a (and s being symmetric we have s = s’). Note that

is an involution on GL(n, Q).
Suppose (D, *) and m be given as in (1.2). We write n := [D: Q], and we

choose a Q-base D = Q" for D. This gives an embedding

Let ( , ) denote the standard inner product on en. On D an inner product
is given by the formula

Then there exists an s E GL(n, Q) such that

for all
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Because (x, y) = ~y, x) it follows that s is symmetric. By ~dx, y) =
~x, d*y) we conclude that

for all

We choose some elliptic curve E over some field k ~ Fp, and a polarization
r on E. With the matrix constructed above we choose

which is a polarization on Z := E" . For fi E End0(Z) we have

where 03B2  03B2§ is the Rosati involution induced by y. For

we have

Thus d* = d§ for all d E D c End°(Z). Hence (1.2) follows from (1.1).

(1.9) Proof of (1.4). The isogeny type of the p-divisible group has the form
F = F1 ~ (G1,0 ~ G0,1) since F has positive p-rank. According to the

Honda-Serre solution of the Manin problem, cf. [T, pp. 352-04] there exists
an abelian variety over a finite field of characteristic p with formal isogeny
type F,. Now apply (1.1) with m = 1 and D = Q. The statement follows
from part (1) and (4) of the theorem.

2. The Faldngs-Mumford construction

In this section R denotes a complete discrete valuation ring with maximal
ideal m and with field of fractions K.

(2.1) The data for the Faltings-Mumford construction [F, §3] can be stated
as follows:
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(1) An abelian scheme Z over R together with an ample line bundle M on
Z (and as usual ~M: Z ~ Z’ denotes the morphism induced by
a  taM (8) M-1).

(2) An extension G of Z by a split torus T over R. This is an exact sequence

given by a homomorphism of groups

where X(T) denotes the group of characters of T. We choose further for
each x E X(T) a line bundle (9x on Z such that Ox1 +x2 = Ox1 0 Ox2 for all
x1, x2 E X(T) and such thatr(x) E Pic0(Z)(R) is the class of the line bundle
(9x -

(3) A bilinear form

satisfying

for all

and

for all with

(4) An homomorphism of groups c: X(T) ~ Z(R) with r = ~M. c and a
family of isomorphisms

additive in XI and x2, i.e.,

and

(5) A family of isomorphisms
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such that 03C8(x1 + X2) equals the composition (which is an isomorphism)

for all x, , x2 E X(T).

(2.2) Remarks

(2.2.1 ) These data differ slightly from those in [F, §3]. We will show however
that they are equivalent. First of all we have no need for a subgroup of finite
index of X(T) and we will not consider more general rings than complete
discrete valuation rings. The bilinear form b in (2.1) part (3) induces a
homomorphism 6: X(T) - T(K) given by

Let a E Z(R) and let an additive family of isomorphisms
(p(x): t*aOx ~ (9x be given. The extension n: G - Z is equal to Fpec(~ (9x)
and n*(9G = (9x. There exists a unique element b E G(R) such that
n(b) = a and such that the natural isomorphism f: t*bOG ~ (9G satisfies

n*(f) = ? ~(x). Hence part (4) of (2.1) is equivalent to giving a homo-
morphism c’: X(T) - G(R) with n. c’ = c. The homomorphism
i = 1 . c’: X(T) - G(K), given by 1(x) = 4(x)c"(x) is injective because
b(x, x) E m for all x E X(T ) with x ~ 0. In this way we have obtained the
data of [F, §3]. The converse is shown in a similar way.

(2.2.2) Let A c G(K) denote the image of i. The semi-abelian variety over
R constructed in [F, §3] will be (abusively) denoted by G/A since it is obtained
by dividing a certain formal scheme over R, corresponding to G, by the
action of A. The general fibre (G/A) Qx R K = Y is an abelian variety over
K. Let L be any finite field extension of K with ring of integers S. Since S
is a discrete valuation ring one has

and

(2.2.3) The family of isomorphisms in (5) can be interpreted as a family of
isomorphisms of (9G-modules
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satisfying

for all x, , x2 ~ X(T). In particular this defines an action of the group
A c G(K) on the line bundle n*M on G ~R K.
The abelian variety Y = (G/A) ~R K depends only on the extension G

and on the lattice A c G(K). In particular one can multiply b with a
symmetric bilinear s: X(T ) x X(T) ~ R* and 1 with the corresponding
a: X(T) ~ T(R) and c’ with s-1 without changing Y.

Further we will assume that b: X(T) x X(T) ~ K* has the form

where

is a bilinear, symmetric and positive definite and where m = tR.
In the next proposition we show that the data Z, M, 1:, B can be completed

to the full data of (2.1).

(2.3) PROPOSITION. Let the following be given:
(1) an abelian scheme Z over R and an ample line bundle M on it;
(2) an extension

corresponding to a homomorphism r: X(T ) ~ Zt(R);
(3) a symmetric bilinear positive definite B: X(T) x X(T) ~ Z.
Then there exists a homorphism c’: X(T) - G(R) and a family of iso-

morphisms {03C8(x) |x E X(T)j such that:
(4) ~M 2022 03C0 2022 c’ = 03C4, and

(5) 03C8(x): t*c(x)M ~ M (D Ox (with c = n. c’) has the property

where cP corresponds to c’.
Moreover the t/1 is unique up to multiplication by a homomorphism

X(T) - T(R) derived from a bilinear symmetric form X(T) x X(T) ~ R*
and up to torsion coming from Ker çom.

In the proof we fix a homomorphism c: X(T) - Z(R) with CPM. c = r.
This homomorphism is unique up to elements in Ker CPM(R). We need
several lemmas.
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(2.4) LEMMA. Let L be a line bundle on Z such that the class of L belongs to
Pic’(Z). Then there exists an additive family of isomorphisms

i.e.

for all x1, x2 E X(T).
Proof. The notation M(a) for any (9,-module and any point a E X means

M(a)= ~OX,a OX,a/mX,a. Since the class of L belongs to Pic0(Z) the line

bundle 

on Z x Z is canonically isomorphis to OZ Z. This isomorphism induces
canonical isomorphisms

Further we have canonical isomorphisms

for every x E X(T) we fix an isomorphism of R-modules Q(x): L(c(x)) ~ R
and we define 9,(x): t*c(K) L ~ L by

Consider the following diagram:
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The morphisms f, g, h and k are induced by the isomorphism L2(L) ~ (2zxz
and hence the upper triangle is commutative. Further a is the map

and

One easily sees that 03B2. h = ~0(x + y) and

It follows that

where a: X(T) x X(T) - R* is symmetric! Since X(T) is a free Z-module
there exists a function b: X(T) - R* with b(x + y) = a(x, y)b(x)b( y) for
all x, y E X(T). Then cp(x) = b(x)-1~0(x) for all x E X(T) satisfies the
condition of the lemma.

(2.5) COROLLARY. There exists a bi-additive family of isomorphisms

REMARK. Corollary (2.5) follows from (2.4). The description G =

Fpec(~ (!)x) implies that 7r: G(R) ~ Z(R) is surjective. Hence there exists a
homorphism c’: X(T) ~ G(R) with 7r. c’ = c. From c’ we obtain a bi-

additive family of isomorphisms t*c(x) Oy ~ Oy .

(2.6) LEMMA. Let a family of isomorphisms

and a family of isomorphisms

be given. The function f: X(T) x X(T) - R* given by the formula
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satisfies the cocycle relation

Proof. We may assume that cp(x, y) is bi-additive. Consider the sequence
of isomorphisms induced by 03C8 and by cp:

Then

and

Similarly

Since ~(x, y) Qx cp(x, z) = 9(x, y + z) we have

The cocycle relation now follows.

(2.7) End for the proof of (2.3). Let ~0(x, y) be bi-additive and let 03C803B8(x)
(arbitrary) be given. They determine f ; X(T) x X(T) ~ R* as in Lemma
(2.6). take q: X(T) ~ R* arbitrarily and take a: X(T) x X(T) ~ R*



116

bilinear and antisymmetric. Put 03C8(x) = q(x)03C80(x) and 9(x, y) =
a(x, y)~0(x, y). Then qJ, t/I satisfies (5) in Lemma (2.3) if and only if

Instead of working with R* we take an arbitrary commutative group A (with
additive notation) with trivial X(T)-action. By definition we have:

It is well-known that

a is bilinear and antisymmetric.

It follows that (*) has a solution. Moreover the bilinear antisymmetric form
a in the solution is unique and q is unique up to multiplication by a
homomorphism X(T) ~ R*. This proves (2.3).

(2.8) DEFINITION. A homomorphim c’: X(T) ~ G(R) with 03C0.c’ = c is
called M-symmetric if there are isomorphisms

satisfying

for all x, y E X(T) and where ~(x, y) corresponds to c’.

(2.9) REMARK. For any homomorphism c’: X(T) ~ G(R) with n. c’ = c
there exists a unique bilinear, antisymmetric a: X(T ) x X(T) ~ R* such
that a. c’: X(T) ~ G(R) is M-symmetric. Here a denotes the homomorphis
X(T) - T(R) induced by a.
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3. D-invariance

Let R, m, K be as in §2 and let k = R/m. Let the abelian scheme Z over R
be given and let Do be an order in D such that Do c End(Z). The action of
a E End(Z) on Zt is denoted by rxt E End(Zt). We suppose in the sequel that
the right End(Z)-module Z’(R) has rank  m. In the situation of § 1 we
choose R = k[[t]]) and Z = Zo (8) k k[[t]]. Then Zt(k[[t]]) is uncountable.
Thus Zt(k[[t]]) has an infinite rank as End(Z)-module.
The group of characters X(T) of T is identified with Do x ... x Do, i.e.,

m copies of the right Do-module Do.

(3.1) LEMMA. There exists a homomorphismr: X(T) ~ Zt(R) such that the
corresponding extension Z = G/T has the property that End(G) ~ Q = D.

Proof. Any a E End(G ) satisfies a(T ) c T. Furthermore 03B11 = 03B1|T and
03B12 = (the induced endomorphism on Z = G/T) are determined by a. The
action of al on X(T) is denoted by 03B11* and the action of a2 on Zt is denoted
by a2. One easily sees that

Let el , ..., em be a basis of the right Do-module X(T). Take elements
al , ..., am E Zt(R), linearly independent over End0(Z). Define t: X(T) ~
Zt(R) by

Clearly Do c End(G). Choose a = (03B11, a2) E End(G) p Q. Then el 03B1*1 =
03A3 ei di for certain di E D and hence 03A3 aidj’ = a, a’2. Because al, ..., am are
linearly independent this implies that a2 - dl. After subtracting dl from
a - «(Xl’ OE2) we may suppose that a2 - 0. Sincer is injective, we conclude
that also al - 0, and hence a = 0. This shows that D = End(G) ~ Q.

(3.2) LEMMA. Let Z, 1:, G be as in (3.1) and let M be an ample line bundle on
Z such that the Rosati involution R on End0(Z) satisfies R(D) = D. There
exists a Do-invariant homomorphism c’: X(T) ~ G(R) satisfying:

(1) (Pm - · 03C0 . c’ = T,

(2) c’ is symmetric with respect to M.
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Proof. There exists a homomorphism c°: X(T) ~ G(R) where c’ is Do-
invariant and ~M. 03C0. c" = r. According to (2.9) there is a unique anti-
symmetric bilinear a: X(T) x X(T) -+ R* such that

is symmetric with respect to M.
We have to show that g, is also Do -equivariant. The equivariance of c" can

be expressed as c"(xd*) = R(d)c"(x) for x E X(T) and d E Do. Let

denote the family of isomorphisms corresponding to c". The equivariance of
c" can be expressed in the ç as: ~(x, d*) = d*(~(x(Rd)*, y)). Indeed, we
note that (9yd’ = d*«9y). The isomorphisms

together with

and

induce an isomorphism

which coincides with d*(~(x(Rd)*, y)).
Let the cocycle f(-, -) be given by the formula

The alternating bilinear a: X(T) x X(T) ~ R* satisfies

The Do -equivariance of zz can be expressed as

The Do-equivariance of a(x, y)2 follows at once from (p(x, yd*) =
d*(~(x(Rd)*, y)). After changing Do into Z. 1 + 2Do (or similar changes of
T, M, etc.), the equivariance of a follows.
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(3.3) LEMMA. There exists a positive definite symmetric bilinear form
B: X(T) x X(T) ~ Z satisfying B(xd*, y) = B(x, yR(d)*) for all

x, y ~ X(T) and d ~ D0.

Proof. Let el , ... , em be a Do-basis for X(T). Define

where Tr denotes the reduced trace of End0(Z) over Q. According to [M1,
§21, Th. 1] we see that B has the required properties.

(3.4) End of the proof of (1.1). Let R = k[[t]] and put Z = ZO Ok R. Then
Z, r, G, M, c’, B as in (3.1)-(3.3) determine an abelian variety Y over the field
k((t)). We still have to show that End0(Y) = End0(Y (D k((t))a) = D.
The inclusion D c End0(Y) follows at once from the following state-

ment :

"Let for i - 1, and i = 2 the set of data (Zi , Mi , T , Gi, bi, ~i, 03C8i) as in
(2.1) be given. Let Y denote the resulting abelian variety over K = k((t))
and let A, c Gi(K) denote the subgroup introduced in (2.2.2). A morphism
of algebraic groups a: G, - G2 satisfying 03B1(039B1) c A2 induces a unique
R-morphism of semi-abelian varieties a: G1 /039B1 ~ G2/A2 such that under the
canonical isomorphism of m-adic completions of Gi and Gi j Ai one has that
a and â are formally identical".

In the special case Z, = Z2 == 0 this statement is contained in [M2,
p. 257, Th. 4.6]. The general case is asserted in [F, §3, p. 342].

Let L be a finite field extension of k((t)). Let S denote the integral closure
of k[[t]] in L and let ms be the maximal ideal of S. Let a E End( Y Ok«t» L).
Then a induces an endomorphism of the Néron minimal model N of
Y ~k((t)) L and also an endomorphism of the unit component M of the
ms-adic completion of N.
From the construction it follows that M is isomorphic to the ms-adic

completion of G ~R S. Hence a ~ D0. It follows that End0(Y Q L) c D,
and hence

Thus Theorem (1.1) is proved.
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