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Abstract. An arithmetic function is called linear if it is completely multiplicative, and quadratic
if it is the Dirichlet convolution of two linear functions. If g is an arithmetic function then the
n-th root of g, denoted g1/n, is a function f such that g = f’ ...f(n factors), where H." denotes
Dirichlet convolution. In this paper, explicit formulas are given for the n-th roots of linear and
quadratic functions, and for the inverses of these roots.

If m and n are positive integers, then gm/n is defined to be the m-th power (i.e. m factors in
the Dirichlet convolution) of gl!n. Formulas are given for these "rational roots" of linear
functions.

1. Introduction

An arithmetic function is any mapping f from the positive integers into a
subset of the complex numbers. An arithmetic function f which is not

identically zero is called multiplicative if

and it is called linear if

The Dirichlet convolution, f *g, of two arithmetic functions f and g is defined
by the relation

It is well-known that the set of all multiplicative functions, under the
operation *, is an abelian group: E(n) = [1/n] is the identity element andf-l
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defined by

is the inverse of f.
While the set of all linear functions is not a group, note that f is linear iff

for all primes p and integers a &#x3E; 1; and hence a linear function is completely
determined by its values at f(p) for each prime p (see [1]). This statement
generalizes to: f is the convolution of n linear functions iff

for all primes p and all integers a &#x3E; n; and hence such a function is

completely determined by f(p),f(p2), ..., @ f(pn) for each prime p (see [2]).
By the notation fr, r a positive integer, we mean r copies of f under

Dirichlet convolution. rearick [3] showed that if f is any multiplicative
function and r is any integer, then there exists a unique multiplicative
function g such that = f; in fact he proves this result for r a real number
and g defined in terms of his exponential and logarithmic operators. For
r a positive integer and g’ = f, g is called the rth root of f. Kemp [4]
considered roots of arithmetic functions of more than one variable.

In this paper we are interested in determining explicitly the roots of linear
and quadratic functions (a quadratic function is the Dirichlet convolution
of two linear functions) in terms of the functions themselves.

2. Square roots

By the square root of a multiplicative function.f we mean the unique multi-
plicative function that is the solution to the functional equation g2 = f. We
will write g = f1/2 = f.
THEOREM 2.1. Iff is linear, then for F = fl/2

for p prime and n a non-negative integer.
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Proof. By induction on n.

Assume

for p a prime and 0  k  n.

Since

simplification yields equation (1).
For N = pa11pa22 ... pa’, pi primes and ai positive integers, let g(N) =

al + a2 + ... + ar and
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COROLLARY 2.2. For f a linear function, F the square root off, and N a positive
integer,

COROLLARY 2.3. For n a positive integer,

Proof. Let f be a linear function.

So by Corollary 2.2,

Now, f is linear and (d) + (n/d) = (n), so,

and (2) follows immediately.

Theorem 2.1 generalizes to

THEOREM 2.4. If f is a quadratic function (say f = g * h, g and h linear) and
F is the square root of,f, then for p a prime and n a positive integer:

Proof.
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Rearick’s result about the uniqueness of roots implies F = gl/2 * hl/2. Hence,
by Theorem 2.1,

Using the notation is(n) == nS, d(n) = ’0 * i0(n) (the number of divisors of n)
and 03C3(n) = i1 * i0(n) (the sum of divisors of n) are quadratic functions. It is
immediate that d1/2(n) = 1 for all n and

THEOREM 2.5. For f a linear function, p a prime and n a non-negative integer,

Proof. For n = 0, f-1/2(1) = 1.

Assume equation (4) holds for 0  k  n.

So,
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since

The analogous result for quadratic functions is:

THEOREM 2.6. Iff = g * h (g and h linear) and F = fl/2, then for p a prime
and n a positive integer,

Functions that are the Dirichlet convolution of a linear function and the
inverse of a linear function are called totient functions. Euler’s 0 function
is the most famous totient. Combining Theorems 2.1 and 2.6 we can easily
prove:

THEOREM 2.7. If f is a totient, say f = g * h - 1 (g and h linear), then for p a
prime and n a positive integer, the square root of f is given by:
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Since ~(pn) = l1 * l-10 (pn) = (p - 1)pn-1,

Examine (7) to note that

where Pn(x) is a polynomial.

3. Rational roots of linear functions

In this section the results of Section 2 are generalized to rational roots of
linear functions.

THEOREM 3 .1. Iff is linear and F = fl/l for a positive integer t, then for p a
prime and n a positive integer,

Proof. Note that F(1) = 1 = f(1), and F(p) = (1/t)/f(p). Now by induc-
tion, it is easy to see that F( pn ) = K(t; n)f(pn), where K(t; n) is a rational
number independent of p. Defining K(t; 0) = 1, we need to show K(t; n) is
the coefficient of f(pn) in equation (8).
By the definition of Dirichlet convolution,

where the summation is over all choices of non-negative il, i2 , ... , i, such
that i, + i2 + ... + it f = n. Moreover, since f is linear, we must have
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As noted at the beginning of this proof, K(t; 1) = 1/t. This also follows
directly from (8) with n = 1.

Now consider the McLaurin series:

where

Writing An explicitly, we obtain

Raising both sides of (10) to the t-th power,

where

where the summation is over all choices of il , ... , il such that il + ... +
il = n.
Now the unique McLaurin series for (1 - X)-1 is L:=o Xn, i.e., Cn - 1

for all n  0. Thus, 1 = E Ail Ai2 ... Ail where A0 = 1 and A1 = 1/t. This
is the same recursive relation as (9) with the same initial conditions and
hence (8) is proven.

We now wish to determine fs/t(pn) in terms of f(pn) where f is linear. As
a special case of the following (fs(n) = ns) see Beumer [5].

THEOREM 3.2. If f is a linear function and s is a positive integer, then
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Proof. By induction on s. Immediate for s = 1. Assume (11) holds for
1  k  s.

Noting that

leads us to

THEOREM 3.3. If f is linear, s, t, n are positive integers and p is a prime, then

Proof. Since fs(pn) = (n+s-1 s-1)f(pn), we have

F(pn) = K(t, s; n)f(pn).

Again as in Theorem 3.1, examine



358

with

Raising each side to the t-th power, we obtain

Now the McLaurin series expansion of

and hence

where Ai = 1 = K(t, s; 0) and A, = s/t = K(t, s; 1) and hence An -
K(t, s; n) for all positive n.
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