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Introduction

The point of this paper is to indicate how recent results of Cassou-Nogues
[3, 4] and Sargos [8], concerning poles of meromorphic continuations of
"generalized" Dirichlet series of the form

can be extended by means of a b-function at infinity which can be associated
to the data of the polynomial P(z1, ... , zn ) and "test" function ç.

(Implicitly, the summation in (0.1) is taken only over the lattice points m in
Nn or Z" at which P(m) ~ 0.)

In their work, the polynomial P must satisfy the positivity condition that
the real part of each coefficient of P is positive. This is for technical reasons,
as discussed in Section 1. Moreover, it also allows use of the principal
branch of the logarithm to define the quantity P(m)s. On the other hand, it
suffices for our purposes to impose a simple growth condition on Re (P) at
infinity (cf. (2.1), (2.6)).
The essential idea here is to exploit the Cauchy residue theory, as done by

Sargos, but to do so in a convenient conical neighborhood r of the divisors
at infinity in the compactification Cn  (P1 C)n . Then (0.1) is written as a
finite sum of integrals I03C3(s, ~). The integrand is given by an expression
RS 03C8~E/(x1 ...xn)N+2 dxl ... dxn where:

i) R(x1, ..., xn) = 1/P(1/x1, ... , 1/xn) and the principal branch of
log P also determines RS .

ii) N characterizes the order of growth of 9 at infinity inside r.
iii) E is the summatory kernel converting lattice points to simple poles.
iv) t/J qJ is a bounded holomorphic function in r.
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The b-functions are minimal monic non-zero polynomials bN(s) for which
a functional equation is shown to hold for the expression Rs(1/x1 ... xn)N+2,
considered as a generator for a suitable module over the Weyl algebra,
corresponding to the chart at infinity (cf. Proposition 3).

Thus, if BN = {03BB - n: bN(Â) = 0, n = 0, 1, 2, ...}, the main result of
this paper is the following.

THEOREM 1: If P satisfies the growth condition (2.1), then the poles of (0.1 ) are
contained in 81 N.

The precise connection between poles of the Dirichlet series and roots of the
b-function to be introduced here is similar to that encountered in studying
the poles of the generalized function |P|2s and their relation to the roots of
the standard b-function for P [1]. Note however that much subsequent
work extending [1] (works of Barlet, Loeser, Malgrange) has exploited a
cohomology theory that is not yet available in this subject.

Section 1 briefly describes the work in [3, 4, 8]. Sections 2-4 describe the
meromorphic continuation of (0.1). Section 5 considers a class of real

polynomials which satisfy a positivity condition on their coefficient.
Theorem 2 characterizes the largest pole of -9p(s, cp) in terms of the poly-
hedron and is reminiscent of a theorem of Varcenko [11].

Indeed it states, for cp a non-zero constant (a generalization to cp a mon-
omial is also proved but the statement is slightly more technical to state here)

THEOREM 2: Let 0393~(P) be the polyhedron of P at infinity (cf. (5.1)). Assume
that P is a real polynomial satisfying the positivity condition and that condition
(5.9) holds. Let t0 be the value of t at which the diagonal y1 = ... = yn = t

intersects roo(p). Then 1/to is the largest pole of (0.1).

REMARK: Sargos has independently proved a more general version of this
theorem [10]. On the other hand, we obtain (5.14) a more precise expression
for the polar part of -9p (s, ~) at any possible pole, not just the largest. This
might be of subsequent interest.

In a second paper on this subject, D module techniques are used to obtain fur-
ther information about the poles and their relation to monodromy at infinity.

Section 1

This section briefly summarizes the works of Cassou-Nogues and Sargos.
The techniques used in [3, 4] are based on a theorem of Mellin. As such
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there is an assumption required on P called the
(+) condition: the real part of all non-zero coefficients of the complex

polynomial P(zl , ... , zn) are positive.
The statement of Mellin’s theorem can be conveniently split into two

parts.

Now, set Sj(s) = ~1 z-sj dzj and 03A3~mJ=1 mj-S = ((s).
Integrating (1.1) with respect to dZI ... dzn and changing the order of

integration (always with Re (s) &#x3E; el + ... + 03B8R) gives the following two
identities.

and
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Similar expressions are obtained if one includes a function, say a poly-
nomial, ç, multiplying the P-s term.
One knows the analytic continuation of S; (s) and «s) to contain a single

pole at s = 1. Thus the possible poles of Sj(uj) resp. 03B6(uj) are given by the
union of the loci {uj(s, Zi, ... , zR) = 1}.
For fixed z, , ... , zR, the locus consists of only finitely many points in

any vertical strip of finite width contained in the s-plane. By using this
observation and repeating it R times, Mellin was able to show

THEOREM B. The left hand sides (1.2) and (1.3) are meromorphic functions of
s with at most finitely many poles in any vertical strip of finite width. In
addition, since for any such vertical strip it is the case that for any e &#x3E; 0

e-03B5|s| Sj(s) ~ 0 (resp. e-03B5+|s|03B6(s) ~ 0) as Isi ~ 00, s inside the strip, it follows
that this same "sub-exponential decay" property holds for the left hand sides
of (1.2), (1.3).

What Mellin did not do was determine and thus be able to compare the

actual set of poles for the left hand sides of (1.2), (1.3).
This was done 82 years later in the case of n = 2 by Cassou-Nogues. Her

main result [4] can be summarized as

THEOREMC. When n = 2, the set of possible poles of the left hand side of (1.3)
is contained in the set of possible poles of the left hand side of (1.2).

In fact, the relation between the two sets of poles can be made much more
precise.

Sargos [10] has extended this to the case n &#x3E; 2 via a certain Newton

polyhedron at infinity (cf. Section 5 for the definition).
Instead of using Mellin’s theorem and (1.1), Sargos uses a summatory

formula based on Cauchy residue theory.
In one variable this is expressed as follows. Define the region ro =

a + {z E C: |Arg(z)|  03B8} where a E (0, 1) and 0  03B8  n/2. Set e(z) =
e203C0iz. Then, if f (z) is holomorphic in an open set containing the region ro and
f satisfies a bound of the form

where e &#x3E; 0 and C are independent of z, one has
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In n-variables, (1.4) is extendable if f(z1, ..., zn ) is holomorphic in Fn,
for some 0, and satisfies a growth property (C, e independent of z)

If (1.6) is satisfied, then

This is useful by the

LEMMA (1). When P satisfies the (+) condition there is a 0 E (0, n/2) so that
f(z) = (IIP(z»’is single valued and I/P(z) satisfies (1.6) for some e &#x3E; 0 and

all z ~ 0393n03B8.

Proof. cf [8, Lemma 5.1]

REMARK : In fact more is proved in [8]. Given any rational function

R(z) = Q(z)/P(z), where Q and P satisfy the (+)-condition, and given any
monomial zul ... zunn, Uj  1 for each j , there exist positive numbers a, 0 and
Q, Q  n/2, so that

and

for all z = (zl , ... , zn ) E 0393n03B8. This is generalized in Section 2.
To perform the analytic continuation, one first decomposes the ori-

ented n-chain ~039303B8  ··· x are = 03A303C3(-03C3(1))03B303C3(1)  ··· x ( - 03C3(n)) · 03B303C3(n)
where

Define the functions, on |03B3+| resp. |03B3_| (|*| denotes the support of the
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chain *),

These satisfy the crucial convergence properties:
There exists ô &#x3E; 0 so that

For given choice function u set
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and define

fo r z c- F, .
Then, one has for f (z) satisfying (1.6),

Using a detailed combinatorial argument (similar to that used in section
(5)) to find a "largest monomial" in a Newton polyhedron at infinity for P)
Sargos was able to determine the analytic continuation of each integrand
in the right side of ( 1.10) when f(z) = P(z)-s · zl’ ... zann, an E N ~ {0}. His
result was

THEOREM D. For P satisfying the (+) condition there is a rational number a
and integer N so that the poles of the analytic continuation of (0.1) (with
~(z) = za11 ... zann) are contained in the set {03C3 - u/N : u = 0, 1, 2, ...}.

Section 2

There are three parts to the proof of Theorem 1, distributed across the next
three sections. Section 2 contains the analytic but preliminary part. Here the
growth condition on P is defined and used to establish a summatory formula
valid in a halfplane of analyticity between a-tail-of (0.1 ) and a finite sum of
values of "generalized currents" (cf. (2.10)). This establishes the analog of
(1.10). Section 3 gives an algebraic derivation of the functional equation that
will lead to the proof of the theorem in section 4. Note that in the following
we will treat the series (0.1) where the summation is over the tuples m in Nn
at which P(m) ~ 0. An obvious extension to the case of Zn is left to the
reader.
The basic idea in this paper is to use the coordinate inversion zi = 1/xi,

i = 1, ... , n, to analyze each of the integrals of the summatory formula
(2.10). In this way, one thinks of Cn with coordinates (z, , ... , zn ), denoted
Cn (z), as being compactified via the inclusion Cn  (P1C)n, and one
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works in the coordinate chart Cn(x) with overlap equations as above. The
divisors Di which one adds to Cn (z) to compactify it are evidently defined in
Cn (x) by xl - 0, i = 1, ... n. On the other hand for certain polynomials,
toroidal compactifications may be more useful in that they allow one to
describe the first pole of (0.1) in terms of a combinatorial object, the Newton
polyhedron of P at infinity. This is the idea behind Section 5 and [10].

In the following the norm on any copy of Cn is defined in this way. If, for
example, z = (zl , ... , zn) then ~z~ = max{|zi|}. The growth condition on
Re ( P) is the following.
There exists a B E (0, 1) such that (with zj = Xj + iyj for each j )

For each differential monomial DA = DA‘ DA2 ... DA2n-1 xn DA2nyn,

This is the hypoellipticity condition on [B, oo)" of Hôrmander [pg. 99,6].
Thus, one concludes from the proof of lemma 4.1.1 [6] that there exists a
positive rational number e so that the function

defines a region r(e)

such that Re(P) satisfies the growth condition

In the following, we assume 03B5  1. From (2.3) one concludes

PROPOSITION 1: If (2.1) is true, then there exist D, c, c’, l1 &#x3E; 0 such that

for all

Note: We subsequently assume that D is not integral and D &#x3E; B. This is
without loss of generality.
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Proof: This follows from the argument presented in [6, appendix]. Since
r(O)n is a semialgebraic set the function

has the form

Evidently, (2.3) implies that a must be positive. This shows (2.4).

EXAMPLE: P(z1, z2) = (Z, - Z2 )2 + z, is a real hypoelliptic polynomial that
does not satisfy the non-degeneracy conditions in Section 5.

Setting (xl , ... , Xn) = (1/z1, ..., 1/zJ (abbreviated as x = 1/z
below), (2.4) implies

Thus, if R(x) = 1/P(1/x) and x = 1/z with z E 0393(03B8)n n {~z~  D}, one
concludes that constants C, C’ exist so that

NOTATION: Because 0 is fixed in the discussion we subsequently denote 0393(03B8)n
by rn. Set 0393nD = {~z~  D} n 0393(03B8)n.
(2.6) It follows that in the region rz a single valued branch for log P exists
and is used to define P’ and (1/P)s in 0393nD as single valued holomorphic
functions. Inded, because Re (P) satisfies the condition (a) Re (P)(z) &#x3E; 0

for each z E n or (b) Re (P)(z)  0 for each z E rD, it follows that if (a)
holds then the principal value of the logarithm is used to define not only each
term P(m)S in (0.1) but also the functions PS, (1/P)’ in 0393nD. If (b) holds, then
one understands P(m)s to mean the quantity (-1)s(-P(m))s (where
Arg (-1) = n) and uses the principal branch of log to define ( - P(m))s.
Similarly, one defines the functions Ps, (1/P)S in rz by the identities P(z)s =
(-1)s(- P(z))s, (1/P(z))s = (-1)s(-1/P(z))s. As such, all the analysis will
be done in 0393nD. Thus, with these conventions, our considerations will apply
to the "tail" of the series, defined as
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Because only finitely many terms from (0.1) are lost in (2.7), all the infor-
mation about the poles of the meromorphic continuation of (0.1) is pre-
served in (2.7). To proceed, the summatory formula (1.10) needs to be
adapted to the situation here.

Let A = Z n [B, D] = {1, 2, ... , a}. For each i E A set y(i) to be a
small circle oriented counterclockwise and centered at i in the plane. The
radius of each circle is the same and is taken to be less than 1/2.
Now set C = (D - B, ... , D - B) E C" and consider the translation

C + rn. Evidently, C + 0393n ~ rD. One can express ~(C + rn) as follows.
In one coordinate plane, one has

where

One orients these chains by increasing x.

Let W = {03B3(1), ..., y(a), -03B3+(D), 03B3-(D)} be a finite collection of oriented
arcs in the complex plane. Define

at least one Q(u) is an unbounded arc}.

For 03C3 E !Y set

REMARK: We do not distinguish notationally between the unbounded chain
A, in the chart Cn (z) and the compact chain 039403C3 in Cn(x) unless the context
does not make clear which is being considered.
The collection {039403C3}03C3~J is the finite set of oriented n-chains replacing the

set {039303C3} in (1.10). Observe that the supports of the A, are mutually pairwise
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disjoint. Set

Next, define for each u E 1

and

REMARK: The class of polynomials P satisfying (2.1) is exactly the class for
which the summatory formula (cf. 2.10)) can be obtained via Cauchy residue
theory using the product 03A0(1/(e(zj) - 1). This is because the function

1/(e(z) - 1) resp. [1/(e(z) - 1)] + 1 is integrable over the arc y_ (D) resp.
y+ (D), formed from the function 0, iff the exponent e in the definition of 0
is positive. Indeed, one has that

and

In order to define generalized currents associated to each chain 039403C3, it is first
necessary to define the space of test functions F. This is done for each

N  0 as follows.

DEFINITION: Given N E N, let
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i) Supp (cp) contains an open neighborhood of JAI in C"(z), in which cp is
holomorphic

ii) Icp(z)1 = 0 (IZI ... Zn lN) as Izl - ~, z E JAI
iii) In an open neighborhood V of |0394| in Cn (X) there exists a bounded

holomorphic function 03C8(x1, ... , xn) such that

for all points (Xl’ ... , xn) E f - U Di 1.
Set 3v = u FN. One notes that F contains the ring of rational functions
in (zl , ... , zn). For most purposes, it probably suffices to work with this
ring.
For a ~ J, set

One now shows that there exists a halfplane of analyticity.

PROPOSITION 2: If P satisfies (2.1), then for each N there exists B(N) such that
if Re(s) &#x3E; B(N) then I03C3(s, qJ) is analytic in s fôr all qJ E FN and each a E 5.

where arg (P) is determined according to (2.6) and is therefore uniformly
bounded over 0393nD. Now if K is a compact set in {Re (s) &#x3E; B(N)} there exist
CK &#x3E; 0 such that for all z E rz

Thus, for s E K there exists CK &#x3E; 0 such that for all z E |039403C3| and each

Clearly, 0394 |z1 ... zn|N-03B103C9/n dz converges and is analytic in s if N -

am/n  - 1 - 03B5 for some e &#x3E; 0. Choosing e = 1 and setting B(N) =
[n(N + 2)/03B1] suffices to prove the proposition.
Thus, if 9 E 57,, we obtain an equality between two analytic functions in
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(2.11) REMARK: Note that the branch for log P used to define the integrand
in each 1(T(s, cp) is the same (cf. (2.6)) as that used to define each term P(m)s.
However, if one only imposed the growth condition (2.1) on P, not Re (P),
then one could not insure that. Indeed, it would not be so easy to specify a
piori one branch of log with respect to which each P(m)S is defined ans so
that (2.10) is an identity between functions of s. This unpleasant prospect
forces (2.1) to hold for Re (P).

Section 3

For a polynomial P the existence of a b-function b(s) =1= 0 for which there
is a functional relation

was proved by Bernstein using purely algebraic techniques [1]. For the
reader’s convenience this is now briefly summarized.

Let K be a field of characteristic zero. It is not necessary to force K to

be algebraically closed but is useful to assume that K is uncountable in
cardinality.

Let Dn(K) = K[xl , ..., xn , Dx1, ..., Dxn be the Weyl algebra over K
[2]. The Dxj, xj satisfy the relations

Let

be the filtration of Dn(K) by total order of the operators.
A filtration on a left Dn(K) module X is a sequence of finite dimensional



94

K vector spaces

so that

A left Dn(K) module X is holonomic [2] if .K admits a filtration {Nj }~0
such that there are positive integers c,c’ so that

holds for all j.
The most basic examples of such modules are the following two. Here, P

will be a polynomial in K[xl, ... , xn with deg P = d.

A) Set M = K[x, 1/P] to be the ring of fractions. Define Dx,(q/pj) via the
standard quotient rule formula.

Set Mj to be the K vector space. generated by the elements

with deg

Then {Mj} is a filtration of A satisfying (3.3). So, -o7 is a holonomic left
Dn(K) module.

B) Let s be a transcendental over K. Let Ps be a generator of a module X
over K(s)[x1, ..., Xn, I/P]. Define a left Dn(K(s)) action on N where
the main ring action is given by the rule

Set Aj to be the K(s) vector space generated by the elements

Then {Nj} is a filtration of % satisfying (3.3).
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From the finiteness of the length of JV follows the existence of a poly-
nomial b(s) =1= 0 so that (3.1) is satisfied. One need only consider the necess-
arily stabilizing sequence of submodules g; = Dn(K(s)) · (Pi · PS).
One can extend B) to any rational function R = Q/P in an evident way.

Of interest here however, is a modification of B) which concerns both Rs and
another polynomial T. Thus, we show

PROPOSITION 3: Let R = Q/P resp. T be a rational function resp. polynomial
in xl, ... , Xn’ Then for each integer N there exist a non-zero polynomial
bN(s) and elements Pi(s, x, Dx), i = 0, ... m, of Dn(K[s]) so that

Proof: Fix A. = K(s)[x1, ... , xn, 1/PQT]. Set N0 to be the free R0
module of rank one generated by Rs . Define a left Dn(K(s)) action on N0 as
follows.

One checks that it is holonomic by using the filtration of K(s) vector spaces
N0(j) generated by

Let JIN be the Dn(K(s)) submodule generated by K(s)[x1, ... ,
x,,, R](T-N Rs). It is therefore holonomic. Let JlN(j) be the decreasing fil-
tration of MN defined by

Because it stabilizes, there exists a j such that MN(j) = A N(j + 1). This
implies there exist P0 ~ Dn(K(s)) and elements ao (s, x),..., am(s, x) E
K(s)[x1, ... , xn such that

Clearing denominators of polynomials in s and replacing s + j by s yields
a functional equation of the type (3.4). The monic generator bN(s) of the ideal
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of polynomials in s for which an identity (3.4) holds is called the b-function
for T-N Rs. One observes that (3.4) is purely algebraic. There is no impli-
cation of any analytic significance to (3.4) when K = R or C. ~

(3.5) REMARK: It is easy to generalize (3.4) as follows.
There exist a non-zero polynomial b(s,, sz) and operators &#x26;’0’ ... , &#x26;’m in
Dn(K[s1, S2]) such that

Evidently, bN(s) divides b( - N, s) for each integer N.

(3.6) REMARK: A different functional equation involving only polynimials is
this.

If P1, ... , Pk are polynomials in x = (xl , ... , xn), then there exist
a non-zero polynomial b(s1, ..., Sk) and operators P1, ..., Pk ~
Dn(K[s1, ..., Skl) such that simultaneously, one has

Proof. 1 One first shows that

determines a holonomic Dn(K(s)) module. This is done as in example (A)
above. Thus, the k-fold direct sum

is also holonomic. Set

an element of Jtk. Let Jtk(j) denote the Dn(K(s)) submodule generated by
Cj. Multiplication by Pl ... Pk shows that Mk(j) contains Mk(j + 1) for
each j. Thus, there exist j such that Mk(j) = Mk(j + 1) .... This implies
the existence of an element Y E Dn(K(s)) such that for each i
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For each i, set

Evidently, the denominator of each 9fl is the same. Clearing this one denomi-
nator from the k identities

and replacing each si + j by sl yields a set of functional equations of 
form (3.7).

Section 4

In the chart Cn(x) for (Pl C)n , write

Let Uo = 1/(xj ... xn)2 be the Jacobean (up to sign) of the overlap
equations for Cn(x) n C" (z). For each N  1 set

For and

From Section 3, there exists a non-zero minimal polynomial b,(s) and oper-
ators P0, ... , Y,,, in Dn(C[s]) so that

The coordinate inversion x = 1 /z maps the chains in W to compact
(taking closures of the infinite arcs in W) chains in the x plane. Denote these
chains by y’(1), ... , y’(a), y" (D), y" (D). They are characterized by the
following orientations and descriptions.
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y% (D) is an arc in the halfplane Im (x)  0 from the (initial) point
x = 1/D to the (terminal) point x = 0.
03B3’- (D) is an arc in the halfplane Im (x)  0 from the point x = 0 to the
point x = 1/D.
Each 03B3’(j) is a loop traversed counterclockwise about x = 1/j.

For e &#x3E; 0, set S03B5 to be the circle of radius e and center x = 0. Define

03B3’+(03B5) = subarc of 03B3’+(D) from x = 1/D to the point on Se .

y- (E) = subarc of 03B3’-(D) from the point on S, to x = 1/D.

(4.3) Let b1,j resp. b2,j denote the initial resp. terminal point for 03B3’± (e) when
considered as lying in the xj coordinate plane. Set

where the orientations are as above. Each choice function u E 1 determines
a unique choice function a, on W, by the rule

Let 039403C3(03B5) = 03C303B5(1) x ... x u, (n). It is an oriented n-chain with boundary.
For each a e 1 and j for which (JE(j) = + y+ (E) write

One then denotes the component in the xj plane as b1,j(03C3) resp. b2,j(03C3). Set

One has
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To consider the analytic continuation of each I03C3(s, ~), ç E 3F,, one first
defines the integrals over the 039403C3(03B5). Thus, define

It follows from the definition that for Re (s) &#x3E; B(N)

(The orientation factor (- 1)" has been absorbed into the definition of the
chain Au(£)).

(4.2) is now applied as follows. For Re (s) &#x3E; B(N), (4.2) gives an identity
with s a complex variable in this halfplane and x = (x,, ... , xn) a point
outside the locus {TQ(x1 ... xn) = 0}. Thus, it gives an identity over each
|039403C3(03B5)| when Re (s) &#x3E; B(N). One can now use integration by parts. Let Pi*
be the adjoint of Pi. Then, for each 6 E 1 there exists an n - 1 differential

S2Q(s, x) so that (with dx = dx, ... dxn)

Applied to (4.4), this gives for each sufficiently small positive e

Theorem 1 then follows easily from the

LEMMA 2: There exists B’(N)  B(N), B"(N) independent of 03C8 E03C3, such that
for Re (s) &#x3E; B’(N)

REMARK: The independence assertion in the lemma is needed when one
wants to perform the meromorphic continuation to C starting in the half-
plane Re (s) &#x3E; B’(N).
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Proof: The basic idea is to use the growth condition on R (2.5). However,
to prove the assertion (4.7), one needs to be precise about the integration by
parts.

First, the complex of differentials needs to be defined. One wants to
consider t/J Eu as a "test function", so it is necessary to define the differentials
as follows.

Let  = {03C8(x): if ~ E 57,, then (p(l lx) (x, ... xn)N = 03C8(x) for some NI.
Set Qj = 03A9j ~C[x] e. Next, define the ring

and define

Then 03B52 admits an action by the ring Dn(C(s)). Set

considered as a Dn(C(s)) submodule of 03B52 . Now let

REMARK: When one works over a particular chain 039403C3, the complex  is

denoted 03A9.03C3 and 2 is the function E03C3.
Now form the de Rham complex (with tensor product over

C(s)[x1, ..., xn , 1/x1 ... xn])

where MN+2 is the module studied in section 3 with T = x, ... xn . As

above, the generator is denoted RS U(N).
This complex admits an exterior derivative by defining

Integration by parts will then be an identity inside this complex derived
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from this formula in degree n

be a vector of nonnegative integers. Let a(
an element of Iln . Define for each

Then integration by parts for the differential monomial Dx reads as
follows

If one writes

where

and sets
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then one sees that Q(1(s, x) is a sum of differentials of the form

The important points to realize are that the set of monomials DIr(v)x consists
of a finite set with weight of I, (v) for any r, v at most L. Moreover, the factor
DIl(v)x aIi,j (03C3, x) is an integrable function over 039403C3. Thus, to prove (4.7), one
needs to understand at first the behavior of each term DIx(v)x (Rs+j+1 U(N))
over the components B1,v(03B5, 03C3) and B2,v(03B5, a) of ô0Q (E) as e ~ 0 and when
Re (s) is sufficiently large. This evidently depends only upon the operators
{pi} and not upon any aIi,j(03C3, x).
By linearity, (4.7) will follow by showing
(4.9). There exists B’(N)  B(N) such that Re (s) &#x3E; B’(N) implies

for all v, i, j , I.

Here, the convergence is uniform on compact subsets of this halfplane.

Note: In the following, we denote this integrand by Av(i, j, I, a).

Proof of (4.9): Let Ji = {03C3 ~ J:|J03C3| = il. We prove (4.9) for Jn and leave
the simple modifications of the arguments below for the other f to the
reader.
We first consider the behavior of the integrals in (4.9) over the component

of the v th side of ~039403C3(03B5) (i.e., B1,v - B2,v) for which the point b1,v(03C3) or b2,v(03C3)
(cf. (4.3)) lies on 5g. Without loss of generality, we may assume this com-
ponent is B1,v(03B5, 6). One now first proves the following.
(4.10) There exists B’(N)  B(N) such that for any function a(x), integrable
over 06 (E) and uniformly bounded in e, Re (s) &#x3E; B’(N) implies

for each v = 1, ..., n, 03C3 ~ Jn, and index J with |J|  L. Here, the
convergence is uniform on compact subsets of the halfplane Re (s) &#x3E; B’(N).
The proof of (4.10) is by induction on |J|. Let |J| = 1. Then, DJ = Di

for some i. Let OQ (z) - 039403C3 n Cn(z).



103

One has

Because

By Proposition 1, there exist (independent of 03C3) C, 03B3 &#x3E; 0 such that for all

points (Zl’ ... , zn) E 039403C3(z)

Moreover, there exists a positive integer Mo (independent of 03C3) such that

is a bounded rational function in 039403C3(z). Now choose a nonnegative integer
MI so that M1  inf {03B3, M0}. Set M(J) = Mo - Ml . One concludes that

and therefore

are bounded rational functions on 039403C3(z).
So, one can write

with 03C8J(x) bounded in particular on |B1,v(e, u) u B2,v(03B5, u)l, uniformly in e,
for each v, 03C3.

Substituting (4.12) into (4.11), setting
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and one has

is an element of R which is a polynomial in s (of degree IJI) whose coef-
ficients are bounded over ~039403C3(03B5), uniformly in e.

Moreover, in eN we may identify

Thus, for x E 039403C3(03B5), for each sufficiently small and positive e,

Using the bound (2.5) and the uniform (in e) boundedness over each
B1,v(03B5, u) of the coefficients (of s) of a(x)h(J) (s, x), one concludes that there
exist constants Cl , C2 &#x3E; 0 such that for each v, 03C3, index Jwith IJI = 1, and
e with 0  03B5  1, if C (s) = C1s + C2, then

for each x ~ B1,v(03B5, 03C3), where 0(s) = (03B1 Re (s)/n) - (N + N(J)).
Setting B(N1) = [maxj(n(N + N(J))/03B1] + 1, one sees, for s restricted

to arbitrary compact subsets of the halfplane Re (s) &#x3E; B(N1), that the
integral over B1,v(03B5, a) of the n - 1 differential a(x)DJ(Rs U(N)) dxv con-
verges uniformly to 0 as e ~ 0. This proves (4.10) for IJI = 1.

Proceeding by induction one assumes that for any index J with JJI  k,
there exist integers M(J), N(J), a polynomial in s of degree IJI with rational
coefficients in x, denoted h(J) (s, x), and a rational function 03C8J(x), such that
each of the coefficients of any power of s and 03C8J are bounded uniformly in
e over ~039403C3(03B5) and so that for all x E 039403C3(03B5), for each e and a, one has
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and

hold for all s in C.

Now let J be an index with JJI = k. Writing J = ei + J;, where J; has
weight k - 1 and ei is the unit basis vector for the ith coordinate plane, it
is straightforward to extend the above argument to show the existence of a
polynomial of degree k in s with coefficients rational functions in x, denoted
h(J)(s, x), and a rational function 03C8J(x), satisfying the equality (4.13) for
certain integers M(J) and N(J). In addition, the above arguments also show
the uniform in e boundedness of these rational functions in x over the chains

039403C3(03B5).
Defining B(N(J)) = [n(N + N(J))/03B1] + 1 for each J with IJI  L, and

setting B’(N) = maxJ B(N(J)) one sees that if 03C9 (= Re (s)) &#x3E; B’(N), then
for each such J, the exponent of s in the inequality (0(m) defined in (4.15))

is positive. By the compactness of each 06, one concludes that (4.10) holds.
To verify (4.9), one proceeds as follows. Let a, fi denote distinct values in

{1, 2}. For each v and a, if b03B1,v (03C3) = 1/D, then there evidently exists a
unique 03C3’ ~ 03C3 such that b03B2,v(03C3’) = 1 /D and 03C3(i) = a’(1) for i =1= v. Thus,
one can order the 2n possible a

so that each pair 03C3(2k - 1, v) and 6(2k, v) satisfies the properties

Thus, B(X,v(u(2k - 1, v)) = Bp,v(u(2k, v)). Denote this common n - 1

chain by B(k, v).
One can then rearrange the summation in (4.9) by writing it as h + 12

where
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and

where

One can apply (4.10) to each of the terms in 12. Thus, there exists B’(N),
independent of v, Q, i, j, I, e such that 03C9 (= Re (s)) &#x3E; B’(N) implies

where the convergence is uniform on compact subsets of this halfplane. (4.9)
will now follow by showing that for each e &#x3E; 0, Il = 0. By expanding out
the integrand over B(k, v), one sees that for 03C9 &#x3E; B(N)

Now one notes that for any differential monomial DAx, the definitions of
E03C3(2k-1,v), E03C3(2k,v) imply immediately that for any choice of e &#x3E; 0 which

determines B(k, v),

Thus, h - 0. This completes the proof of (4.7).
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One can now finish the

Proof of Theorem 1: For Re (s) &#x3E; B"(N) one has by Lemma 1

This implies that a meromorphic continuation into the halfplane
Re (s)  B’(N) for D’P(s, cp) can be accomplished by using (4.18) to con-
tinue into vertical strips

by induction on i. One obtains that the poles of D’P(s, cp) (and therefore of
DP(s, ~)) must then lie in the set BN, as defined in the Introduction. This
completes the proof of Theorem 1.

Section 5

In this section a more concrete complement to the general point of view in
Sections 2-4 is presented. The aim is to characterize the largest pole of
DP(s, cp) when P is a real polynomial which satisfies the (+) condition
(cf. section 1) as well as (5.9). As a result the notation from section 1 is used
here without explicit reference. We consider first an example analyzed in
[3, pg. 28].

Let P(z1, z2) = Z2 + zi + zizi. Then R(x1, x2) = x41x32/(x21 + x32 + x41x22).
Let Y denote C2(XI, x2). One can obtain arithmetic progressions contain-

ing the candidates for the poles of each la (s, ~), 6 a choice of sign function
on {1, 2}, by constructing a proper birational map 03C0: X ~ Y with the

property that x41x32 o 03C0 and (x; + x32 + x41x22) o 03C0 are locally in normal cross-
ing form on X = 03C0-1({x21 + x2 + x41x22 = 0} ~ {x41x32 = 0}).

In general, if {pi}T1 are points in X for which there are coordinates (ul, vl )
centered at Pi and defined in a neighborhood ui such that X c U;= 1 ui then
the arithmetic progressions are obtained as follows.

Let
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and

Ai, Bi, ai, bi E Z, for each i = 1, 2, ... , T. Then, if ~ ~ F0 (cf. section (2)),
the progressions are defined by

If 9 c- 5N, N ~ 0, then this must be modified. If 03A6(x1, x2) = ~(1/x1, 1/x2)
and 03A6 o 03C0(ui, v,) = ueli vfli K, Klw * 0, then the progressions are

That these assertions are true follows from the discussion in [5].
In particular, the largest possible pole of each la(s, ~), ~ E FN, is

described as

For P (z) in the example above and 9 E F0, the progressions are given by
the equations

Note that the largest possible ratio is 03B2~ = 5/12. This agrees with [3].
If 9 is not a unit at infinity, more work is required to determine the
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progressions and thus a closed expression for 03B2~. However, this has essen-
tially been done for the situation in which x = (xl , x2 ), and so that when
one writes R(x) = 1/P(1/x) = xM11 xM22/Q(x1, x2) then Q(x) is analytically
irreducible at (x1, x2) = (0, 0) [7].
As discussed in Remark (5.15), the polynomials P(z) of interest in dio-

phantine problems of an asymptotic nature presumably consist of those for
which the largest pole of DP(s, - ) is at least 1. It is therefore important to
be able to characterize exactly the largest pole. This is done in terms of a
combinatorial object, the Newton Polyhedron r 00 ( P) of P at infinity defined
as follows.

Then rx(P) is the boundary of the convex hull with respect to infinity of the
set

Let M = (m( 1 ), ... , m(n)) be the integral vector defined so that m(j) =
max {ii: ij is the j th component of some index I for which aI ~ 0}. As in
section 4, define

Thus, Q(x) = L¡a¡xM-¡. Evidently, Q also satisfies the ( + )-condition. For
future reference, also define

(5.4) REMARKS:
1) When Q(0) ~ 0, it is simple to show that fi. = maxi {d(i) + 1)/m(i)}.

Thus, we assume in the following that Q(0) = 0.
2) Let 0393 be the Newton polyhedron of Q with respect to the origin. It can

easily be described in terms of 0393~(P). One can construct [12] a smooth
algebraic variety Xr and proper birational transformation 7r: Xr - C"
satisfying the following property. To each cone a appearing in a "small
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partition" of (Rn+)* dual to r (cf. [12, sec. 9] for the notion of small) one
assigns a chart Cn(03B1) so that 03C003B1 =def. 03C0|Cn(03B1) is a monomial. One can cover Xr
by a finite union of charts.

Indeed, each cone a is spanned by n independent covectors al -
(a11, ..., an1), ..., 03B1n = (a1n, ..., ann) (each aji E N u {0}), each of

which is primitive (i.e., gcd, (a1j, ..., anj) = 1 for each j). To a there
corresponds a chart Cn(03B1)(u1, ... , un ) of Xr so that

Q03B1 defines the strict transform of Q in Cn (a). One thus observes that if P
satisfies the (+) condition then each Q03B1 satisfies the (+) condition in the
chart Cn(03B1)(u).

3) Set locj | = 03A3aij for each j. Then each Ç is given by the expression

Moreover, if aIxM-I is a monomial in Q, the corresponding monomial in
Q o 03C003B1 is aIu03B11 · (M-I) ... u03B1n·(M-I)n . Thus, for each j

4) In the chart Cn(x) set

Then the proof of Lemma 1 evidently applies to show that the following
inequality holds for all x in the interior of 03A603B8’(1/a’) for some positive 0’,
03B8’  0 and 1 &#x3E; a’  a, where is the number used in the definition of 039303B8
(cf. Sec. 1):
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where c and each m’i is positive. However, (5.6) need not extend to the
boundary of 03A603B8’(1/a’). In particular, Q may vanish identically over a part of
the boundary of the form 03A603B8’(1/a’) n {xi = 01, for some i.

5) One can estimate the preimage of 03A603B8’ (1/a’) under the map n as follows.
Let a be a cone as in 2). Let A(a) be the matrix

with rows ordered so that det A(a) - 1. Set B(a) = A(03B1)-1. If b’ , ..., b n
are the row vectors of B(03B1), bj = (blj, ... , bnj), then one checks that 03C0-103B1 is
defined by

where this makes sense.

In particular, if x E 03A603B8’(1/a’), then for each k

where the argument vector

Thus, if x = (xj , ... , xn) E 03A603B8’(1/a’), then there exists 03BC(B(03B1), 03B8’) &#x3E; 0

such that if 03C0-103B1(x) is defined then it lies in the (unbounded) sector

03A603BC(B(03B1),03B8’) (00 ) in cn(lL). Moreover, given e &#x3E; 0, there exists 03B8(B(03B1), e) so that
if 03B8’  03B8(B(03B1), e) then larg (x;)) |  0’ for each i implies 03BC(B(03B1), 03B8’)  e.

Since there exist only finitely many cones a in the partition, one can
find 0(e) &#x3E; 0 such that 03B8’  0(e) and larg(xi)l  0’ for each i implies
03BC(B(03B1), 03B8’)  e for any matrix B(a).

6) If one writes for each a

then not only is C(X a positive constant but h03B1 is a real polynomial satisfying
the (+) condition in Cn(03B1). Thus, by (1.7)(i), (4), and (5), it follows that for
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sufficiently small 0’ one has

for all points u in 03A603BC(B(03B1),03B8’)(~) for each a.
7) One notes that an expression for DP(s, -), rather than some tail

D’P(s, -), is given by (2.10), where the chains A, are taken to equal the
chains 039303C3, defined in section 1. One then defines the I03C3(s, - ) using the 039303C3.

8) For a covector a - (a1, ... , an ) set

Then a - x = M(a) is the equation of the support plane for 0393~(P) in the
direction a. Moreover,

is the reciprocal of the value t for which the diagonal y1 = ··· = yn = t
meets the support plane for 0393~(P) in the direction determined by a.
For ç defined in (5.3) define

and

a is a primitive covector in

A little thought allows one to conclude that 03B2~ is the evident candidate for
the leading pole for each I03C3(s, cp) and so, for DP(s, (p). Il

Before stating Theorem 2, a useful lemma is noted. It allows one to reduce
the evaluation of the residue of DP(s, cp) at 03B2~ to exactly one of the currents
I03C3(s, cp) when (5.9) is satisfied.

In the following, let li(s) = Ais + ai, i = 1, ..., n, be linear functions
with integral coefficients, each Ai  0, in the complex variable s. Let

(Xl’ ... , xn ) be complex coordinates in a neighborhood 11/ of 0 E Cn . Set
A to be a compact analytic n-chain in 11/. If 9: [0, 1]n ~ 11/ parameterizes
A, assume 0 E ô0. Assume that ~|{tl=0} maps into a coordinate plane Xj(i) = 0
and that variation (arg (x; o cp)) is at most 27r for each i.

Now let E: R - C be a flat function at 0 with E(o) - 0. Define the
"generalized current"
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where Then one has

LEMMA 3: For any such 03C8, I(s, 03C8) is an entire function in s. That is, I(s, 03C8) is
analytic in some halfplane Re (s) » 0 and admits an analytic continuation
into C with no poles.

Proof. This is a straightforward extension to the case n &#x3E; 1 of the result

which is easily deduced from the classical regularization method of [5] when
n = 1.

We are able to give a fairly simple proof of Theorem 2 for real poly-
nomials P satisfying the (+) condition as well as the following condition.
(5.9) The polynomial Q, defined by the expression (5.2), is a "convenient"
polynomial, in the sense of Kushnirenko, such that Q(0) = 0. Thus, for
each i = 1, ... , n, there is a positive integer n(i) so that x7(i) appears in (5.2)
with a positive coefficients.

REMARK: The basis for this ability is that (5.9) implies the very strong
property that the support of the residue current Pols=Qla(s, -) (cf. (5.10)) is
the point 0 E C" for each Q and any candidate pole o. If (5.9) is not satisfied
then this need not hold and the property stated in (5.11) will fail.
We can now state

THEOREM 2: Assume that the real polynomial P(zl, ... , zn) satisfies the
(+) condition and the polynomial Q, defined by (5.2), satisfies (5.9). Let
~(z1, ..., zn) = zd(1)1 ... zd(n)n. Then 03B2~ (cf. (5.8)) is the largest pole of
DP(s, (p) -

Observe that from this, one has an immediate

COROLLARY: The largest pole of DP(s, 1) is the value 1 /-r where 03C4 is that value
of t at which the diagonal meets r 00 (P) in the sense of (5.7).

Proof of Theorem 2: For each a and any possible pole (J, set
(5.10) Pols=Qla(s, -) = the polar part of the Laurent series for I03C3(s, -) at

The point of assuming (5.9) is that it implies the following
(5.11) For all but one choice function 03C3, one has that Pols=Q I03C3(03C3, ç) = 0.

This can be seen as follows. First, one notes that the support p(03C3, Q) of
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the current Pols=Q I03C3(s, - ) is contained in the locus

Pulling back each I03C3 to Xr one sees that

One has

where each Di is defined by an equation of the form Uj(i) = 0, when

(u1, ... , un ) are the coordinates in Cn (a) with respect to which (5.5) holds.
Moreover, choosing 0’ sufficiently small, one sees from (5.4), Remarks (5)
and (6), that

Now consider a component Di from (5.12). Evidently, there exist an integer
r, 1  r  n, and indices k(1)  k(2)  ...  k(r), so that its image
under n,,, can be described as the locus

in Cn(x). Thus, Q restricted to this n - k(r) dimensional coordinate plane
is identically zero. On the other hand, if r  n, let

Then, for each 1 = 1, ... n - r, there exists n(l) &#x3E; 0 so that xn(l)j(l) appears
in the expression (5.2) for Q. Thus, the polynomial

satisfies the (+)-condition and is a "convenient" polynomial, as well. It can
therefore be identically zero only if r = n. Hence, each divisor Di must blow
down to {0} in Cn(x). So, the image under n,,, of Di n 03A603BC(B(03B1),03B8’) (~) is the

origin.
Now, if 03C3 is not the choice function u+ , defined by
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then for at least one j, 03C3(j) = -. Thus, at least one factor E03C3(j)(1/xJ) is flat
with (limiting) value 0 at xj = 0 when restricted to the chain 03B303C3(j) = 03B3-.

Applying Lemma 3 to the pullback of I03C3(s, -), one concludes that (5.11)
holds for each 03C3 ~ 03C3+.

So, to prove the theorem, it suffices to show

To evaluate Pols=03B2~ I03C3+ (s, ~), return to the original definition of I03C3+. From
(1.10) 

Define

Since I03C3+ (s, ~) = (- 1)n 03A3ni=0 Ji(s, ~), it suffices to understand Pols=03B2~ Ji(s, cp) ,
for each i = 0, 1, ... , n. 

It is clear from Lemma 2 that one also has

This is because the function e(z)/(e(z) - 1) satisfies the conditions in the
lemma along the arc y,.
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Thus,

Indeed, the same conclusion is seen to hold for any possible pole o of any
lu (s, -), by (5.11).
Now, to define Jo (s, cp) as an integral over the chain y+ x ... x y+

makes the residue calculation difficult to complete. Fortunately, this is not
necessary. There is an evident homotopy deforming 03B3+ into [a, oo ). thus, for
Re (s)  0

using the definition of ~.
This can be effectively used to show Pols=03B2~ J0(s, ~) ~ 0 as follows.
For each e &#x3E; 0, set A(e) = TC-I ([8, 1/a]n). By (5.4)(5), one has A(e) n

C"(a) c Rn (a). Moreover, defining

one sees that

Now, a divisor D in 03C0-1({0}) is said to contribute effectively to 03B2~ if the
multiplicity pair (cf. (5.5))

satisfies

Let D1, ..., D, be the divisors contributing effectively to fi.. A priori, one
knows that each of the coefficients of Pols=03B2~ J0(s, 9) is a sum of integrals
concentrated along 

{(strict transform of



117

However, because of (5.4)(6), one can eliminate {strict transform of Q} from
6. Thus,

One now observes that for any a for which 6 n Cn (a) is not empty and
at any point p e 6 m Cn(03B1), one can find coordinates (Y1, ..., Yn) centered
at p and defined in a neighborhood 1r so that

Here the important property to observe is that

Thus, one sees by a partition of unity that there exists a coefficient of

Pols=03B2~ J0(s, q» (in particular the highest order pole term) which equals a
finite sum of integrals, each of which has the form

where K is a compact subset of [0, ~)m, for some m  n - 1, and w is a
differential which is nonnegative and locally integrable over K. Thus, the
value of this coefficient is positive. This completes the proof of the theorem.

(5.15) REMARKS: 
1) Vasileev [13] has also given a geometric characterization of the order of
the pole of DP(s, 9).
2) One can use a Tauberian theorem of Hardy-Littlewood ("Tauberian
theorems concerning power series and Dirichlet series whose coefficients are
positive", cf. collected works of Hardy, vol. 6) to understand the asymptotic
behavior of a certain weighted sum defined as follow. Let P(ZI’ ... , zn ) be
a polynomial with positive integral coefficients so that the polynomial Q,
obtained via (5.2), satisfies (5.9). Define
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Clearly, for Re

The result of Hardy-Littlewood applies to the sequence {ck}. Let J be the
order of the pole Pl.

Set

Then the theorem shows that

asymptotic equivalence),

where A is the coefficient of the term 1 /(s - PI)J in the Laurent series for the
above Dirichlet series at s = Pl. The constant A is an effectively computable
constant using an explicit toroidal resolution and the analysis of the proof
of Theorem (2).
(3) It follows from (2) that if flj  1 then

On the other hand, if Pl --- 1, an application of Perron’s formula [9] shows
that for P as in Theorem 2 but with integral coefficients and for example, a
simple pole at 03B21, one has in the notation of (2), and with deg P = d,

,where C &#x3E; 0. So, from the point of view of investigating when and how
often such a polynomial assumes arbitrarily large integral values, it makes
sense to restrict one’s attention to those whose polyhedra force 03B21  1.

Concluding remarks

Using the functional equations from Section 3, one can also show the exist-
ence of analytic continuations for Dirichlet series with several polynomials
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and in several variables. This in turn should allow one to obtain asymptotic
information on the sizes of the sets

It would be interesting to improve the error estimates in [10] using the
identity (4.18) and information on the degree of the b-function b2(s) but it
is not yet clear how to do this.

It would be interesting to prove Theorem 1 for polynomials P satisfying
only the growth condition

However, it is not yet clear how to do this.
These and other issues we hope to discuss in subsequent work.
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