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In Part 1 of this paper, we defined a nondegenerate representation of
G == GSp (4) as a pair (L, Q) consisting of a compact open subgroup L and
a representation Q of L satisfying a certain cuspidality or semisimplicity
condition (see Section 1). Theorem 2.1 showed that every irreducible

representation of G must obtain a nondegenerate representation (see also
[HM2], [M]). In Section 3, we analyzed those irreducible representations of
G which contained a nondegenerate representation (L, Q) with L a parahoric
subgroup.

In Part 2, we give an analysis of those representations of G which contain
the remaining nondegenerate representations. These are the unramified and
ramified representations. The key point again is to reduce the classification
of representations of G to the same question for a smaller group. This is
done by establishing Hecke algebra isomorphisms (see Section 3).

4. Unramified representations

Recall from Section 1 that a nondegenerate unramified representation (L, Q)
is described by two parameters. One parameter is a positive integer which
is a measure of the level of the nondegenerate representation. The other
parameter is a nonscalar semisimple element s E g(Fq), the Fq-rational points
of the algebraic Lie algebra g = GJp(4). We make a few remarks about the
semisimple parameter s.
A semisimple element is of course contained in a Cartan subalgebra.

Therefore, it is natural to give a rough classification of semisimple elements
based on Cartan subalgebras. The Cartan subalgebras of g(F.) are par-
ametrized, up to conjugacy, by the conjugacy classes of elements in the Weyl
group (e.g. see [C]). In the case of GSp(4), the Weyl group is the dihedral group
of order eight. In particular, there are five classes of Cartan subalgebras. In
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order to give representatives for the five classes, we recall some notation
from Section 1. The 4 x 4 matrix whose (r, s) entry is 03B4r,l03B4s,j is denote Ei,j.
Consider the five Cartan subalgebras in à/(4 ) (Fq) given by

In the above sets, a and b run over Fq. In (4.1e), A + BJt; is a nonsquare
in Fq[03B5]. The five conjugacy classes of Cartan subalgebras of g(Fq) are the
subalgebras in (4.1) direct sum with the scalar matrices.
The element s ~ 0 can be taken to be in the form (4.1). If s is type

(4.1 b, c, d, e), we can further assume that b ~ 0. If s is type (4.1 d), we
assume a ~ {0, ± b} .
As stated above, the other parameter needed to specify an unramified

nondegenerate representation is a level parameter i ~ N. To describe how to
construct (L, QJ from i and s, we recall some notation established in

Section 1. The group G (resp. K ) is the group GL4(F) (resp. GL4(R)). For
u E N, the group Ku is the u-th principal congruence subgroup of K. If L is
a subgroup of G, then L is the intersection of L with G. To establish some
more notation, let

Each set in (4.2) is a R-order in M4(F), i.e., an R-submodule which is also
a ring. If  is an R-order in (4.2), let  denote the units in . The group
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Ci is an open compact subgroup of G = GL4(F). As A varies over the four
orders in (4.2), we use the obvious notation k (resp. È, Q and M ) for  .
The groups K, B, Q and M are the parahoric subgroups of G encountered
in Section 1. In the notation of Section 1, we have

Each parahoric subgroup possesses a natural filtration (see Section 1). The
filtration subgroups can be easily interpreted in terms of the R-orders in
(4.2). To do this let Y() to be the topological Jacobson radical of . The
description of Y() for each of the four orders in (4.2) is given by

the diagonal entries of x lie in p}

entry (2, 3) of x lies in p}

entries (1, 2) and (3, 4) of x lie in p}.

For u E N, consider the ideal y()u. A trivial calculation shows

This periodicity relation permits us to define y()u for all integers u. For
U E N, let
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and

The G,u’s are the filtration subgroups of G defined in Section 1 (cf. (1.15)).
As varies over the four orders in (4.2), we denote the groups G,i,u by Ku,
Bu, Qu and Mu respectively. The Cayley transform c(x) - (1 - x) ( 1 + x)-’
maps f (j)u to ,u and takes

to G,u . If u  v, the induced maps from

are isomorphisms.
An unramified nondegenerate representation (L DJ has L equal to some

filtration subgroup G 1i,u’ Indeed, if i is the level of the nondegenerate
representation (cf. (1.24)), then

Let n be the index of the filtration group L in (4.9), i.e., L = G,n . The
representation 03A9s is a character of G lI,1l IGÎI,N 11 . To describe Qs, we first recall
more notation from Section 1.

The rings 9 == M4(F) and (R) = M4(R) are the F and R-rational points
of the Lie algebra gl(4 ). The Lie rings, g (resp. g(R)) are the analogous sets
for the Lie algebra W-jll(4). Given a lattice Î c g, the dual lattice

was defined in (1.17). Recall, ,&#x3E; is the form x, y&#x3E; = tr (xy). For É-7e an
order in (4.2) let r be the period given in (4.5), i.e., 
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The dual lattice of cI(ift) 1 , j e Z is

Let 03A8 be the additive character of F with conductor R used in (1.21). For

integers j &#x3E; k &#x3E; 0, identify the character group with

by the map (oc +  03A903B1

This is just (1.21). With the obvious identifications, this realization of

characters identifies the character group with

We now explain how the character S2S of G,n/G,n+1, is realized as a coset
(4.12) in terms of the parameter s. For each of the subalgebras b(Fq) in (4.1 ),
let b c g be the obvious subalgebra so that

The character 03A9s is realized by choosing an -(i+1)03B1 E {b n y()(-r-n)}
satisfying s = a mod p. The integer i, is the integer in (4.9).
With this description of L and ns, we proceed to formulate the key result

on Hecke algebras. Let g’(Fq) be the centralizer Cg(Fq)(s) of s E g(Fq). We can
pick a so that if g’ = Cg(03B1), then

Let G’ - CG(03B1) be the centralizer of a in G. Set J’ = G’ n J. Our goal is
to classify the irreducible representations of G which contain (L, 03A9ts) via the
Hecke algebra Yf(GIIIJ’, 1). To prepare for the precise statement, we need
some constructions based on the Cartan subalgebra b and its orthogonal
complement in g.

If b is a subalgebra of g, let 1)-L (resp. b#) be the orthogonal complement
of b in g (resp. g). We have b# = b~ ~ g*. Let
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With the obvious identifications via the Cayley transform, we have

We are now ready to state the main result on Hecke algebras. Let j
(resp. j ’) be the greatest integer in (n + 1)/2 (resp. (n + 1)/2). Define lattices

and let J (resp. J+) be the group J = c(I) (resp. J+ = c(+)). Clearly
L c J+ c J.

If n + 1 = 2j, then J+ - J and Ç4 can be extended to a character S2 of
J by setting a equal to 1 on c(gJj)’

If n = 2j, then J+ ~ J. The character 03A9s extends trivally on c(g’~j+1) to
give a character on J+ .

In both cases, let S2 denote the extended character. There is a unique
representation a of J whose restriction to J+ is a multiple of Q. In the case
J =1= J+, 03C3 is the Heisenberg representation. We state our main results as

THEOREM 4.1. Any irreducible representation of G which contains (L, 03A9s) must
contain (J, a).

THEOREM 4.2. There is a *-isomorphism of algebras

so that supp(~(f) = J{supp(f)} J for f ~ Yf(G’IIJ’, 1).
The isomorphism ~ shall be described explicitly in the proof of Theorem

4.2.

In the case n + 1 = 2j, ~ is easily described. Fix g E G’. There is an
unique element /g E Yf(GIIJ, a) with supp(fg) = JgJ and fg(g) = 1

(cf. Proposition 4.9). Let eg E Ye(G’IIJ’, 1) be the characteristic function of
J’gJ’. Then, the map q is given by

We defer the description of 1 when n + 1 is odd.
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We begin the proof of Theorems 4.1 and 4.2 with a few preliminary results
on the support of Hecke algebras. Let a realize S2S as in (4.11). The

decomposition

yields a decomposition of g,u and as

For x E g, let ad(x) be the adjoint map

Let d = - r - n, so that a + g,d+1 is coset of g representing
Qs. An element x E a + g9i,d+l, determines a map ad(x): g,u ~ 
Furthermore, the map ad(x) induces a quotient map 

which is independent of x. The map ad(x) maps g to zero and

LEMMA 4.3. For all u,

is an isomorphism.
Proof. For each of the Cartan subalgebras in (4.1), let 1) c g be the

Cartan subalgebra in (4.13). In all cases, except

g’ - 1). In these regular cases, g~ is the direct sum of those root spaces
of g with respect to I) on which ad acts nontrivially. These root space
decompositions respect the groups g. Since ad(x) is nonzero on
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each root space, we have

is an isomorphism.
Consider the four "singular" cases of s in (4.21). Type (4.1 a) with

a = + b. We can assume a = b. Then, in the notation of ( 1.2) and (1.7), g’
is the subalgebra

and

It is obvious from (4.24) that gl - g~+ (B g 1 , where

are ad(x) invariant. On g~+ (resp. g~-), ad(x) is multiplication by m-12a
(resp. --i2a). It is obvious from this that (4.22) is an isomorphism. D

The other three singular cases are similar.
Type (4. la) with b = 0. Then g’ is the subalgebra

and

For the type (4.1 b) and a = 0, we have

and
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For type (4.1 c) and a = 0, we have

and

In all cases, (4.22) is easily verified to be an isomorphism.

The next lemma is analogous to Lemma 3.2 in [HM3].

LEMMA 4.4. Suppose a + g,d+1 realizes Qs and x E a + g,d+I lies in

g’ mod g,d+u for some integer u  1. Then x is conjugate by G,u to an
element in g".

Proof. The proof is essentially that of Lemma 3.2 in [HM3]. We show x
is G,u-conjugate to an element of g’ mod g,d+u+1. Write x as

with and

By Lemma 4.3, there is z~ E g~,u so that

Then
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By induction, there is a convergent sequence xv ~ x’ of elements in g’ and
a convergent sequence gv - g of elements in G,u so that

Hence, Ad(g) (x) - x’.

As an immediate corollary we have

In particular, Theorem 4.1 follows directly from Corollary 4.5.
Let I* be the dual lattice of 1+ so

Inspection of the proof of Lemma 4.4. gives

COROLLARY 4.6. Ad

The next two lemmas on Hecke algebra support are analogues of Lemmas
3.4 and 3.5 in [HM3].

LEMMA 4.7. An element g E G lies in supp Yf(GIIJ+, S2S) if and only if the
intersection

is nonempty.
Proof: This is exactly as in Lemma 3.4 in [HM3]. D

LEMMA 4.8. supp X(G//J+, 03A9s) c JG’J
Proof : By Lemma 4.7, if g ~ X(G//J+ , 03A9s), then there are x1,

x2 E C( + I*+, so that Ad(g)(x1 ) = X2’ By Corollary 4.6, we can find x’1,
x2 E a + g,d+1 and kl, k2 E J so that xs = Ad(ks)(x’s) for s = 1 or 2.

This means the element g’ = k-12gk1 conjugates xl to x;. Inspection
of the various cases for g’, i.e., s regular or singular, shows g’ ~ G’, so
g ~ JG’J. D
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As a consequence of Lemmas 4.7 and 4.8, we have

PROPOSITION 4.9. supp £(GIIJ, (J) == JG’J.
Proof: By Lemma 4.7, G’ c supp £(GIIJ, 6). Also, by Lemma 4.8

supp £(GIIJ, 03C3) c JG’J. Whence, supp X(G//J, 6) - JG’J. 

Our next goal is to show

PROPOSITION 4.10. Let g’ E G’. Then

Proposition 4.10 is trivial in cases (4.1d, e) since G’ is compact and J is
normalized by G’. To show Proposition 4.10 in cases (4.la, b, c) we use the
Bruhat decomposition [BT]. Let

monomial matrices in G

Iwahori subgroup of G’

The Bruhat decomposition for G’ is



296

In the notation of (1.24), set

The group J is normalized by N’. For c a root of the root system C2, and v EN,
let Uc,v be the v-th filtration root group in (1.4). Let C be the set of roots c so
that Uc ~ J = {1}. For w E N’, wUc,vw-1 (resp. w-1Uc,vw) is equal to some
U(resp. U). For c E C, let Jc = Uc n J. Define

Fix some ordering on the sets in (4.36) and define sets

Let J’+ (resp. J’ - , J’0) be the intersection of J+ (resp. J - , J0) with G’. Then

LEMMA 4.11. Suppose s is regular or of type (4.1 a). If w E N’, then the double
cosets JwJ and J"wJ" have the unique decompositions

There is an analogue of Lemma 4.11 in the remaining cases: (4.1 b, c) with a = 0.
Let H denote the Cartan subgroup of G corresponding to b in (4.13). In the
notation of (1.2), define subspaces of g for case (4.1 b) by



297

and case (4.1 c) by

span of

span of

span of

span of

These subspaces can be exponentiated into the group G. Denote these sets
by

and

The individual sets are Ad(H)-invariant. In either case b or c, the collection
of sets is Ad(N’)-invariant. Let C be the set of indices in (4.39b, c). For c E C,
let Jc = U, n J. Define sets as in (4.36) and (4.37). With these definitions,
one readily verifies

LEMMA 4.12. Suppose s is of type (4.1 b, c) and a = 0. If w ENI, then the
double cosets JwJ and J"wJ" have the unique decompositions

Proposition 4.10 for cases (4.1 a, b, c) follows from Lemmas 4.11 and 4.12.

Proof of’ Theorem 4.2 in cases (4. l d, e)

Here, JG’J - G’J is a group. In particular, when a is one-dimensional, the
map q in (4.17) reduces to 1(e,) = h and is clearly an isomorphism. The
other case we need to consider is when n is even. Consider the restriction of
Q to J’. Fix an extension 9 of Q on J’ to G’. There is an extension of 6 to
G’J provided by 9 and the oscillator representation [H]. For g E G’, let

h E X(G//J, a) be the element with support JgJ and fg(g) = a(g). Then, the
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map q: X(G’//J’) ~ X(G//J, 6) defined by

is an isomorphism. r-1

Modulo the group T in (3.8), G’J is compact. Hence, a representation of G
which contains 03C3t must be supercuspidal. These representations are obtained
by taking the différent extensions of a to G’JJ T and inducing up to G. There
are # {G’/J’T} such representations.

Proof of Theorem 4.2 in the regular cases of (4. la, b, c)

The proof in all three cases is very similar to the proofs of Proposition 3.7,
3.15 and 3.20. As such, we merely outline the proofs and omit the rather
tedious details.

Case (4. la). Here, G’ - A is the subgroup of diagonal elements. Let i be as
in (4.9), and q be the order of the residue field IFq == RI ft. The representation
6 is one dimensional when i is even and q dimensional when i is odd. In the
latter case, it is convenient to set k = (i - 1 )/2 and define, using the root
group notation of ( 1.4),

The group J* is normalized by B’, the character Q on J+ extends to a
character o on J* trivial on J#, and a = Ind o. This means X(G//J, 6) -
X(G//J*, Q). Furthermore, Propositions 4.9 and 4.10 hold with (J, a)
replaced by (J*, o). For notational convenience, we shall use the notation
(J, 6) to refer to (J, 6) when i is even and (J*, Q) when i is odd. Regardless
of the parity of i, we can therefore assume a is one dimensional. For each
g E A, let eg and fg be as in (4.17). Take d+ , h, as in (3.23). The proof of
Proposition 3.5 is easily modified to show Jg’JdJ n JG’J = Jg’dJ, when
g’ E G’ and d ~ {I, d+ , h+}. So, fg’* fd is a multiple of fg’d. Since

{I, d+, h+} ~ B’ generate G’, we conclude that fg * fg’, is multiple offgg,
for arbitrary g,g’ E G’. The proof of Proposition 3.7 is now easily adapted
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to the present situation to show

1.e., q is an isomorphism.

Case (4.1b). Regardless of the dimension of a, let v6 denote the space of 03C3.
Set G’(R) = G’ n G. A character 9 of G"(R) which extends n on J’ again
determines an extension of a to G’(R). Let T be the group (3.8), and
define h+, h- as in (3.23). For x an element of the group generated
by T ~ {h+, h_}, define 6(x) to be the identity operator, and define

fx E X(G//J, a), x E G/(R) u T ~ {h+, h_}, to be the element with support
JxJ and fx(x) = 6(x). Each element g E G’ has a unique decomposition
g - thmk, where t E T, h E {h+, h_}, m  0, and k E G"(R). Define

f E X(G//J, 03C3) by

Observe that

The terms on the right hand side can be taken in any order. This means the
terms on the right hand side of (4.42) can be taken in any order, i.e., they
commute. To show the map il defined by

is an isomorphism, we need only show

The proof of Proposition 3.5 again easily adapts to show Jh+ Jh_ J n
JG’J = J; whence, fh+ * fh_ is a multiple of fI. Since

(4.45) follows immediately.
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Case (4. l c). The representation 6 has dimension q. An extension Q of 03A9s to
G’(R) - G’ n G ;, again determines an extension of 6 to G’(R)J. An
element g E G’ has a unique decomposition g = tdm k, with t E T,
h ~ {d+, d_}, m  0, and k E G"(R). Define fg E X(G//J, 03C3) by the

analogue of (4.43). The map q defined by (4.44) is an isomorphism. D

REMARK. In all three cases, Gl T has a noncompact center and so no square
integrable representations. By implication, there are no square integrable
representations of G/T containing (J, a’).

Proof of Theorem 4.2 in the singular cases of (4. la, b, c)

Here, as in Section 3, we shall give a presentation of X(G’//J’, 1) in

terms of generators and relations and show that X(G//J, 6) possesses
parallel generators and relations. We then define a *-isomorphism via these
generators.

Case (4. la), a = b ~ 0. Recall some notation from Section 1, e.g.,

Let uu (x) and u-a(x) be the root elements (1.3). Let

In the notation of (1.7),

and

(cf. (3.80)). In particular, G’ is isomorphic to
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The group B’ is an Iwahori subgroup of G’ and a Bruhat decomposition of
G’ is given by

The affine Weyl group W,,all = N’ {B’ n N’} is generated by the images of

PROPOSITION 4.13. The Hecke algebra X(G’//J’, 1) is generated by the

elements eg, g E {r0, rl, d+, d_, t’, t’-1} U B’. These elements satisfy the
relations

The above relations are a defining set of relations for the algebra.
Proof. This is proved exactly as Theorem 2.1 in Chapter 3 [HM1]. ~
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To exhibit parallel relations in X(G’//J, 03C3), we need to make a preliminary
reduction. The representation 6 is one-dimensional when i is even and

q dimensional when i is odd. In the odd case define (J*, Q) by (4.40),
then X(G//J, a) = X(G//J*, Q); whence, if we replace (J, 03C3) by (J*, Q)
when i is odd, we can assume a is one-dimensional in all cases. We have

supp(e(G//J, u» = JG’J. If g E G’, there is a unique element fg E X(G//J, 03C3)
with supp(fg) = JgJ and fg (g) = 1. Define 17: X(G’//J’, 1) - X(G//J, 03C3)
by

The map 11 is clearly a linear isomorphism. That ~ is a isomorphism of
algebras, is equivalent to

PROPOSITION 4.14. The Hecke algebra X(G//J, 03C3) is generated by the

elements fg, g E {r0, ri, d+ , d_, t-l u B’. The elements fg satisfy the relations
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Proof. If g, g’ E G’ and JgJg’J = Jgg’J, i.e., vol(JgJ)vol(Jg’J) =
vol(Jgg’J ), then fg * hl is a multiple of hgl. If either of JgJ, Jg’J has volume
one, we in fact have equality. Since J is normalized by B’, this immediately
implies relations (a), (b) and (e(ii)) when g E B’. Let N’0 (resp. N’1) be the
subgroup of N’ generated by r0, r1, and A’(R) = N’ n B’ (resp. N’0, t’). The
group fl’ = N’0/A’(R) is an infinite dihedral group, while the group

W’1 = N,"IA(R) is the affine Weyl group of the GL2(F) component of G’. Let
e denote the length function on N¡. We have

It follows that JwJw’J = Jww"J whenever w, w’ E N§, and £(ww’) =
e(w) + ~(w’); whence, under these hypotheses

When i is odd the element t’ normalizes J and so (4.55) is also valid for w,
w’ E N’1. This in particular implies relations (c(ii)) and (c(iii)). When i is even
t’ does not normalize J. We have

Thus, ft’ * fw = h’w and j;/,o * fw = ft’r0w provided w is of the form (r1r0)u or
(r1r0)ur1, u  0. We show ft’ *fr0 = qft’r0. Regardless of the parity of i, let
k be the greatest integer in i/2. For h E G, denote by bh, the Dirac point mass
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measure at h. When i is even, write ft’ as

where z runs over the q2 elements of J mod {J n t’Jt’-1}. In the notation
of (1.4), we can take representatives for z in the form z = u1u2 where u,
(resp. u2) runs over Ub,kIUh,k+I (resp. U-2a-b,k+1/U-2a-b,k+2). Similarly, we
have

But, Jt’zxro J n G" = ~ unless u1v1 E Uh,k+1 1 and u2v2 E U-2a-bk+2. Under
these conditions, the nonzero summands have the form

Therefore,

An analogous calculation shows

We conclude relations (c(li» and (c(iii)) from (4.60) and (4.61). We can
further conclude from the above that regardless of the parity of i,

provided w, w’ EN;, and t(ww’) == £(w) + ~(w’). Consequently, the
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éléments g E GL2 (F) lie in the subalgebra of X(G//J, 03C3) generated by fg,
g ~ {r0, rl, tl u B’. Once we show relations (e(i )) and (e(ii)) it will follow
that fg, g ~ {r0, r, , d+ , d_, t’} ~ B’ generate /(GJJJ, 6). To show the first
relation in (e(i)), write

and

where x = x0x1x2 and xx E U03B1a+b,k/U03B1a+b,k+1, a - l, 2; XI E Uh,kIUh,k+1
(resp. Uh,A+II Ub,k+2) when i is even (resp. odd). Then,

But Jd+xd- J ~ G’ - QS unless x = 1, so the summands are all zero except
when x is the identity representative. This is the desired result. Similarly
.f,i - *.f ,, = q3fI. Consider the relation (e(ii)). We have already shown (e(ii))
when g E B’. By the Bruhat decomposition therefore, it is enough to

consider g - w E N’1. Let S( - ) be the set of roots defined in (4.36). Write
fl, as

where z =  The intersection Jd+ xzwJ n G’
is empty precisely when one can pick x so that xx lies in some Jc and
x03B1zc ~ U03B1a+b,k+1. Set f3 = # {{b, a + b, 2a + b} n S(-)}. Then,

The calculation for fu *fd_ is analogous and omitted. The above methods are
easily adapted to prove relations (c(i)) and (d). We give the details for (d)
when i is odd, and omit those for the easier case of i even as well as relation

(c(i)) for all i. For notational convenience, abbreviate Ua (x) to u(x). Write
fr1 *Ju(x) = fr1u(x) and fr1 as
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with z e Rift, and v - v1v2, VI E U2a+b,k/U2a+b,k+1, v2 ~ U-b,k+1/U-b,k+2.
Let y = x + m’z E R . Then

Since , the intersection

is nonempty precisely when vz is the identity representative. The summation
in (4.65) collapses to

Rewrite the summand as

Combining (4.66) and (4.67) we obtain relation (d) when i is odd. This

completes the proof of Proposition 4.14.

For the remaining three cases, the techniques of the above case adapt
readily. We formulate the results and give details only when they differ
significantly from the above arguments.

Case (4. la), b = 0. Here,

As in the above case, we can assume (J, 03C3) is one dimensional by replacing
(J, a) by (J*, Q) in (4.40), when i is odd. Then the map defined by (4.53) is
a *-isomorphism of algebras.
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The representation a is one-dimensional when i is odd and q dimensional
when i is even. When a is one-dimensional, the map ~: X(G’//J’, 1) ~

,»’(GIIJ, a) defined by (4.53) is a *-isomorphism. When 6 is q dimensional,
we cannot replace (J, 03C3) by some (J*, ) since there are no proper subgroups
between J and J+ normalized by B’. Here, we work directly with 6. The
situation is analogous to Case II in Chapter 3 of [HM1]. The oscillator
representation yields a representation w of B’ trivial on G’ n Q, with the
property

Let Y (resp. Y+) denote the intersection of J (resp. J+) with the group
(4.68). The group Y has two pertinent properties:

(i) restriction of the representation 6 to Y remains irreducible.
(ii) the group N’ - G’ n N normalizes Y.

We deduce an action ev of N’ on the space V6 of Q so that (4.70) holds with
g E N’ and x E Y. The ev action is in fact the trivial representation. The
Bruhat decomposition of G’ yields a mapping

satisfying

For g E G’, define eg (resp. fg) in Yf == X(G’//J’, 1) (resp. X’ = X(G’//J, 03C3))
by

supp

supp

Up to scalar multiples eg (resp. fg) are the only elements of (resp. X’)
with support J’gJ’ (resp. JgJ). Define ~: X ~ à by
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PROPOSITION 4.15. The map ~: X’ ~ X is a *-isomorphism of algebras.

Proposition 4.15 is proved by establishing analogues of Propositions 4.13
and 4.14. Let

Abbreviate U2a+b(X) (resp. U-2a-b(x)) to u(x) (resp. u(x)).

PROPOSITION 4.16. The Hecke algebra ,î(G-’IIJ", 1) is generated by the

elements eg, g ~ {r0, rI, mI, m -’11 u B’. The elements eg satisfy the relations

PROPOSITION 4.17. The Hecke algebra X(G//J, a) is generated by the

elements fg, g E {r0, rI, mIl u B’. The elements fg satisfy the relations
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Proof : Relations (a), (b) and (c(ii)) are obvious since ûJ satisfies (4.71). The
proof of the four relations in (c(i)) and (d) are similar. We give the details
for the first relation in (d) and omit those for the other three easier cases.
Let v(z, z’) = ua(z)ua+b(z’). Then

where I is the identity operator and x’, z, z’ run over R mod p. Let y = x +
m’x’ and v = v(m’z, m’z’). The convolution fr0 *fu(x) * Iro is therefore

The relation r0u(y)r0 = u(-y-1)r0 d(-y, 1, 1 ) u( - y-’ ) allows us to bring
the factor 03B4r0vr0 to the left where, after appropriate transformations, it can be



310

absorded into fI. When b,ov,o is commuted pass 03B4u(-l-1), the term 03B403B3 is

introduced, where y is the commutator

The factor l5" can absorbed into fj on the right with the introduction of the
factor a(y) = 03A8(-1(z2 - Ez’2)). It follows that

The Gauss sum {03A3z,z’03A8(-1(z2 - 03B5z’2))} is trivially calculated to be q. We
conclude

To see that fg, g ~ {r0, r, , I} u B’ do indeed generate the algebra, observe
that {r0, r, , I} generate N’ mod N’ n B. Since vol(JroJ) = q3, vol(Jrj J ) =
q and vol(J(r0r1)uJ) = q4lul; we have f» * fw’ = fww’ whenever, w, w’ E N’
and £(ww’) = £(w) + ~(w’). Here, £(w) is of course the number of r E {r0, r1}
in a reduced expression for w. The algebra is thus, by the Bruhat decompo-
sition, generated by the indicated elements. This completes the proof of
Theorem 4.17. D

Define eg, g E G’ as before.
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PROPOSITION 4.18. The Hecke algebra X(G’//J’, 1) is generated by the
elements e,, g E {r0, r, , t’, ,t1 U B’. The elements eg satisfy the relations

The above relations are a defining set of relations fôr the algebra.

The dimensional of a is q2 when i is odd and q when is even. In the odd case,
we can reduce to a one dimensional representation o as before. To do this,
let k = (i - 1)/2. Define

and set

Extend the character Q on J-, across J # trivially to get a character o of J* . 
Clearly, 6 = Ind Q, so X(G//J, Q) - ,3i’(GIIJ*, Q). The obvious map q
(cf. (4.44)) is a *-isomorphism of algebras.
When i = 2k is even, let Y be the intersection of J with the group (4.49).

The group Y is normalized by N’ - G’ n N, and 6 remains irreducible on
restriction to Y. As in case (4.1 b), the oscillator representation and Bruhat
decomposition determine a mapping
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satisfying (4.71). We may assume

and

(see the discussion of Case II in Chapter [HM1]). The map ~: X’ ~ X,
defined by (4.72) and (4.73) is a *-isomorphism of algebras. A novel feature
in the proof of this isomorphism is showing

We use

The convolution fr0 * fu(x) */ro is equal to

The relation

allows us to bring to the left to be absorded into fI. Let

so that
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When r-10v(kz, mkz’)ro is commuted by u(-1/(03B5y)), the commutator

is introduced on the right side. When the measure bï, is absorbed into f; on
the right, 03C3(03B3) appears. We obtain on simplification

Hence,

But

since it intertwines u(x) and 03C3(r0xr-10), x E J n rû 1 Jra. Taking the trace of
both sides, we find the multiple to be q. This proves (4.77).

REMARK. In both cases of (4. la) and also case (4.1b), the center of G’/T
is noncompact; and hence G’/T has no square integrable representations.
We conclude GIT has no square integrable representations containing
(J, 6’ ) in these cases. In case (4.1 c), G’/T has a compact center and therefore
discrete series. Here, q yields a bijection between the discrete series of G’/T
which have a contain a J’ fixed vector and those of G/T which contain
(J, 6’ ).

5. Ramified representations

We complete our classification of the irreducible representations of G by
describing those which contain a ramified representation (L, 03A9s). The results
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in this section are very analogous to those of the level one and unramified
representations in Sections 3 and 4. Consequently, most proofs will just be
sketched.
The ramified representations were defined in Section 1. We recall the

situation in (1.25). For i E N, considered the sets
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Here, a, b, c, d, e,f c- R, and u, v, e E R , E a nonsquare. Write a set s in (5.1)
as

(cf. (1.26)). Let 1 =  n g. A ramified representation (L, 03A9s) is obtained
from s by setting

1* (resp. 1*) equal to the dual lattice of Î (resp. 1) in g (resp. g)

The group L is a parahoric filtration subgroup in cases (5.1 a, b, d, e). In
cases (5. la) and (5.1 d), L is a filtration subgroup of the Iwahori subgroup
B. Indeed, we have L = B4t-1 (resp. L = B41-3) for case (5. 1 a) (resp. (5.1 d)).
In case (5.1 b), L = M2t-1 (see (4.9)). For the case (5.1 e), let

It is trivial to check that é is an R-order in M4(F) with radical Y().
Define the parahoric subgroup N by (4.6) and the filtration subgroups N,, of
N by (4.7). In this setup, L = N2t-2(i  2). For case (5.1 c), the group L is
not a filtration group of a parahoric. We say more about this case later.

Cases (5.1 a, d, e). We begin with some normalizations. The set (5.1d) is
conjugate under the Iwahori subgroup B to a set (5.1 d) with u = 1. Similarly,
the set (5.1 e) is conjugate via the parahoric subgroup N to a set (5.1e)
with u = 1. Assume these normalizations. Furthermore, in case (5.1e) if
v2 - u2 mod p, take v2 = U2 . Define oc by (5.2). Let, as in the unramified
case, g’ (resp. G’) denote the centralizer of a in g (resp. G). Let g’~ be the
orthogonal complement to g’. For a of type (5.1 a), matrices in g’, g/-L have
the form
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and

respectively. Similarly, if s is type (5.1 d), matrices in g’ and g’~ have the form

and

To describe the centralizer in case (5.1 e), we need to distinguish whether v2
and u2 are equal. If v2 ~ u2, then
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If v2 = U2, then

In all cases G’ is anisotropic. In cases (5.1 a), (5.1d) and (5.5e.1), G’ is an
anisotropic torus. In case (5.5e.2), G’ is isogenous to an anisotropic unitary
group in two variables over the unramified quadratic extension of F.

Define g,u, gi,u and g by the obvious analogues of (4.15). The above
descriptions of g’ and g~ yield decompositions

Let

In analogy with (4.20)

is independent of x E s, and an isomorphism. Let j (resp. j’) be the greatest
integer in (n + 1 )/2 (resp. (n + 2)/2) and define lattices 3 (resp. 3+)
analogous to those in (4.16). Take J and J+ to be the groups
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Again, in analogy with the unramified case, the character n, extends to a
character S2 of J+ which is trivial on c(g). Furthermore, there is a unique
representation 6 of J whose restriction to J+ is a multiple ofQ. If J = J+ ,
6 is just equal to Q, otherwise a is the Heisenberg representation. The
restriction of the character 03A9 to J’ = G" n J extends to a character 9 of G".
In all cases, 9 determines an extension of a to G’J. For g E G’, let eg (resp. fg)
be the element in X’ = X(G’//J’, 1) (resp. X = X(G’//J, 03C3)) with support
J’gJ’ (resp. JgJ) and eg(g) = g(g) (resp. fg(g) = a(g». Define ~: X’ ~ X
by

THEOREM 5.1. Suppose s is of type (5. la, d, e). Any irreducible representation
of G ivhieh contains (L, 03A9s) must contain (J, 6).

Proof. The proof follows that of Theorem 4.1. We prove analogues of
Lemmas 4.3, 4.4, 4.7, 4.8, and Corollaries 4.5, 4.6. The theorem follows from
the analogue of Corollary 4.5. We omit the details. D

THEOREM 5.2. Under the hypothesis of the Theorem 5.1, the map

is a *-i.somorphi.sm of’ algebras.
Proof: Here, we prove analogues of Propositions 4.9 and 4.10, i.e.,

As in case (4.1 d, e), JG’J - G’J is in fact a group. The proof of Theorem
4.2 in cases (4.1 d, e) applies verbatim. D

The remarks after the proof of Theorem 4.2 in the cases (4.1 d, e) apply here.
A representation of G which contains 03C3t must be supercuspidal. These
representations n are obtained as

where r is an extension of 03C3 to G’J, and K is an irreducible representation
of G’J/J ~ G’/J’.
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Case (5.1b). We begin with some preliminary normalizations. Write a as

where

and

For A E GL2 (F), let A’ denote the transpose of A. Let S be the 2 x 2 matrix
in (4.48), and set

The element g = g(A, 03BB) belongs to the parahoric subgroup M (cf. (4.3)). In
particular, the lattice 1 in (5.1 b) is invariant under Ad(g). Clearly,

where Observe that

i.e., X’Z’ and XZ are conjugate. Hence, it is natural to classify the set s
according to whether XZ mod p

(i) is a scalar

(ii) is a nonscalar unipotent element
(5.12)

(iii) has distinct eigenvalues in Fq 
(5.12)

(iv) has eigenvalues not in Fq.

We now make our normalizations. In all cases, after conjugation by some
element in M, we can assume X is an antidiagonal matrix, i.e., a matrix with
zero entries everywhere except the antidiagonal. In certain cases we shall be
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able to assume X is diagonal. Consider case (5.12i). If X is an antidiagonal
element, then Z’ must also be an antidiagonal matrix mod p. However, if
the determinant of X is minus a square then s is M-conjugate to a set s’ with
X’ the identity and Z’ a scalar. Thus we can assume a has the form (5.13i.1)
or (5.13i.2). In case (5.12ii), the nonscalar unipotent condition forces X to
have determinant minus a square. Again, s is M-conjugate to a set s’ with
X’ the identity. Since X’Z’ is unipotent, Z’ is either an upper or lower

triangular nonscalar unipotent element mod p. We can of course assume Z’
is upper triangular. This gives a of the form (5.13ii). In case (5.12iii), take
a symplectic basis with respect to the eigenvectors of XZ. By modifying the
basis vector by scalars, we can choose the basis so the change of basis matrix
is in M, and s in the new basis has X and Z antidiagonal matrices. To
summarize: in cases (5.12i, ii, iii), we can take a to be

The centralizer g’ (resp. G’) of 03B1 in g (resp. G) in cases (5.13i.1), (5.13iii )
and (5.12iv) is an anisotropic group. In cases (5.13iii) and (5.12iv), G’ is an
anisotropic torus. In case (5.13i.1), G’ is isogenous to an anisotropic unitary
group in two variables over a ramified quadratic extension of F.
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In cases (5.13i.2) and (5.13ii), it is advantageous to replace L = M21-1 by
B4t-2. Observe that

The restriction of 03A9s to B4t-2 is trivial on B4t-1 and is represented by the set

Let a be the obvious element in (5.15). The centralizer G’ in this case is a
quasi-split group in two variables over a ramified quadratic extension of F.

Matrices in g’ and g’~ have the form

respectively in case (5.12i.1 ) and

respectively in case (5.13iii). Both g’ and g’~ can be trivially calculated for
case (5.12iv), but due to the messy notation required to write these matrices,
we omit their explicit expressions. It follows by inspection of (5.15), (5.16)
and case (5.12iv) that
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Set d = 2i - 1 and n = 2i - 1. The adjoint map

is once again an isomorphism. Define J, J’, 03C3 and q as in (5.8) and (5.9). In
complete analogy with Theorems 5.1 and 5.2, we have

THEOREM 5.3. Suppose s is of type (5.13i.l), (5.13iii) or (5.12iv). Then
(a) Any irreducible representation of G which contains (L, ns) also contains

(J, 03C3) .
(b) The map ~: £(G’IIJ’, 1) - X(G//J, a) is a *-isomorphism of algebras.

The representations of G which contain a’ are supercuspidal. They are
obtained as induced representations (cf. (5.10)).
The last two cases we need to consider are (5.13i.2) and (5.13ii). As noted

in (5.14) we replace the group L = M2i-1 by B4t-2, and the set s by (5.15).
We can also relabel the element am to m. The matrices in g’ and g~ have the
form

and

It is clear from (5.19) that

is an isomorphism. Define J and Q by (5.8). The representation a is q
dimensional. In analogy with the singular cases of (4.1 a) we find it convenient
to reduce to a one dimensional representation. In the root group notation
of Section 1, set
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Observe that J’ - G’ n J* . The character Q on J+ extends trivially to J#
to give a character e on J* such that o induces to 6. As was pointed out
several times before, this means X(G//J, 6) - X(G//J*, Q). Define the map
~: Yf(G)IJI, 1) - X(G//J*, Q) by (4.53). The arguments in Propositions
4.13 and 4.13 easily adapt to show

THEOREM 5.4. The map q is a *-isomorphism of algebras.

Since the group G’/T has a compact center, it has square integrable
representations. Those with a J’ fixed vector transfer to a discrete series
representation r of G/ T containing (JI.

Case (5.1c). Relabel um to m. Matrices in g’ and g~ have the form

As mentioned before, the group L is not a filtration subgroup of a parahoric
subgroup as defined in Section 1. We can however, define a convenient
filtration of the parahoric subgroup Q (cf. (4.3)), so that we can prove a
Hecke algebra result in the vein of those already established. Define this
filtration by

Set Gu = g n u. Define ù,, = 1 + rgu, u  1 and

The G,, are normal in Q. We have

and
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Of equal importance, the constructions and results in Lemma 4.3 through
Proposition 4.10 hold with gJ1,u replaced by u. Define lattices and groups

and

Take a to be the Heisenberg representation of J determined by S2S . The
dimension of a is q. We have

THEOREM 5.5. An irreducible representation n of G which contains (L, Qs)
contains (J, a).

We show e" = Yt(G’ IIJ’, 1) is isomorphic to X = X(G//J, a). To do
this, we first determine a presentation of X’.
The intersection K’ - G’ n Q is a maximal compact subgroup of G’.

Obviously, K’ normalizes J’ and J. Take B’ c K’ to be the Iwahori

subgroup of those elements in K’ which are upper triangular mod K’1 =
G’ n Si Let

PROPOSITION 5.6. The Hecke algebra Jf(GIIIJ’, 1) is generated by the

elements eg, g E {r0, r, , mI, -1I} u B’. These elements satisfy the relations
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The above relations are a defining set fôr the algebra.
Proof. We refer again to the proof of Theorem 2.1 in Chapter 3 [HM 1].

Consider now the algebra X. Let k be the greatest integer in il2, and set

The character Q on J+ extends trivially on J# to a character g on J*. We have
(J = Ind g; whence, Yf == X = X(G//J*, g). We describe the Hecke algebra
X. The support of Yf(! is the set J*G’J* . Given g e G’, let as before, fg e X
denote the element with support J*gJ* and fg(g) = 1. The Gauss sum

will appear in the multiplicative structure of X. Recall that r satisfies the
property

where sgn is the quadratic character of R’ -

PROPOSITION 5.7. The Hecke algebra X is generated by the elements fg,
g ~ {r0, ri, I, -1I} u B’. The elements satisfy the relations
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Proof Relations (a), (b), and (c) are obvious. We give the details of
the argument for relations (d) and (e) when i is odd, and omit the easy
modification when i is even. To abbreviate notation, let u(x) ::= ub(x),
u(x) = u-b(x), v(x) = Ua+h(X) and v(x) = u-a-b(x). Consider relation

(di). Write

Thus,

The summand has support inside the set Y = J. The inter-
section of G’ and Y is empty except when y = 0 mod p. Therefore, the sum
in (5.26) collapses to one term. Relation (d(i)) follows. Relation (d(ii)) is

only slightly more complicated. We have
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So,

To prove relation (e) we use

Let u’(x) - uu(x). The convolution fro * fu(x) * fr0 is equal to

The identity r0u(x)r0 = u(-x-1)r0d(1,-x,-x-1)u(-x-1) can be used to
bring to the left where, after conjugation by ro, it can be absorded into
fi. When u’(mky) is commuted by u(-x-1) the commutator

is introduced. When bï, is absorbed into fI, the factor of
appears. Thus, (5.27) becomes

Finally, vol(Jr0J) = 1, vol(Jr1J) - q and vol(J(r0r1)vJ) = qv, hence,
fw * 1:1’ = fww’ when w, w’ e N’ - G’ n N and the lengths of w and w’ in G’
add. By the Bruhat decomposition, the indicated elements generate :ifo’ This
completes the proof of Theorem 5.7. 

Let 03BC be the character of B’ whose value on k E B’ is equal to sgn(k2,2),
where k2,2 is the (2,2) component of k.
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COROLLARY 5.8. The map ~: X(G’//J’, 1) - Q) defined on the

generators of X(G’//J’, 1) by

is a *-isomorphism of algebras.

The group G’/ T has a compact center. It possesses square integrable
representations. Those with a J’ invariant vector will transfer to square
integrable representations of G 1 T containing gl.

This completes our classification of the representations of G. In particular,
it follows that any supercuspidal representation of G/T is induced from
an open compact subgroup. An enumeration of the supercuspidal represent-
ations as well as the nonsupercuspidal discrete series can be obtained by
unraveling the various Hecke algebra isomorphisms. We hope to return to
this in the future.
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