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1. Introduction

Let G be a noncompact connected real semisimple Lie group with finite
center and Iwasawa decomposition G = KAN. Let a denote the Lie algebra
of A. Let denote the set of restricted roots and E+ a choice of positive
roots. The Weyl group of E will be denoted by W. Put o - 2 03A303B1 ~ 03A3+ m03B103B1,
where m03B1 is the multiplicity of the root a. Let D(G//K) and DW(A) denote
the spaces of K-biinvariant C°°-functions on G with compact support and
W-invariant C°°-functions on A with compact support respectively. For
f ~ D(G//K) we define the Abel transform A : f ~ Ff by

where log denotes the inverse of the mapping exp: a ~ A. This transform
plays an important role in the theory of the spherical Fourier transform. It is
well-known that the Abel transform is a linear homeomorphism of D(G//K)
onto DW(A). For the rank-one ([11, 12, 15]) and the complex ([5, 15]) case
an explicit inversion of the Abel transform is known. Besides the complex
case the only higher rank case where an explicit inversion is known is the
case G = SU ( p, q) ([13]). In [1] Aomoto determined an explicit integral
representation for the Abel transform for G = SL (n, C) and SL (n, R) where
for all a e E we have ma - 2 and m03B1 = 1 respectively. In [2, Ch. III] we
extended his results to the case G = SU* (2n) where ma = 4 for all ex E L.

Note that these three cases all have associated root systems of type An-1.
For G = SL(3, R) Aomoto [1] uses the explicit integral representation to
solve the inversion problem, but this solution is not explicit.

In the first part of this paper (Sections 3, 4 and 5) we show how certain
known differential operators associated with root systems (the so-called
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"lowering/raising" or "shift" operators) can be applied in the theory of the
Abel transform. In Section 3 we assume the existence of such operators and
show their relation with the Abel transform. The actual existence of the

operators is the subject of Section 4, where we also give some historical
remarks. In Section 5 we concentrate on the case of a root system of type A2.
The existence of the operator, and an explicit expression in "z-coordinates",
was established by Vretare [18]. This leads to an inversion of the Abel trans-
form if the root multiplicity is even, i.e., for G = SL(3, C), SU* (6) and £6(-26)
(Theorem 1). In general it is still an open problem if the Abel transform can
be inverted by a differential operator if all multiplicities are even (for A3 see
below). We will also present the operator in the usual "t-coordinates". This
enables us to apply the operator to the Abel transform in Section 6.

In the second part of this paper (Section 6) we start with the explicit integral
representation for the Abel transform for SL(3, R), SL(3, C) and SU* (6)
mentioned above. In this integral representation the multiplicity m = ma
occurs as parameter. Write Ffm to emphasize the dependence on m. We then
use the integral representation to define El for m e C, Re m &#x3E; 0. If we also
use the explicit expression for the shift operator in the "t-coordinates" from
Section 5 then we obtain (Theorem 2) a generalization of Theorem 1. There
should be a relation between the results on the transform Ff and the results
(stated without proof) of Sekiguchi in [16] for the root system of type A2,
where e.g., an integral representation for the spherical functions Ç7 is given.
We also mention the work of Heckman and Opdam [7] where, for arbitrary
root systems, the spherical functions ~m03BB are constructed. It would be of

interest to have much more results on the transform Ff for general m,
eventually leading to a theory of the spherical Fourier transform indepen-
dent of the symmetric spaces (cf. the rank-one case in Koornwinder [ 11 ]).
The paper closes with two appendices. In Appendix 1 we give the shift

operator for A3 in the "z-coordinates". This leads to the inversion of the
Abel transform for G = SL(4, C) and SU* (8) (Theorem l’). For the proof
that we indeed have a shift operator one needs in particular the radial part
of the Laplace-Beltrami operator for the root system A3 in the "z-coordina-
tes", i.e., we have to translate this operator from the usual "t-" to the
"z-coordinates". Since there is not much différence in the calculations for A3
or At, we give this operator in the "z-coordinates" for At in Appendix 2.

2. Preliminaries

For all unproved statements we refer to Helgason [8, 9]. As usual let C, R, Z
denote the sets of all complex numbers, real numbers and integers respectively.
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Let R+ denote the set of all nonnegative real numbers and put
Z+ = Z ~ R+, N = Z+ - {0}. Let G be a noncompact connected real
semisimple Lie group with finite center, g the Lie algebra of G and ·, ·&#x3E; the
Killing form of g. Let gc denote the complexification of g. Let 0 be a Cartan
involution of g, g = f + p the corresponding Cartan decomposition and K
the analytic subgroup of G with Lie algebra f. Let a c p be a maximal
abelian subspace, a* its (real) dual, a* the complexification of a*. For 03BB E a*
put g03BB = {X ~ g|[H, X] = 03BB(H) X for all H ~ a}. If 03BB ~ 0 and dim g03BB ~ 0
then is called a (restricted) root and 111;. = dim g03BB is called its multiplicity.
The set of restricted roots will be denoted by 1. If À, Il E a* let H; E a be
determined by 03BB(H) = H03BB, H&#x3E; for H E a and put 03BB, 03BC&#x3E; = H03BB, H03BC&#x3E;. Fix
a Weyl chamber a+ in a and call a root positive if it is positive on a+. The
corresponding Weyl chamber in a* will be denoted by a* and the corre-
sponding basis of Y- will be denoted by A. Let 03A3+ be the set of positive roots;
for 03BB ~ 03A3+ we will also use the notation &#x3E; 0. Put Q -1 03A303B1 &#x3E; 0 m03B103B1. Let

03A30 = {03B1 ~ 03A3|1 203B1 ~ 03A3} and put Lt = L+ n Lo. Let n = 03A303B1 &#x3E; 0 g03B1, n = en
and let N, N denote the corresponding analytic subgroups of G. Let

A = exp a and log the inverse of the map exp: a ~ A. If e = dim a then
e is called the real rank of G and the rank of the symmetric space X = G/K.
Let H: G - a be the Iwasawa projection according to the Iwasawa decom-
position G = KAN, i.e., if g E G then H(g) is the unique element in a
such that g E K exp H(g) N. For an arbitrary subset E of E put - E =
{-03B1|03B1 e E}. If V is a finite set then 1 vs will denote its cardinality. We put
w = 1 W where W is the Weyl group of 03A3. If s ~ W then 03B5(s) will denote the
determinant of s. Let C1, C2,..., Cr be the conjugacy classes in 1 under
the action of the Weyl group W. Put m = (ml , m2 , ... , mr ) where ml is the
multiplicity m03B1 of a root a in CI (i = 1, 2, ..., r). We shall call m a multi-
plicity function on X.
We normalize the Lebesgue measures da and d03BB on A and a* such that for

the Fourier transform

we have the inversion formula

Here ~(A) denotes the space of rapidly decreasing functions on A. On
the compact group K the Haar measure dk is normalized such that the
total measure is 1. The Haar measures of the nilpotent groups N, N are
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normalized such that 03B8(dn) = dn and

The Haar measure dg on G can be normalized such that

Here D(G) denotes the space of C"O -functions on G with compact support.
The spherical functions on G are the functions

where À e a*C is arbitrary; moreover ~03BB = ~03BC if and only if 03BB = s03BC for some
S e W. Let D(G//K) denote the subspace of D(G) consisting of functions
bi-invariant under K. For f ~ D(G//K) define its spherical Fourier trans-
forma by

Then

where |c(03BB)|2 = c(03BB)c(-03BB) for À E a* and c(À) is Harish-Chandra’s
c-function

The function c(03BB) can be continued as a meromorphic function on a* by

where ao = a/(a, a) and the constant co is given by c(- iQ) = 1.

For f ~ .12 (GIIK) we define the Abel transform  A: f ~ Ff by
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The function 7y is W-invariant and

Let DW(A) denote the space of W-invariant COO -functions on A with com-
pact support. It is well-known that the Abel transform f - Ff is a linear
homeomorphism of D(G//K) onto DW(A); moreover, * denoting con-
volution on G and on A, Ff*g = Ff*Fg (see e.g., [9, Ch IV, Corr. 7.4]).

If v e ag then ev denotes the function on A given by ev(a) = e03BD(log a), a E A.
Now let A(L,) be the radial part of the Laplace-Beltrami operator for the
action of K on G/K. Then one has the following explicit expression for 0394(LX)
(see e.g., [9, Ch II, prop. 3.9]):

Here LA denotes the ordinary Laplacian on A and Ax is considered as a
differential operator on A+ = exp (a+).

Let A be the set of all linear combinations 03A303B1~0394 n03B1a, n03B1 ~ Z+. For J1 E A,
J1 ~ 0 let 0" Ji denote the hyperplane in a* given by

If 03BB ~ 03C303BC (03BC ~ AB{0}) then there is a unique solution 03A603BB on A+ of the equation

of the form

where ro == 1, F, is defined recursively (see e.g. [9, Ch IV, §5, (12)]) and the
series is absolutely convergent on A+. Let a’ denote the set of regular
elements in a*, i.e., a’ = {03BB E a*|03BB, 03B1) ~ 0 VexE Y-1. For 03BB E a’ the

spherical function 0,. is a linear combination

Take H E a+ and consider for 03BB E a*



150

If H’ E a+ then there exists a constant KH. such that

(see e.g. [9, Ch IV, Lemma 5.6]). Consequently (take H’ = 1 2H, H E a+)

where C, is a constant. We shall use these estimates in Section 3.

3. The Abel transform and shift operators

For the spherical Fourier transform f ~ f (f ~ D(G//K)) we have the
following inversion formula:

From (2.5), the identity |c(03BB)|2 = c(w03BB)c(-w03BB) ~ 03C9 ~ W and the W-

invariance of/we obtain

According to the Paley-Wiener theorem for the spherical transform, the
function i satisfies for each N E Z+ the inequality

For the c-function we have an estimate

where B, and B2 are positive constants and p = -1 dim n (for these results see
e.g., [9, Ch IV, §7]). These two estimates together with (2.6) prove the
convergence of

Consequently
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Since f(Â) = (Ff)*(03BB) we obtain

Suppose there exists a differential operator D on A+, independent of À, such
that

Then it would follow from (3.3) that

if we can interchange differentiation and integration.
In (3.4) the function e103BB can be considered as (D,. for multiplicity function

m --- 0: 0394(LX) reduces to the ordinary Laplacian on A if one takes m = 0
in (2.2). Therefore one can view the operator D as "shifting" from multi-
plicity function m to mulplicity function - 0. One could then try to break up
the search for such an operator into the search for operators with a "smaller
shift from multiplicity function m to m - n". Since we thus want to vary the
multiplicity function m on the root system 1 we shall write from now on

Let m: 03A3 ~ C be an arbitrary W-invariant function. Write m03B1 = m(a),
a E E (we will also represent such a function by a vector m = (ml, ... , mr )
in Cr as in section 2). Then we can use the explicit expression (2.2) for A(LX)
to define L(m) for such a function m (of course o(m) is defined as above).
Following Heckman and Opdam [7, §3] one can then define the function 03A6m03BB
as the unique solution on A + of equation (2.3) and of the form (2.4) with Fo
and F, as before; the proof (see e.g., [9, Ch IV, §5]) does not depend on the
value of the parameter m. If m03B1  0 V a then we also define cm(03BB) using the
explicit expression (2.1 ) for the c-function. If m --- 0 then we take

Since we normalize 0;. by 0,, (e) = 1 we obtain that Ew~Wc0(w03BB) = 1. By
(2.1) the c-function reduces to a constant for m ~ 0. Hence c’(Â) = w-’ .
Also note that (2.6) and (3.2) still hold for m03B1  0 (with all constants
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depending on m). If the numbers ma are equal to the root multiplicities
corresponding to a symmetric space of the noncompact type, then we shall
say that "m corresponds to a group-case".

Motivated by (3.3) we define the transform em, for a W-invariant func-
tion m: 03A3 ~ R+, by

If we use the Paley-Wiener theorem for the Euclidean Fourier transform
then the convergence of this integral follows as before from (2.6) and (3.2).
If m corresponds to a group-case then f ~ Ff = dm f is a linear isomor-
phism from D(G//K) onto DW(A) and thus, by (3.3), Bm = (dm)-I on A+.
Now let Y(a) denote the symmetric algebra over a, D(A) the algebra of all
differential operators on A with constant coefficients and ô: ~(a) ~ D(A)
the isomorphism which sends p E Y(a) to the corresponding operator ô(p).
In order to justify (3.5) and, more generally, (3.7) below, we need the
following lemma.

LEMMA 1. Let p E ~(a). Then

Proof

so by (2.6) (take H’ = 1 2H, H ~ a+)

where K’J!¡12’ C and k are suitable constants. Hence, for a positive constant
CmH,

Because of (3.2) and the well-known Paley-Wiener estimate for the function
g*, we can now apply dominated convergence. This proves the lemma. ·
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Now let m and n: 03A3 ~ R+ be W-invariant functions on E. Suppose there
exists a differential operator D on A+, independent of A, such that

Then the lemma implies that

For n = 0 we would obtain Bmg = Dg on A+ . If moreover m corresponds
to a group-case then Bm = (Am)-1 so

Extend the left-hand side of (3.8) to a W-invariant Cx-function on A with
compact support. Since restriction from G to A induces a bijection of
D(G//K) onto DW(A), we can consider dm as a transform from DW(A)
onto itself. Consequently Am o D = id. Now take g = Amf,f E -9(GIIK) in
(3.8) and again extend to functions in DW(A). Combining the results we
obtain

EXAMPLE. Let G be complex so m ~ 2 and put 03B4 = T03B1 &#x3E; 0 (e« - e-03B1). Then

and

where 03C0(03BB) = 03A003B1 &#x3E; 0 03B1, À) and o - 03A303B1 &#x3E; 0 a = 0(2) (see e.g., [9, Ch IV,
§5.2]). Put

with a and Acx as before. Then
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which is (3.6) for m = 2, n = 0, up to the constant w - 03C0(- 0(2)) (recall that
CO(À-) ~ w- 1). This proves that for G complex the Abel transform can be
inverted by the differential operator D, which is well-known. It is already in
a paper by Gangolli [5]. The same proof occurs in a paper on the Abel
transform by Rouvière [15]. A completely different proof for G = SL(n, C)
occurs in Aomoto [1] (also see [2, Ch III, end of Section 4]) and Hba [6].
Now suppose that in (3.7) m and n correspond to group-cases. If we take

g = Anf,f ~ D(G//K) then it would follow that

As for the case n = 0 we extend to functions in DW(A) and apply Am. Hence

The problem is to find a differential operator D on A+ such that (3.6) holds.
We shall first give a precise definition of an operator shifting from m to n.
Then we will show how such a shift operator can lead to a suitable D.

Let O(A+) denote the space of analytic functions on A+. Take D in
O(A+) ~ D(A), i.e., D = 1 gi~(pi) with gi E O(A+), pi E ~(a) (finite sum)
and consider D as a differential operator on A + . We shall say that D has

convergent expansion on A+ of type o(k) (k: 03A3 ~ R W-invariant) if each g;
has an absolutely convergent expansion on A + of the form

and c¿ =1= 0 for some i. For such an operator we shall write

DEFINITION. Let m and n: 03A3 ~ R+ be W-invariant functions. We shall say
that D E O(A+) Qx D(A) shifts from m to n if D satisfies
(i) Do(L(n) + (n), (n)&#x3E;) = (L(m) + (m), (m)&#x3E;) o D;
(ii) D has convergent expansion on A+ of type o(m - n).

REMARK. This definition (and also the use of the term "shift operator")
follows closely Opdam [14], where a systematic treatment of shift operators
is given (see Section 4 for more information on shift operators).
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EXAMPLE. Let G be complex and put D = c5 - 03A003B1 &#x3E; 0 ~(A03B1). Then D is in
(9(AI) Q D(A) and has convergent expansion on A+ of type g(2). The
radial part L(2) = 0394(LX) of the Laplace - Beltrami operator can be written
as

(see e.g. [9, Ch II, §3, (57)]). To check (ii) we thus have to show that

which is trivial. So D shifts from 2 to 0.

Let us return to the general case where m and n : E - R+ are arbitrary
W-invariant functions. Suppose we have a differential operator which shifts
from m to n. Consider the function D03A6n03BB on A+ . Recall that for 03A6m03BB we have
equation (2.3):

Because of (i) the function D03A6n03BB also satisfies (3.12). Moreover, by (ii), D03A6n03BB
has an expansion of the form

So D03A6n03BB and (DT are proportional. If we write D as in (3.11) (with
k = m - n) then it follows that

Now define for 03BB E a*

then

Note that cm(- 03BB)/cn(- À) has no poles and that the c-function has no zeros
for À e a*. If q(03BB) is independent of À then this would give a differential
operator on A+, independent of À, such that (3.6) holds. In Section 4 we
shall see that for all rank-one and rank-two (and some rank-three) root
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systems there exist shift operators which shift from m to m + k (k fixed, m
arbitrary) and for which q is indeed independent of Â. If m - 2 and E is
reduced (the complex case) then we have already shown that the operator
D = 03B4-1 03C0a &#x3E; 0 ~(A03B1) shifts from 2 to 0 and that q = w · n(- (2)) (also
note that p0(03BB) = n(A)).

4. Existence of certain shift operators

We already noted that the definition of an operator which shifts from m to
n closely follows Opdam [14]. In fact he defines a "shift operator" as an
operator with a fixed shift k from m + k to m, m arbitrary. Furthermore the
operator is defined on A’ = exp a’ (in fact even on the regular elements in
H = exp 1), 1) the complex torus, i.e., 1) = a + ia). Then it is shown that the
operator is W-invariant. Note that if Dl and D2 are operators which shift
from n1 to n2 and from n2 to n3 respectively, then it follows from the definition
that D, , D2 shifts from n, to n3. One then hopes that shift operators can be
found with "elementary shifts" in the parameter m = (M1, m2,..., mr) ~
(R+)r and that these operators generate all possible shifts. For rank-one and
rank-two (and some rank-three) cases shift operators have been found (see
below); that these are indeed generators for all possible shifts is proved by
Opdam in [14].

If the rank of X is one and the associated root system is of type Al ,
then the corresponding generator ( 1 /sh t)d/dt is of course well-known (cf.
(d/dz)F(a, b; c; z) = (ablc)F(a + 1, b + 1 ; c + 1 ; z) where F(a, b; c; z)
denotes the hypergeometric function). But the introduction of the concept
of shift operator (in [18] they are called "lowering/raising" operators) is due
to Koornwinder [10]. In the context of orthogonal polynomials in two
variables for the root system BC2, he obtained the operator with a shift 2 in
the parameter m03B1 corresponding to the longest root a (the divisible root). As
an important application he finds a differential operator of order four which
commutes with L(m). Just as for the hypergeometric function above, the
parameters do not necessarily have to correspond to a group-case.

Until now generators have been found for the following cases (we omit
rank-one): a second generator for BC2 by Sprinkhuizen-Kuyper [ 17]; A2 and
one generator for BC2 by Vretare [18]; G2 and the third generator for BC2
by Opdam [14]; A3 by the author (see Appendix 1). Again, as most important
application in [14] for the shift operator for G2, Opdam finds a differential
operator of order six which commutes with L(m) for arbitrary m. For all
rank-one and rank-two cases the operators, and the corresponding po and q,
are listed in [14]: the operators in §2, Table 2.6; po in §3, Table 3.15 ; q in §4,
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Table 4.6. Indeed q does not depend on 03BB for these operators. This also holds
for BC3 and A3 (for A3 see Appendix 1). For all these cases the oper-
ators are given in the coordinates z1, z2,..., z~ which are defined as fol-
lows. Put E’ = {03B1 E LI2ex i 03A3} and let A = {03B21, 03B22,..., 03B2~} be a basis
for 03A3’. Let Âl, 03BB2,..., Àt be the fundamental weights of 03A3’, i.e.,
203BBi, 03B2J&#x3E;/03B2j, 03B2j&#x3E; = 03B4ij where bu denotes the Kronecker symbol. Let W(03BBi)
be the stabilizer in W of 03BBi, i.e., W(03BBi) = {w E W|w03BBi = 03BBi}. Then zi =
03A3w~W/W(03BBi) e2wÀ, ( i = 1 ,...,~). It is shown in [14] that shift operators
have polynomial coefficients in the z-coordinates. For the root system A2
however we shall present the shift operator in the given coordinates on a (see
Section 5). This also enables us to calculate po (and thus q) for the root
system A2 independently of [14]. In general it is a difhcult problem to change
from z-coordinates to the coordinates on a given by A.

Let us return to the Abel transform. Suppose one obtains an explicit
expression for the Abel transform Ff where m can be taken arbitrary i.e., m
does not necessarily has to correspond to a group-case. Then (3.10) should
hold for all possible shifts. In Section 6 we will show that for the root system
A2 this is indeed the case. We must emphasize that this is the only higher
rank case where we can prove (3.10) without reference to the group. For the
other root systems of rank  2 we have to assume that m and n in (3.10)
correspond to group-cases. Then (3.10) holds if n is such that we can form
a product of the generators with a total shift from m to n.
We shall now list for each irreducible root system mentioned above, the

elementary shifts k = (k1, k2, k3) in the parameter m = (m1, m2, m3). We
write m(a) - ma . The realizations of the root systems are as in Bourbaki [3]
and we shall follow [ 14] in the numbering of the root multiplicities. We also
give the original notation for the shift operators.



158

Based on the classification of all simple noncompact Lie algebras over R,
including their root systems and multiplicities (see e.g., [8, Ch X, Table VI]),
it is easy to obtain all possible shifts from one group-case to another in the
sense of (3.10). The root system A2 will be treated in the next section. For
the root system BC2 there are quite a few possibilities. Take e.g.,
G = SU(p, 2) with p &#x3E; 2. Then (mi, m2, m3) = (2, 1, 2(p - 2)). So we
can shift to (2, 1, 2( p - 4)) (i.e., G = SU(p - 2, 2) ( p &#x3E; 4)) but also
to (0, 1, 2(p - 2)) (i.e., G = SU(p - 1, 1) x SU(p - 1, 1) (p &#x3E; 2) and
£ xé BC, x BC,). In particular we can shift to (0, 1, 0) (i.e., G =

SL(2, R) x SL(2, R) and 03A3 ~ AI x AI) if p is even.

5. The shift operator for root system A2

In Sections 5 and 6 E will be the root system of type A2. In this section we
introduce the shift operator and calculate po and q; since q is independent of
03BB we can apply (3.9) and (3.10). So in Section 5 we restrict ourselves to the
group-case; the results are given in Theorem 1. In Section 6 we generalize to
arbitrary m.

Put E = R3. In E we have the standard basis e1, e2, e3 and inner product
·, ·&#x3E; for which this basis is orthonormal. Let a denote the hyperplane in
E orthogonal to the vector el + e2 + e3. The inner product on E induces
an inner product on a which we shall also denote by ·, ·&#x3E;. We identify the
dual E* with E (and a* with a) by means of this inner product. If À E a and
f is a function on a then we shall frequently write f(Â) for the function on
a which sends y E a to f( (À, M», 1.e. , f(À) = f o 03BB if we consider Â as element
of a*. Often f(Â) is also considered as function on A = exp a: j(À)(a) =
f(03BB)(log a), a E A (as in Section 2). We shall also write ô. for the derivative
of f in the direction of 03BB. So if g E Coo (A) then (AÀg) 0 exp = ~03BB(g o exp) with
A03BB as before.
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The root system of type A2 can be identified with the set 1 = {± (e, - e2 ),
+ (el - e3), + (e2 - e3)} in a. For Y- we take as basis A = {03B11 = e1 - e2,
03B12 = e2 - e3}. The fundamental weights of E will be denoted by 03BB1, 03BB2,
i.e., 03BBi, 03B1J&#x3E; = 03B4ij. Let 03A3+ be the set of positive roots with respect to A. The
Weyl group W of L is isomorphic to the symmetric group S3.
We now introduce the shift operator D(m) which shifts the parameter m

to m - 2 in the sense of Section 3 (so n will equal m - 2 in (3.10)-(3.14)).
As before put ô = 03A003B1 &#x3E; 0 (ea - e-a). Let D(m) be the differential operator
on a+ defined by

where e(oc) = 03A003B2 &#x3E; 0, 03B2 ~ 03B1 03B1, 03B2&#x3E;. The function 03C3-1 has an expansion on a+ of
the form e-(2) 03A303BC~039B b03BC e-1, b. = 1. Also

and coth a = 1 + 2 03A3k  1 e-2k03B1 while 1/sh203B1 = 03A3k  1 ck e-2ka with cl = 4.

Consequently D(m) is in (9(a+) ~ D(A) and has convergent expansion on
a+ of type g(2). As in Section 4 we introduce the coordinates z, and z2 where
zl = 03A3w~W/W(03BBi) e2w03BBi (i = 1, 2). We also use the notation ôi = ~/~zi
(i = 1, 2).

PROPOSITION 1. In the coordinates zl , Z2 the operator D(m) is given by

This is precisely the "lowering operator" Ey in Vretare [18, §8]. At this point
we do not want to interrupt the main line of argument with the calculations
which are necessary for the proof of Proposition 1. Therefore these calcu-
lations can be found at the end of this section.

Now it is well-known (see e.g. [10, IV, (5.14)]) that

The advantage of the z-coordinates is now clear: in the calculations only
polynomials in the zi occur (in fact until now all calculations on shift

operators have been made in the z-coordinates).
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PROPOS1TION 2

so D(m) is a shift operator for the root system A2 with shift 2.

In the z-coordinates the calculations are straightforward. The use of a
computer is convenient but not yet a necessity.
An alternative way to find the operator D(m) and to prove Proposition 2

is to use the explicit expression (2.2) for L(m) and then try to see what form
D(m) should have in order to satisfy. (i) in the definition of shift operator.
This is in fact the way we found expression (5.1 ) for D(m). The calculations
are complicated and lengthy; we shall not present them here.

In order to apply the results (3.9) and (3.10) we have to show that q (see
(3.13)) does not depend on Â. For this result we could refer to [14, §4];
however, to make this paper self-contained we shall calculate q using the
explicit expression (5.1). We shall write q(m) and po(m; À) instead of q(Â) and
p0(03BB). From (5.1) and the expansions on a+ of the functions 03B4-1, coth a and
1/sh203B1 it is clear that

If we determine the signs e(a) then it follows that

Since
obtain that

Next we have to determine cm(-03BB)/cm-2(-03BB). If m = 2 (the complex case)
then we have shown that q(2) = w03A003B1 &#x3E; 0 - (2), eu) so for the root system
A2 we have q(2) = - 243!. Suppose that, in general, we have a root system
with one root length. Take 03B1, a&#x3E; = 2 and m = ma &#x3E; 2. Then we have, with
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normalization c(- iQ) = 1,

Here r denotes the usual gamma function. Because of F(z) =
(z - l)r(z - 1) and o(m - 2) = Q(m) - 2Q(l) we obtain

Recall that (1), a) = 1 if a is simple (see e.g., [3, Ch VI, no 1.10]), so

(1), a) E N if a E E+. Since for n ~ N

is the Pochhammer symbol), we obtain

In particular for the root system A2:

Since q(2) = w · n( - g(2)) = - 243! it follows that

Recalling (3.6)-(3.14) we have obtained the following result:
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THEOREM 1. Let X = G/K be one of the following symmetric spaces of the
noncompact type: SL(3, C)/SU(3), SU*(6)/Sp(3), £6(-26)IF4. So the associated
root system of X is of type A2 and the multiplicity m equals 2, 4 and 8
respectively. Let Ff denote the corresponding Abel transform ( f E D((G//K)).
Put D(m, 2k) = D(m) 0 D(m - 2) 0 ... 0 D(m - 2k + 2) and q(m, 2k) =
q(m) . q(m - 2)..... q(m - 2k + 2) (k e N, 2k  m), where D(m) and
q(m) are given by (5.1) and (5.5). Then we have for m, m - 2k E {2, 4, 81
(k ~ N)

and also

REMARKS

1. We have also found the shift operator for root system A3. However, for
this case we only have the operator in the z-coordinates; using some
of the results of Opdam [14], Theorem 1 then also follows for

X = SL(4, C)/SU(4) and SU*(8)/Sp(4) (see Appendix 1).
2. As stated before the complex case (m = 2) is well-known.
3. Inversion of the Abel transform for m = 4 and root system A2 has very

recently also been obtained by Hba [20], using a different method (which
was already used in [6] for the case G = SL(n, C)). In fact he first inverts
a rank-one Abel transform by the differential operator ((1/sh t)d/dt)z
(this rank-one transform corresponds to the outer integral in (6.1) in the
next section). Then he finds the fourth order differential operator which
inverts the remaining "partial" Abel transform (which corresponds to the
inner integral in (6.1)). A direct calculation shows that D(4) , D(2) is

indeed equal to the differential operator P in [20].
4. Theorem 1 is a special case of Theorem 2 in Section 6.

We now return to the proof of Proposition 1.
Let D(m) be the differential operator defined by the right-hand side of

(5.1). Then we want to show that in the coordinates

we have
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As before we put 03B11 = e1 - e2, 03B12 = e2 - e3. Then

and thus

We have

Now

and since 03B1i, 03BBj&#x3E; = ôij we obtain

In particular

since o - À1 + À2 = el - e3. Here, as before, E(w) - det w and ô =
H03B1 &#x3E; 0 (e03B1 - e-03B1). Note that if 03A3 is an arbitrary root system with basis A then
we have in general

since the highest term in the partial ordering on a in the left-hand side is
equal to (2~ det «Âi’ al &#x3E;)) e2Q. Since det (~03B1i(zj)) = 403B4 we deduce from
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(5.6) that

In Section 3 we showed that for m = 2 (the complex case) the operator
£5-1 03A003B1 &#x3E; 0 a, satisfies (i) for m = 2, n = 0 in the definition of shift operator.
Proposition 2, which is a straightforward calculation, shows that also the
right-hand side of (5.2) for m = 2 satisfies (i) for m = 2, n = 0. This makes
the following proposition plausible.

PROPOSITION 3

Proof. First a remark on the operator 03B4-1 03A003B1 &#x3E; 0 8a for arbitrary root systems.
Note that it sends W-invariant exponential polynomials to W-invariant
exponential polynomials. So this operator has polynomial coefficients in the
z-coordinates. Furthermore, if w. denotes the longest Weyl group element,
i.e., the element wo E W such that woa  0 V a e 03A3+, then 03B4-1 03A003B1 &#x3E; 0 ~03B1 is
invariant under - wo . For the root system At this leads to an invariance in
the z-coordinates under the transformations zj H Z"-j+l (j = 1, ... 1 e)
since - wo(Àj) = 03BB~-j+1 in this case (see e.g., (A.4) in Appendix 2 for the 03BBj).
This reduces the calculations. We now return to the case A2. It follows from
(5.6) that
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We already calculated a Cil (zj) (1  i, j  2) and a Cil + Ci2 (zJ (i = 1, 2) in (5.7).
Furthermore we have

and

Of course this last equality holds for arbitrary root systems since

03A003B1 &#x3E; 0 03B1, w03BBi&#x3E; = 0. In particular the coefficient of êi (i = 1, 2) equals zero.
A very simple calculation shows that this is also the case for the coefficient
of ô2 (i = 1, 2). The coefficient of ~31 equals

The coefhcient of ôl ô2 becomes

since the highest term in the partial ordering on a is 2(Ài + À2). It remains
to calculate the coefficient of ~21~2:

Since the highest term in the partial ordering on a is 403BB1 + 203BB2 =
2(03BB1 + 03BB2) + 203BB1, this coefficient should be equal to (23z1 + const.) - ô.
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A simple calculation shows that this is indeed the case with const. = 0. This
proves the proposition.

From the proposition follows that we now only have to translate the
operator al a2 - In fact we first found the operator D(m) in the coordinates on
a given by A, using a direct method. Afterwards we were able to translate
ô, a2 to these coordinates and also to translate 03A303B1 &#x3E; 0 03B5(03B1) · aa 0 coth 03B1 o ~03B1 (cf.
(5.1)) to the z-coordinates. Since the latter is the easiest (cf. Proposition 3)
we only give the necessary calculations for the translation to the z-coordinates.

PROPOSITION 4

Proof : First note that, as in Proposition 3, this operator is invariant under
- wo. Using (5.6) we obtain

By (5.7) we have

If we also calculate the other coth 03B1~03B1(zi)(03B1 &#x3E; 0) then we obtain the follow-
ing list :
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Using this list (and (5.7) again) the coefficients of the ôl, a’ (i = 1, 2) and
ôl ô2 follow immediately. Let us calculate the only non-zero coefficient:

So Proposition 4 follows.

Now Propositions 3 and 4 imply that

and this proves (5.2) in Proposition 1.

6. The generalized Abel transform for root system A2

In this section we define the Abel transform Ff for m ~ C, Re m &#x3E; 0, and
then prove that (3.10) holds with n = m - 2, m ~ C, Re m &#x3E; 2. Notation
and set-up is as in Section 5. Let DW(a) denote the space of W-invariant
C~-functions on a with compact support. For f ~ £Dw(a) and m e C,
Re m &#x3E; 0 the Abel transform slmf = Ff of f is the function on
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defined by:

In the inner integral XI is such that XI + x2 + X3 = 0 and in the outer

integral y2 is such that Y2 + Y3 = S2 + s3. Note that since Y3  S3 we have

y2 - y3 &#x3E; s2 - s3 &#x3E; 0. Also

Extend Ff to a function on a’ = ((s1, s2, s3) ~ a|si - Si ~ 0

(1  i  j  3)} by W-invariance. The notation Ff is justified by the next
proposition.

PROPOSITION 5. For m = 1, 2, 4 and 8 Ff equals the Abel transform on the
symmetric spaces of the noncompact type SL(3, R)/SO(3), SL(3, C)/SU(3),
SU*(6)/Sp(3) and E6(-26)/F4 respectively (up to a constant depending on m).

Proof. For each of these symmetric spaces we can identify the abelian
Lie algebra a (defined as usual) with the subspace a in E defined as in
Section 5. We also identify the associated root system of type A2 in the dual
a* with the subset 1 in a and the positive Weyl chamber with the set a+
above. Let exp: a - A be as usual. If g E DW(A) then f = goexp E DW(a).
Now write



169

with Ff defined by the right-hand side of (6.1). We have to show that Hg
equals Fr for m = 1, 2, 4 and 8 where If- now denotes the group-theoretical
Abel transform (and not the right-hand side of (6.1)). It is not hard to show
that Hmg is precisely the expression for the Abel transform Ff in Aomoto [1]
if m = 1 [1, (3.18)] or 2 [1, (3.11)] (see [2, Ch III, Section 6]; in [2, Ch III]
we also extended Aomoto’s results to the case m = 4, i.e., G = SU*(6)).
Now let m = 2, 4 or 8. In Theorem 1 we proved that there exists a differential
operator D on A+ such that DF;n = FDf = const. · f on A. Recall that we
extended Df and DF’" to functions in -9,(A). Now DFÎ = const. · f for
f E D(G//K) implies that D is surjective on -9,(A). Since Df é DW(A) we can
also consider HM. In Theorem 2 we shall prove (by direct calculations) that
also HDmf = const. · f on a’ (m = 2, 4 or 8). So we obtain

for constants cl and c2. By the surjectivity of D we thus have

REMARK. Changing the order of integration in (6.1) one can write Fi as
integral over a+ with respect to a kernel; this kernel can be expressed as
hypergeometric function in several variables. See Aomoto [1] for the case
m = 1; in [2, Ch III, Section 6] we extended his results to m ~ C, Re m &#x3E; 0
and also simplified the case m = 1.

We now state the main result of this section.

THEOREM 2. Let f E DW(a) and define Ff by (6.1) for m ~ C, Re m &#x3E; 0. Let

D(m) be given by (5.1). Then

and

In particular the transform f ~ Ff can be inverted by the differential operator
D(m, m) = D(m) 0 D(m - 2) 0 ... 0 D(2) if m is even, i.e.,
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REMARK. It follows from Proposition 5 that Theorem 1 is now a special
case of Theorem 2. However, there is a difference in the constants: in
Theorem 1 the constant q(m) occurs. This is due to different normaliz-
ations of measures. When (6.1) was derived in [1] (and also in [2, Ch III])
the Haar measure on the subgroup N was not normalized by dn = 0 (dit),
1. e-2(H(ñ)) dn = 1 (see Section 2). Write don for the Haar measure on N
induced by the Killing form. Then it is shown in [4, §§3.7-3.9] that
dn = y don with y given by [4, (3.60)]. Applied to the case E - A2 we obtain

Now compare with (5.4)-(5.5) then y(m - 2)/y(m) = (-203C0)3(q(m))-1.

Proof. We shall always assume that x1 + X2 + X3 = 0 and Y2 + Y3 =

s2 + s3. If f is a function on a then it is sometimes convenient to put
g(x2, x3) = f(-x2 - x3, x2, x3); note that

The proof of Theorem 2 is "simply" a direct calculation based on the explicit
expression (5.1) of the operator D(m), i.e.,

Note that D(m) can also be considered as a W-invariant differential operator
on a’. From now on "i  j" will always mean "1  i  j  3", unless
otherwise stated.

Since the calculations, needed for the proof, are rather lengthy, it is very
useful to introduce several notational conventions. We put
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and also

Then

Also write

and

Recall that in (6.1) we have q &#x3E; 0 and T  0.

Furthermore we put c(m) = 03C03m/22m+4/(0393(1 2m))3 and we write

With these notations we have

For différent values of the variable Y3 we shall give a sketch (Fig. 1) of the
domain of integration D(y3) in the plane xl + X2 + X3 = 0. We fix a point
S = (s1, s2, s3) ~ a+.
Now use integration by parts. Since f has compact support in a and T = 0

on ~(D(y3)) we obtain for Re m sufficiently large (e.g., Re m &#x3E; 6)



172

Fig. 1.

We will prove the following result in Proposition 6 below:

Then it follows that
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The second term in this sum can be written as (up to the constant

2 2 cCm) Cm - 2)2 )

since T = 0 on ~(D(y3)) and we assumed Re m &#x3E; 6. Next we can perform
an integration by parts with respect to the variable y3. Then (6.2) becomes

Put

then we have shown that
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An easy calculation shows that

and consequently

Since c(m)lc(m - 2) = 22(203C0)3(m - 2)-3 we obtain

By W-invariance the equality (6.3) holds on a’. By analytic continuation
with respect to m we obtain the theorem for Re m &#x3E; 2; it is easy to check
the case m = 2.

It remains to prove the following proposition.

PROPOSITION 6

Proof. The only functions in T depending on the xi are ch (2Xi - p)
(i = 1, 2, 3). Since these functions and their derivatives occur very fre-
quently in the proof of this proposition, we introduce the notation

Two simple calculations show that
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and

So

with

For the remainder of the proof we shall introduce one extra notational
convention: put

Note that SC,j = - scji. This term scij occurs frequently since

It will also be convenient to have some alternative expressions for scij
available. First, since

we have
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From

and

then follows that

and thus

With these facts one can easily prove the following (remarkable) lemma:

LEMMA 2

Proof. With our conventions we have that

First we calculate Dl T. By (6.6) we have

so
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and thus

where we used (6.7) for the second equality. Now note that

so

Next we calculate D2 T. From (6.6) and (6.11) we have

Consequently

Using (6.7) and (6.9) we obtain for m ~ i, j
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Put in the signs (-1)i+j and add the terms i  j. If we compare with (6.13)
then it follows that

The last equality again follows from (6.7) and (6.14). This proves the lemma.
~

It remains to calculate R1(T) given by (6.5). The notation scii and formulas
(6.6)-(6.11) will again be very useful. From (6.6) follows that the first term
in RI (T), up to the constant (k - 2), equals

Now

so
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This gives us, after some reordering, the second term in Ri (T):

If we compare with (6.13) then we see that the first term in parentheses {-}
equals

while the second term in parentheses {-} is the same as in (6.17). If we use
(6.6) for the last term in R, (T), then we obtain that

Put

and use (6.11) to rewrite R2 (T) as

Since
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we conclude that

Here we also used expression (6.10) for scji = - scij. Now we can replace
2 sh (x, - xj) ch (xl + xj - p) by Si - Si again (cf. (6.9)). This leads to

LEMMA 3

Proof. Put

then

Use ch2w + ch2 z = ch (w + z) ch (w - z) + 1 and 2 ch w ch z =

ch (w + z) + ch (w - z) to rewrite this as
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Since 1 2(1 + ch2q) = ch2q - tsh2q, we obtain for m ~ 1, j

Next observe that (cf. (6.16))

hence
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Now

For the third equality we used (6.18) and for the last equality (6.7), (6.14)
and the fact that (e.g. again by (6.7))

Thus we obtain

and indeed

which proves Lemma 3.
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We deduce from Lemma 3 and the definition of R2(T) that

Now recall (6.4) and (6.12) (= Lemma 2), then we obtain

and consequently

which finally proves Proposition 6. ~

Appendix 1: The shift operator for root system A3

Put E = R4. In E we have the standard basis e, , e2, e3, e4 and inner product
·, ·&#x3E; for which this basis is orthonormal. Let a denote the hyperplane in
E orthogonal to the vector el + e2 + e3 + e4. The inner product on E
induces an inner product on a which we shall also denote by ·, ·&#x3E;. We
identify the dual E* with E (and a* with a) by means of this inner product.
The root system of type A3 can be identified with the set 03A3 =

{ei - eJ|1  i, j  4, i j 1 in a. For E we take as basis à =

{03B11 = e1 - e2, 03B12 = e2 - e3, 03B13 = e3 - e4}. Let Y-’ be the set of positive
roots with respect to A. The Weyl group W of E is isomorphic to the
symmetric group S4 . The fundamental weights of L will be denoted by À1 ,
03BB2, 03BB3 i.e. 03BBi, 03B1j&#x3E; = 03B4ij. As in Sections 4 and 5 we put
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For m ~ C we define L(m) and g(m) as in Section 3. Then g(m) = 1 2m(2) =
tm(3el + e2 - e3 - 3e4).
We now define D(m), the operator which shifts the parameter m to m - 2

in the sense of Section 3. Write ~i for alazi then

with

and
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We obtained this operator as follows. Start with the operator £5-1 03A003B1 &#x3E; 0 ~03B1
with £5 and ~03B1 as in Section 5. Recall that ô -1 03A003B1 &#x3E; 0 ~03B1 shifts from m = 2 to
m = 0. By use of a computer we translate this operator in the z-coordinates.
This is the operator D(2). Now recall (i) in the definition of shift operator
in Section 3, i.e.

If we use this identity for successive values of m then it is possible (again
using a computer) to determine the dependence on m. In these calculations
we assume that m is linear in D5(m), quadratic in D4(m) and cubic in D3(m).
Another way to obtain the operator is to use the gradation introduced by
Opdam [14, §2]. Then use Proposition 2.3 in [14] to determine which terms
Zk11zk22zk33~~11~~22~~33 can occur. It turns out that this gives precisely the same
terms as in the operator D(2). The dependence on m then follows as above,
where we now also have to determine the constants in D6(m). Note that in
either of these methods we check (A.0) in the process of finding the operator
D(m).

REMARK. For all our computer-calculations we used the algebraic program-
ming system "Reduce" (version 3.0, April 1983) on the IBM 370/3083
computer. It took approximately 10 sec. cpu-time to check (A.0) for this case
(for A2 this was 0.2 sec.).

In order to use (A.0) one needs the operator L(m) in the z-coordinates.
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PROPOSITION 7

Since there is not much différence in the calculations for A3 or A~, ~  3 we
give the operator L(m) in the z-coordinates for At in Appendix 2.

Since we have an operator D(m) which satisfies (A.0) we can now apply
Proposition 2.5 in [14]. Then it follows that D(m) is a shift operator with
shift 2, i.e. D(m) shifts from m to m - 2. Furthermore

This follows as in the proof of [14, Theorem 3.6] or by [14, (3.25)]. Note that
for m = 2 the corresponding po is indeed 03C003B1 &#x3E; 0 03B1, i03BB). Precisely as in
Section 5 it follows that q is independent of 03BB (the expression for cm(- 03BB)/
cm-2(- 03BB) in Section 5 was derived under the assumption that the root
system had one root length). In fact, with notations as in Section 5, we have

Note that q(2) = 283 . 4! = w 03A003B1 &#x3E; 0 03B1, - g(2).
So, as in Section 5, we obtain an inversion of the Abel transform by a

differential operator if m is even.

THEOREM l’. Let X = GIK be one of the following symmetric spaces of the
noncompact type: SL(4, C)/SU(4), SU*(8)/Sp(4). So the associated root

system of X is of type A3 and the multiplicity m equals 2 and 4 respectively.
Let FÎ denote the corresponding Abel transform (f E D(G//K)). Then
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with

Appendix 2: The radial part of the Laplace-Beltrami operator for At in the
z-coordinates

Put E = R~ + 1. In E we have the standard basis el , e2, ... , e~+1 and inner

product ·, ·&#x3E; for which this basis is orthonormal. Let a denote the hyper-
plane in E orthogonal to the vector el + e2 + ... + e~+1. The inner product
on E induces an inner product on a which we shall also denote by ·, ·&#x3E;.
We identify the dual E* with E (and a* with a) by means of this inner
product.
The root system of type At can be identified with the set X =

{ei - ej|  1, j  ~ + 1, i ~ j} in a. For E we take as basis 0394 =

{03B11 = e1 - e2, OC2 = e2 - e3,..., a~ = e~ - e~+1}. Let 03A3+ be the set of

positive roots with respect to A. The Weyl group W of E is isomorphic to
the symmetric group S~+1. The fundamental weights of 03A3 will be denoted by
03BB1, 03BB2,..., ,1(, i.e., 03BBi, 03B1j&#x3E; = ôij. As in Sections 4 and 5 we put

For m ~ C we define L(m) by the right-hand side of (2.2) (cf. Section 3) i.e.,

where L,, is the ordinary Laplacian on a and

We use (tl’ t2, ... , t~+1) as coordinates on E; on a we have t1 + t2 + ... +

t~+1 = 0. In this appendix we shall write

Considered as differential operators on a, La and R are given by
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PROPOSITION 8

EXAMPLES. Ife = 1 then L(m) = 2((z2 - 4)(d/dz)2 + (m + l)z (d/dz)); if
e = 2 then we recover (5.3), which is a result of Koornwinder [10, IV,
(5.14)]. For ~ = 3 we obtain the expression in Proposition 7 (Appendix 1).

This appendix contains the proof of Proposition 8.
We have

so

This gives

The coefficient of azi can easily be determined. Since
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we obtain

Thus the coefficient of êz, equals

Note that this result holds for arbitrary root systems. For A~ we have as
fundamental weights:

In particular |03BBj|2 = j(~ - j + 1)1(e + 1). This gives the first-order term in
the z-coordinates:

We now concentrate on the second-order term. Consider the fundamental

weight

The orbit of 2Ài under W consists of the e + 1 vectors

Based on (A.4) it is now easy to describe the Weyl group orbit of the vector
2Ai (i = 1, 2,...,~) in terms of the 03C3i (i = 1, 2, ... , t + 1). One obtains
for j = 1, 2,..., ~ :



190

and

Since zj = 03A3w~ W/W(03BBJ) e2wÀj we conclude from the description of the orbit
W · 203BBj that zj is the j -th. elementary symmetric polynomial uj in the variables
xi = e(J1 (i = 1, 2,...,~ + 1) for j = 1, 2, ... , e. For convenience we

also define z~ + 1 = e03C31+03C32+···+03C3~+1 ~ 1. For j - 1, ...,~ + 1 we then have

Zi = uj(x1, x2, ..., x~), where xi = e(J1 (i = 1, ... , e + 1) and

We also define Uo == 1 and uj ~ 0 for j &#x3E; e + 1. One can now reduce the

problem of the calculation of the second-order term in (A.3) to a problem
on symmetric polynomials. First we calculate ~i(zj) explicitly. By (A.7) we
have

So



191

and thus

Now write

With our notation x, = e03C3i, zi - ul (i = 1, 2, ... , e + 1) we have

where

Let sk (k ~ Z+) denote the power sums in the variables xi
(i = 1, 2, ... , t + 1), i.e., sk - 03A3~+1i=1 1 k= 1. Then one has the follow-

ing well-known Newton-identities for the elementary symmetric poly-
nomials u, and the power sums sk, which can be found in many textbooks
on algebra (e.g., [19, §33]):
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If in (A.11) we have k &#x3E; e + 1 then we use our convention uj ~ 0 for
j &#x3E; e + 1. In particular we have

and hence

with

Now apply (A.11) with k = q + a (1  a  p), then we obtain

and thus

So

In the double summation we put n = a - b. Then
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where we used (A.12) for the last equality. Consequently

It follows from (A.13), and the definition of Sp,q in (A. 10), that

Here zj ~ 0 if j &#x3E; e + 1, Zj ~ 1 if j = ~ + 1 and z0 ~ 1. If we combine

(A. 14) with (A. 5) then we obtain the operator La in (A.1) (and (A.3)) in the
z-coordinates (cf. end of this appendix).

PROPOSITION 9. Let R be defined as in (A.l). Then

Proof. We deduce from (A.2) and (A.9) that

Since
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we obtain

Now

and

where, as before, sn denotes the n-th. power sum. If we use the Newton-
identities (A.12) again, then it follows that the coefficient of ~zp (p = 1,
2, ... , t) in R equals

with

Now let n be odd, n  3. Then
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The case n even, n  2 can be treated similarly and thus we obtain

Hence

In the double summation we first change the order of summation and then
put b = n - k. This leads to

Apply the Newton-identities (A.12), with p replaced by p - k, then it

follows that

and thus, again by (A. 12),

This shows that the coefficient of a-P (p = 1, 2, ...,~) in R equals

which proves Proposition 9.
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To summarize the results of this appendix:
if we combine (A.5) and (A.14) then we obtain

furthermore Proposition 9 gives

and since

we obtain Proposition 8.
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Notes added in proof

1. In the paper "Système différentiel hypergéométrique de type BCp" (C. R.
Acad. Sci. Paris Sér. 1 304 (1987), 363 - 366), Debiard gives the shift operator
Dl for BC~ with shift (0, 2, 0) (in the sense of Section 4), but without proof.
In the last chapter of his recent Ph.D. thesis (Generalized hypergeometric
functions associated with root systems, Univ. of Leiden (1988)) Opdam
proves the existence of shift operators for all root systems. From the results
in section 3 (and the classification of all simple noncompact Lie algebras
over R and their root systems and multiplicities) then follows that the Abel
transform can be inverted by a differential operator if all root multiplicities
are even.
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2. Using the same method as in Appendix 2 we also obtained the radial part
of the Laplace-Beltrami operator in the z-coordinates for BCf (unpublished).

3. In a forthcoming paper we will show that the generalized Abel trans-
form as defined in (6.1) also satisfies the expected transmutation property
with respect to the radial part L(m) = 0394(LX) of the Laplace-Beltrami
operator, i.e.,
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