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Let N  1 be an integer and Xo (N) be the modular curve /Q which corres-
ponds to the modular group 03930(N). We here discuss the group Aut Xo (N)
of automorphisms of Xo (N) ~ C (for curves of genus g0(N)  2). Ogg [23]
determined them for square free integers N. The determination of

Aut X0(N) has applications to study on the rational points on some modu-
lar curves, e.g., [10, 19-21]. Let ro (N) be the normalization of 03930(N)/± 1 in
PGL+2 (Q), and put Bo(N) = 0393*0 (N)/ro (N) ( c Aut X0(N)), which is deter-
mined in [1] §4. The known example such that Aut X0(N) ~ B0(N) is X0(37)
[16] § 5 [22]. The modular curve Xo (37) has the hyperelliptic involution which
sends the cusps to non cuspidal Q-rational points, and Aut X0(37) ~
(Z/2Z)2, B0(37) ~ Z/2Z. Our result is the following.

THEOREM 0.1. For Xo (N) with g0 (N)  2, Aut Xo(N) = B0(N), provided
N ~ 37, 63.

We have not determined Aut Xo (63). The index of B0(63) in Aut Xo (63) is
one or two, see proposition 2.18. The automorphisms of Xo (N) are not
defined over Q, in the general case, and it is not easy to get the minimal
models of Xo (N) over the base Spec (!JK for finite extensions K of Q. By the
facts as above, the proof of the above theorem becomes complicated. In the
first place, using the description of the ring End J0(N) (~Q) of endo-
morphisms of the jacobian variety Jo (N) of X0(N) [18, 29], we show that the
automorphisms of Xo (N) are defined over the composite k(N) of quadratic
fields with discriminant D such that D2|N, except for N = 28, 29, 22 33, 23 33,
see corollary 1.11, remark 1.12. For the sake of the simplicity, we here treat
the cases for N =1= 28, 29, 22 33, 23 33, 37. Using corollary 2.5 [20], we show
that automorphisms of Xo (N) are defined over a subfield F(N) which
contained in k(N) n Q((8’ -3, 5, -7). In the second place, for an
automorphism u of Xo (N), we show that if u(0) or u(~) is a cusp, then u
belongs to Bo (N), see corollary 2.4, where 0 and oo are the Q-rational cusps
cf. § 1. Further we show that if u is defined over Q, then u belongs to Bo (N),



52

see proposition 2.8. Now assume that u(0) and u(oo) are not cusps and that
F(N) ~ Q. Let 1 = l (N) be the least prime number not dividing N, and
D = Dl = (1 + 1)(u(0)) + (Tlu03C3(~)) - (1 + 1)(u(~)) - (Tlu03C3(0)) be the
divisor of Xo (N), where u = a, is the Frobenius element of the rational
prime 1 and TI is the Hecke operator associating to 1. Under the assumption
on u as above, we show that 0 ~ D - 0 (linearly equivalent), and that
w*N (D) ~ D, where WN is the fundamental involution of Xo (N), see lemma
2.7, 2.10. Let SN be the number of the fixed points of wN, which can be easily
described, see (1.16). Then we get the inequality that SN  4(l + 1),
see corollary 2.11. Let pn be the n-th prime number. Then using the esti-
mate pn  1.4 x n log n for n  4 [30] theorem 3, we get 1  19, see
lemma 2.13. In the last place, applying an Ogg’s idea in [22, 23], we get
Aut Xo (N) - B0(N), except for some integers, see lemma 2.14, 2.15. For
the remaining cases, because of the finiteness of the cuspidal subgroup of
J0(N) [13], we can apply lemma 2.16. We apply the other methods to the
cases for N = 50, 75, 125, 175, 108, 117 and 63.
The authors thank L. Murata who informed us the estimate of prime

numbers [30].

NOTATION. For a prime number p, Qurp denotes the maximal unramified
extension of Qp, and W(Fp) is the ring of Witt vectors with coefficients in Fp.
For a finite extension K of Q, Qp of Qurp, OK denotes the ring of integers of
K. For an abelian variety A defined over K, A/OK denotes the Néron model
of A over the base Spec (9K. For a commutative ring R, 03BCn(R) denotes the
group of n-th roots of unity belonging to R.

§1. Preliminaries

Let N  1 be an integer, and Xo (N) be the modular curve /Q which
corresponds to the modular group ro (N). Let X0(N) denote the normaliz-
ation of the projective j-line X0(1) ~ P1Z in the function field of Xo (N). For
a positive divisor M of N prime to N/M, denotes the canonical involution
of X0(N) which is defined by (E, A) H (E/AM’ (EM + A)/AM) (at the
generic fibre), where A is a cyclic subgroup of order N and AM is the
cyclic subgroup of A of order M. Let b be the complex upper half plane
{z ~ C| Im (z) &#x3E; 0}. Under the canonical identification of Xo (N) (8) C with
03930(N)/b ~ {i ~, Q}, wM is represented by a matrix (Ma Nc b Md) for integers a, b,
c and d with M2 ad - Nbc = M. For a fixed rational prime p, and a
subscheme Y of q’o(N), yh denotes the open subscheme of Y obtained by
excluding the supersingular points on Y Q Fp. For a prime divisor p with
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pr liN, the special fibre X0(N) (D Fp has r + 1 irreducible components
Eo, El , ... , Er . We choose Z’ - Eo (resp. Z = Er) so that Z’h (resp. Zh )
is the coarse moduli space /Fp of the isomorphism classes of the generalized
elliptic curves E with a cyclic subgroup A isomorphic to Z/NZ (resp. 03BCN),
locally for the étale topology [4]V, VI. then Z’h and Z’ are smooth over
spec Fp. For a prime number p with p 1 IN, Xo (N) Q Fp is reduced, and Z and
Z’ intersect transversally at the supersingular points on q-o(N) Q Fp. For a
supersingular points x on q-o(N) ~ Fp with p 11 N, let y be the image of x
under the natural morphism of fi(N) - X0(N/p): (E, A) ~ (E, AM/p),
and (F, B) be an object associating to y. Then the completion of the
local ring OX0(N),x Q W (if p) along the section x is isomorphic to

W(Fp)[[X, Y]]/(XY - pm ) for m = §)Aut (F, B)| [4]VI (6.9). Let 0 = (?)
and oc 0 denote the Q-rational cusps of q-o (N) which are represented by
(G. x 7L/ NlL, 71/ N71) and (Gm, J1N)’ respectively.

(1.1) Let S2(03930(N)) be the C-vector space of holomorphic cusp forms of
weight 2 belonging to ro (N). Then S2(03930(N)) is spanned by the eigen forms
of the Hecke ring Q[Tm](m,N) = 1 e.g., [1] [33] Chap. 3 (3.5). Let f = 03A3 anqn,
al = 1, be a normalized new form belonging to S2(03930(N)) cf. [1]. Put

Kf = Q({an}n1), which is a totally real algebraic number field of finite
degree, see loc.cit.. For each isomorphism a of Kf into C, put uf = E a7q n
which is also a normalized new form belonging to S2(03930(N)) [33] Chap. 7
(7.9). For a positive divisor d of N/(level of f), put f|ed = 1 anqdn, which
belongs to S2 (ro (N)) and has the eigen values an of Tn for integers n prime
to N [1]. The set {f|ed}f,d becomes a basis of S2(03930(N)), where f runs over the
set of all the normalized new forms belonging to S2(03930(N)), and d are the
positive divisors of N/(level of f). To the set {03C3f}, 03C3 E Isom (Kf, C), of the
normalized new forms, there corresponds a factor Jjjj (/Q) of the jacobian
variety J0(N) of X0(N) [35] §4. Let m(f) (=m(03C3f)) be the number of the
positive divisors of N/(level of f). Then Jo (N) is isogenous over Q to the
product of the abelian varieties

where Qf runs over the set of the normalized new forms belonging to
S2(03930(N)). For each normalized new formf belonging to S2(03930(N)), let V (f)
be the C-vector space spanned by {f|ed}, d|N/(level of f). Then S2(0393o(N))
is decomposed into the direct sum ~f V(f) of the eigen spaces V(f) of the
Hecke ring Q[Tm](m,N)=1, where f runs over the set of the normalized new
forms belonging to S2(03930(N)).
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Let Q(-D) be an imaginary quadratic field with discriminant D. Let À
be a Hecke character of Q(-D) with conductor r which satisfies the
following conditions:

where Put

where 2I =1= (0) runs over the set of all the integral ideals prime to r. Then
f is an eigen form of Q[Tm](m,DN(r))=1 belonging to S2(03930(DN(r))) [34]. We call
such a form f a form with complex multiplication. The form, f ’is a normalized
new form if and only if 03BB is a primitive character. In such a case, r = r and
D divides N(r), where r is the complex conjugate of r loc.cit.. The C-vector
space S2(03930(N)) is identified with H0(X0(N) (D C, QI) by f ~ f(z) dz. Let
Vc = VC(N) (resp. VH = VH(N)) be the subspace of H0 (X0(N), n’) -
H0(J0(N), 03A91) such that Vc (8) C (resp. VH Q C) is spanned by the eigen
forms with complex multiplication (resp. without complex multiplication).
Let Tc and TH be the subspaces of the tangent space of J0(N) at the unit
section which are associated with Vc and VH, respectively. Let Jc = Jc(N)
and JH = JH (N) denote the abelian subvarieties /Q of J0(N) whose tangent
spaces are Tc and TH, respectively. Then Jo (N) is isogeneous over Q to the
product Jc x JH, and End J0(N) ~ Q = End Jc (8) Q x End JH (8) Q
[28] (4.4) (4.5). Let k(N) be. the composite of the quadratic fzelds with discrimi-
nant D whose square divides N. For a modular form f of weight 2 and for
g . (a b d) E GLI (Q), put

For a normalized new form f = 03A3 anqn and for a Dirichlet character ~, f(~)
denotes the new form with eigen values anx(n) of Tn for integers n prime to
(level of f) x (conductor of x).

PROPOSITION 1.3. Any endomorphism of JH = JH(N) is defined over K(N).

Proof Let k’ be the smallest algebraic number field over which all endomor-
phisms of JH are defined. Then k’ is a composite of quadratic fields, and any
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rational prime p with p JIN is unramified in k’, see [27] lemma 1, [32] lemma
(1.2), [3]VI, see also [ 18, 29]. There remains to discuss the 2-primary part of
N. Let f = S anqn and g = Gr bnqn be normalized new forms belonging to
VH. If Hom (J{03C3f}, J{03C3g)) ~ {0}, then there exists a primitive Dirichlet

character x of degree one or two such that an~(n) = b(n)’ for an iso-
morphism r of Kg into C and for all integers n prime to N, see [28] (4.4) (4.5).
If X = id., then f = rg. The ring End Jjjj (8) Q is spanned by the twist-
ing operators as a (left) Kf-vector space [18, 29]. If moreover

End Jo (N) ~ Q ~ Kf, then all endomorphisms of J{03C3f} are defined over Q.
In the other case, let q = tl, be the twisting operator associated with a
primitive Dirichlet character 03BB of order two, then an = an03BB(n) for an iso-
morphism o of Kf into C and for all integers n, see [ 18] remark (2.19). Then

f(03BB) = (lf is a normalized new form. If ~ ~ id., then sg = f(~) belongs to
S2(03930(N)). Therefore it is enough to show that for a primitive Dirichlet
character X of order 2, if f(~) belongs to S2(03930(N)), then the square of the
conductor of X divides N. We may assume that ord2 (level of f)  ord2 (level
of f(~)). Let r = 2m t be the conductor of X for an odd integer t, and put
~ = Zi X2 for the primitive Dirichlet characters XI and X2 with conductors 2m
and t, respectively. As noted as above, t2 divides N, so that (f(~))(~2) = f(~1)
belongs to S2(03930(N)). Ifm =1= 0, then 4|N and the second Fouriere coefficient

of f(~1) is zero [1]. Further we have the following relation:

Put N = 2s M for an odd integer M. If 2m  s, then

But using the above relation (*), we can see that the equality (**) can not
be sattisfied. D

LEMMA 1.4. If g0(N) &#x3E; 1 + 2gc(N), then all the automorphisms of Xo(N)
are defined over k(N).

Proof. Let u be an automorphism of Xo(N), and put v = u,7u-1 for
1 =1= a E Gal (Q/k(N)). Then the automorphism of Jo(N) induced by v acts
trivially on JH by proposition 1.3. Assume that v ~ id. Then gC  1. Let
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d ( 2) be the degree of v and Y = X0(N)/v&#x3E; be the quotient of genus gY.
Then gy a g. and g0(N) = gH + gc. If g" = 0, then g0(N) = gc 
1 + 2gc. If gH  1, then the Riemann-Hurwitz formula leads the inequality
that go(N) - 1  d(gY - 1) ( 1(gH - 1)). Then g0(N)  2gC + 1. D

Let D be the discriminant of an imaginary quadratic field, and r =1= (0) be
an integral ideal of Q(-D) with r = r. Let v(D, r) denote the number of
the primitive Hecke characters of Q(-D) with conductor r which satisfies
the condition (1.2). For an integer n  1, 03C8(n) denotes the number of the
positive divisors of n. We know the following.

LEMMA 1.5 [34]. gC = LD EL v(D, r)4«N/DN(r», where D runs over the set of
the discriminants of imaginary quadratic fields whose squares divide N, and
r ~ (0) are the integral ideals of Q(-D) such that DIN(r), DN(r)IN and
r = r.

LEMMA 1.6. If g0(N)  2, then g0(N) &#x3E; 1 + 2gC, provide N =1= 26, 2 7, 28,
29, 34, 2 · 33, 2 · 32, 23 · 33.

Proof For the sake of simplicity, we here denote g = go(N). For a rational
prime p, put rp = ordp N. The genus formula of Xo(N) is well known:

where

if 41N

otherwise

if 9|N

otherwise.

We estimate gC. Let D be the discriminant of the imaginary quadratic field
k = Q(-D), and (9 = (9k be the ring of integers of k. For an integer
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n  1 and a rational prime p, put t/Jp(n) = 1 + ordp(n). Put (-D) = ~p03BCp
for primitive characters ;(p and yp with conductors pr and D/pr for
r = ordpD, respectively. For an integral ideal m ~ (0) of k = Q(-D),
let vp(D, m) denote the number of the primitive characters Âp of

(W ~ Zp)  which satisfy the following condition: for a E Zp ,

Let h(-D) be the class number of k = Q(-D), and r ~ {0} be an
integral ideal of k with r = r. Let Np, Dp and rp be the p-primary parts of
N, D and r. Put

Put p(D, p) = Lrrp vp (D, p)03C8p(N/DN(r)), where rp =1= (0) runs over the set of
the ideals of (9,, such that rp = rp, Dp|rp and Dr, IN. Then the formula in
lemma 1.5. gives the following inequality:

For a positive integer m, 9(m) denotes the Euler’s number of m. By the well
known formula of the class number of 0(.,/ --D): h(-D) = 1/[2 - (-D 2)]
03A30aD/2 ( - D/a) for D ~ 4,3 e.g., [2], we get the following inequality: for
D ~ 4 nor 3,

otherwise.

For a prime divisor p of N with p~N, 03BC(D, p) = 2. If 811D and ord2N  7,
then p(D, 2) = 0, see (1.7). For an odd prime divisor p of N with p21N,
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put

otherwise.

otherwise.

Further let p(p) be the maximal value of 03BC’(D, p) for discriminants D whose
squares divide N. Then by (1.9),

Then the inequalities (1.8) and (1.9) gives the following estimates of gC:

One can easily calculate p(D, p): Put r = ordpN for a fixed rational

prime p.

Cast p ~ 2:
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Case p = 2:

Using the genus formula of Xo (N) and the estimate (1.10) of gc, one can see
that g &#x3E; 1 + 2gc, except for some integers N. For the remaining cases, a
direct calculation makes complete this lemma. D

COROLLARY 1.11. Any automorphism of Xo (N) (g0(N)  2) is defined over
the field k(N) provided N ~ 28, 29 , 22 33, 23 33.

Proof. Lemma 1.3, 1.4 and 1.6 give this lemma, except for N = 26, 27, 34,
2 ’ 3B 23 32. The ring End JC ~ Q is determined by the associated Hecke
characters [3, 34]. Considering the condition (1.2), we get the result also for
the remaining cases. D

REMARK 1.12. We here add the results on the fields of definition of endo-

morphisms of JC for N = 2g , 29, 22 33, 23 33.
(1) N = 28, 29: Let x be a character of the ideal group of Q(-1) of order
4 which satisfies the following conditions:

(i) ~((03B1)) = 1 for a E Q(-1) with a ~ 1 mod" 8.

(ii) ~((03B1)) = 1 for a e Z prime to 2.

Let JC(-1) and JC(-2) be the abelian subvarieties /0 of Jc whose tangent
spaces 0 C correspond to the subspaces spanned by the eigen forms induced
by the Hecke characters of Q(-1) and Q(-2), respectively. Let k’(N)
be the class field of Q(-1) associated with ker (X). Then any endomorph-
isms of JC(-1) is defined over k’(N) and End JC ~ Q ~ End JC(-1) (D Q x
End JC(-2) (D 0. The same argument as in lemma 1.4 shows that any auto-
morphism of Xo (N) is defined over k’(N). Note that 03BE16 = exp (203C0-1/16)
does not belong to k’(N).
(2) N = 22 33, 23 33: Let ~ ~ 1 be a character of the ideal group of Q(-3)
which satisfies the following conditions:

(i) ~((03B1)) = 1 for a ~ Q(-3)  with a ~ 1 mod  6.

(ii) ~((03B1)) = 1 for a E Z prime to 6.
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Then any endomorphism of Jc is defined over the class field k’(N) associated
with ker (x). Note that (9 and 03B68 do not belong to k(N).

Let p  5 be a prime number and K be a finite extension of Q;’ of degree
eK. For an elliptic curve E defined over K, and an integer m  3 prime to
p, let Qm be the representation of GK = Gal (K/K) induced by the Galois
action of Gx on the m-torsion points Em(K). Then Qm(GK) becomes a sub-
group of 71/47L or 7L/671, and ker (Qm) is independent of the integer m a 3
prime to p. Let K’ be the extension of K associated with ker (Qm), and
e be the degree of the extension K’/K. Let n = nK be a prime element
of the ring R = (9K of integers of K. Then we know that (i) If the modular
invariant j(E) ~ 0, 1728 mod n, then e = 1 or 2, (ii) If e = 4, then
j(E) ~ 1728 mod n, (iii) If e = 3 or 6, then j(E) ~ 0 mod n e.g., [31] §5
(5.6) [36] p. 46. Now assume that E has a cyclic subgroup A(/K) of order N
for an integer N divisible by p2. Put e’ = e if e is odd, and e’ = e/2 if e is
even.

LEMMA 1.13 ([20] § lemma (2.2), (2.3)). If exé  p - 1, then the pair (E, A)
defines a R-valued section of the smooth part of f!£o(N).

COROLLARY 1.14. Let x: Spec R ~ f!£o(N) be a section of an integer N
divisible by p2. If eK = 1 and p  5, then x is a section of the smooth
part of X0(N). If eK = 2 and p  7, then x is a section of the smooth part of
X0 (N).

REMARK 1.15. Under the notation as above, we here consider the cases for
eK = 2 and p = 5, 7. Put N = p’m for coprime integers p’ and m (r  2).
Under one of the following conditions (i), (ii) on m, e’ = 1 for p = 5, and
e’  2 for p = 7.

p = 5: Conditions on m.

(i) 4, 6 or 9 divides m.
(ii) 2 or a rational prime q with q = 2 mod 3 divides m, and a

rational prime q’ with q’ - 3 mod 4 divides m.

p = 7: (i) 2 or 9 divides m.

(ii) A rational prime q with q =- 2 mod 3 divides m.

(1.16) The fixed points of wN.
Let WN be the fundamental involution of Xo(N): (E, A) H (E/A, EN/A).

Put N = N¡ N2 for the square free integer Nz . Let kN be the class field of
Q(-N2) which is associated with the order of Q(.J - N2) with conductor
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N,. Put hN = IkN: Q(-N2)|. Then as well known (see e.g. [12] Chapter 8
theorem 7)

where (9 is the ring of integers of Q(-N2) and (9N, = Z + NI (9. Let SN be
the number of the fixed points of wN. Then

Let p  13 (or p = 17, 19, 23 or 29 etc.) be a rational prime and M be an
integer prime to p. Then supersingular points on X0(1) Q Fp are all

Fp-rational and the supersingular points on io (M) ~ Fp, hence those on
q’o(pM) Q Fp are all Fp2-rational [3]V theorem 4.17, [36] table 6 p. 142-144.
Let m(M, p) = go (pM) - 2go(M) + 1. For a prime divisor q of M, put
rq = ordq M. Put

where ç is the Euler’s function. The number of the Fp2-rational cusps on
!!£o(M) ~ Fp = m(2)m(3) 03A0q|M 2. Therefore

§ 2. Automorphisms of Xo (N)

In this section, we discuss the automorphisms of the modular curves Xo (N)
of genus g0(N)  2. For an automorphism u of X0(N), u denotes also the
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induced automorphism of the jacobian variety J0(N). Let k(N) be the
composite of the quadratic fields with discriminants D whose squares divide
N. For the integers N = 2’, 2’, 23 33 and 23 33, let k’(N) be the fields defined
in remark 1.12.

(2.1) (see [1] ] § 4). Let A~ = Aoo(N) denote the subgroup of Aut Xo (N)
consisting of the automorphisms which fix the cusp ~ = (ô), and put
Boo = A~ n Bo(N). Then Aoo is a cyclic group. Let 0[[q]] be the completion
of the local ring OX0(N),~ with the canonical local parameter q see [4] VII. For
y E Aoo, y * (q) = (mq + c2q2 + ··· for a primitive m-th root 03B6m of unity
and ci E 0. Then we see easily that the field of definition of y is Q(03B6m). Put
r2 = min {3, [ 2 ord2 N]}, r3 = {1, [ 2 ord3 N]} and m = 2r23r3. Then Aoo is
generated by (Ó l;m ) mod F(N).

LEMMA 2.2. Under the notation as above, suppose that an involution u belongs
to A,,,. Then u is defined over 0 and it is not the hyperelliptic involution.
Moreover 4|N.

Proof. Let Q[[q]] be the completion of the local ring at the cusp ~ with the
canonical local parameter q [3] VII. Put u * (q) = c1q + c2q2 + ··· for
cl E Q. Then one sees easily that CI = - 1 and that u is defined over Q. The
hyperelliptic modular curves of type X0(N) are all known [22] theorem 2. In
all cases, the hyperelliptic involution of Xo (N) do not fix the cusp oo . Using
the congruence relation [3] [33] Chapter 7 (7.4), one sees that u commutes
with the Hecke operators Tl for prime numbers 1 prime to N. For a nor-
malized new form g belonging to S2(03930(N)), let V (g) be the subspace spanned
by gled for positive divisors d of N/(level of g) cf. (1.1). Then S2(03930(N)) =
~ V (g) as Q[Tl](l, N)=1 -modules, where g runs over the set of the normalized
new forms belonging to S2(03930(N)). If N/(level of g) is odd, then u*|V(g)
becomes a triangular matrix with the eigen values - 1 for a choice of the
basis of V (g). Hence u * |V(g) = -1V(g). If N is odd, then u * = - 1 on
S2(03930(N)). Then u = - 1 on Jo (N), and it is a contradiction. Now consider
the case 2 JIN. Let K(/Q) be the abelian subvariety of Jo (N) whose tangent
space Tano K 0 C corresponds to the subspace ~’V(g) for the normalized
new forms g with even level. Then as noted as above, u acts on K under - 1.
Let Plo(N) -+ Spec W(F2) be the minimal model of Xo (N) (8) Qur2, and 1 be
the dual graph of the special fibre Yo (N) Q F2. Let Z and Z’ be the
irreducible components of Plo(N) ~ F2 which contains the cusps oc Q F2
and 0 Q F2, respectively cf. § 1. Since the genus go(N) a 2, the self-
intersection numbers of Z and Z’ are  - 3, and those of the other irre-
ducible components are all - 2. Denote also by u the induced automorphism
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of the minimal model :io(N). Note that u is defined over Q. Then u
send Z u Z’ to itself. By the condition u(~) = oo , u fixes Z and ZI. Let

P" be the kernel of the degree map Pic 0(N) ~ Z, po be the connected
component of the unit section of P03C4, and E be the Zariski closure of the
unit section of the generic fibre P" (8) Qur2. Then the Néron model

J0(N)/W(F2) = P03C4/E and P° n E = {0}, see [25] §8 (8.1), [4] VI. Let 1 be
an odd prime number and Tl, Vl = Tl Q Ql be the Tate modules. Then
Vl(H1(03A3, Z) Q GJ = Vl(P0) = Vl(K)I, where I is the inertia subgroup
Gal (Q2/Qur2) [32] lemma 1. Then one sees that u acts under - 1 on

Hl (X, Z). Since u fixes Z and Z’, considering the action of u on the dual
graph 1, one sees that Hl (L, Z) = {0} or Z, i.e., go(N) = 2go(N/2) or
= 2g0(N/2) + 1. By the result [23], it suffices to discuss the case when N/2
is not square free. Then there are at least six cusps on Xo(N/2), since
g0(N/2)  1. Then the Riemann-Hurwitz relation

gives a contradiction. D

COROLLARY 2.3. A~ = Boo.

Proof. Let Q[[q]] be the completion of the local ring at the cusp ~ with the
canonical local parameter q. Put u * (q) = c1q + c2q + ··· for ci ~ Q.
Then c, is a root of unity belonging to the field k(N), or k"(N) for N = 2s,
29 , 22 33 and 23 33 cf. corollary 1.11, remark 1.12. Hence cl E J.L24 (k(N)), see
loc.cit. For the case ord2 N  1, by (2.1) and lemma 2.2, A~ = B~. For the
case ord2 N  2, by (2.1), Aoo = B~. ~

COROLLARY 2.4. Let C be a k(N) or k"(N)-rational cusp, and u be an
automorphism of X0(N) such that u(C) is a cusp. Then u belongs to the
subgroup B0(N).

Proof. It suffices to note that B0(N) acts transitively on the set of the k(N)
or k’(N)-rational cusps on Xo (N). D

Let "F(N)" be the subfield of k(N) n Q(03B68, -3, 5, -7) which
contains k(N) n Q(03B68, -3) and satisfies the following conditions
for p = 5 and 7: the rational prime p = 5 (resp. p = 7) is unramified
in F(N) if one of the conditions (i), (ii) in (1.15) for p is satisfied.

LEMMA 2.5. If an automorphism u of X0(N) is defined over k(N), then u is
defined over F(N).
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Proof. It is enough to show that for each rational prime p  5 with p21N,
if p is unramified in F (N), then u is defined over Qurp, see corollary 1.11,
remark 1.12. First note that the k(N)-rational cusps on X0(N) (8) Z[1/6] are
the sections of the smooth part X0(N)smooth (D Z[1/6] see lemma 1.13,
corollary 1.14, remark 1.15, [4]. Let p be a rational prime which is unramified
in F(N). Then we know that any k(N)-rational point on Xo (N) defines a
(9k(N) O 71p-section of PIo(N)smooth, see loc.cit. For 1 =1= (J E Gal (Op/Q;’), let
x be the section of J0(N) defined by

Since cl((0) - (co)) is of finite order [13], x is of finite order and is defined
over k(N) Qx Qurp. Let p be a prime ideal of (9 = (9k(N) lying over the rational
prime p, and (Pp be the completion along p. As noted as above, u(0),
u(oo), u03C3(0) and u03C3(~) define the (9,-sections of X0(N)smooth such that

U(O) OO K(p) = u°(0) OO x(p) and u(oo) OO 03BA(p) = u03C3(~) ~ 03BA(p). Then by
the universal property of the Néron model, we see that x Qx 03BA(p) = 0 ( = the
unit section). Further by the conditions that x is of finite order and that
p &#x3E; ordp (p) + 1, we see that x is the unit section [26] §3 (3.3.2), [15]
proposition 1.1. Thus we get the linearly equivalent relation: (u(0)) +
(u03C3(~)) ~ (u(oo)) + (u03C3(0)). Now suppose that ua =1= u.

Case u(~) = u03C3 (~): Put v = u7 u - (~ id.). Then v fixes the cusps 0 and oo,
so that v belongs to Bo(N), corollary 2.3. But any non trivial automorphism
belonging to Bo(N) does not fix both of 0 and oo [1] §4.

Case u(~) ~ u(J ( (0): By the above linear equivalence, there exists the
hyperelliptic involution y of Xo(N) with yu(0) = u°(0). Then by the con-
dition on p as above and by the classification of hyperelliptic modular curves
of type Xo(N) [23] theorem 2, there remains the case for N = 50. But
k(50) = F(50) = Q(5), corollary 1.11. D

Let 1 be a prime number prime to N, and Tl be the Hecke operator associated
with 1.

LEMMA 2.6. Let u be an automorphism of Xo(N) defined over a composite of
quadratic fields, and ul be a Frobenius element of the rational prime 1. Then
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Proof. On J0(N) ~ F,, we have the congruence relation [3, 33] Chapter 7
(7.4):

where F is the Frobenius map and V is the Verschiebung. Put u(l) = u" on
Jo(N) Qx Fl. Then the assumption on u as above shows that uF = Fu(l) and
uV = Vu(l). n

Let -q (resp. D0, resp. Dl) be the group of divisors of Xo(N) (resp. of
degree 0, resp. which are linearly equivalent to 0). For a prime number 1
prime to N, and for an automorphism u of Xo(N), T, and u, u03C3l act on D, D0
and Dl. Put a, = uT, - Tlu03C3l on Jo(N). Then by lemma 2.6, a, = 0

on Jo (N) ~ C = D0/Dl. Put Dl = 03B1l((0) - (~)) (= (1 + 1)(u(0)) +
(Tlu03C3l(~)) - (1 + 1)(u(oo)) - (Tlu03C3l(0))). Then Dl ~ 0, linearly equival-
ent to the zero divisor.

LEMMA 2.7. Under the notation as above, let u be an automorphism of Xo(N)
defined over the field F(N). Then if u(0) or u(~) is not a cusp, then D, =1= 0.

Proof. If Dl = 0, then (1 + 1)(u(0)) = (Tlu03C3l(0)) and (1 + 1)(u(~)) =
(Tlu03C3l(~)). Suppose that Dl = 0 and that u(0) is not a cusp. Let z e .5
{z E C|Im (z) &#x3E; 01 be the point which corresponds to u03C3l(0) under the
canonical identification of Xo(N) (8) C with 03930(N)Bb ~ {i ~, Q}. Then

The corresponding points on Xo (N) 0 C to (lz) and (z + i/l ) are rep-
resented by elliptic curves E = C/Z + Zlz and C/Z + Z(z + i/l) with
level structures, respectively. Then by the assumption D, = 0, E ~
C/Z + Z(z + i/l) for the integers i, 0  i  1 - 1. Consider the following
homomorphisms f with kernel Ci :

Then Ci = Z((ill) + (1/12)lz) mod L = Z + Zlz are cyclic subgroups of
order l2, and (Ci)l ( = ker (1 : Ci ~ Ci)) = (1/l)Zlz mod L. This is a con-
tradiction. (Because, there are at most two cyclic subgroups Ai of order l’
with E/Ai ~ E. If 1 = 2 and there are such subgroups Ai (i = 1, 2), then
2A1 ~ 2A2. n
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PROPOSITION 2.8. Let u be an automorphism of Xo(N) defined over Q. Then
u belongs to the subgroup Bo(N), provided N =1= 37.

Proof. By the results on the rational points on Xo(N) [10, 15, 17], we know
that u(0) is a cusp, provided N ~ 37, 43, 67, 163. The rest of the proof owes
to corollary 2.4 and [23] Satz 1. 0

The following result is immediate from corollary 1.11, remark 1.12 and
lemma 2.5.

Now consider the case F(N) ~ Q. In this case N are divisible by the square
of 2, 3, 5 or 7, see lemma 2.5. Let u be an automorphism of Xo (N) which is
not defined over Q. If u(O) or u(~) is a cusp, then u belongs to the subgroup
Bo(N), see corollary 2.4. So we assume that u(O) and u(~) are not cusps. Let
1 be a prime number prime to N, a = a, be a Frobenius element of the
rational prime l, and Dj = (1 + 1)(u(0)) + (Tlu03C3 (~)) - (1 + 1)(u(~)) -
(Tlu03C3(0)) (- 0) be the divisor of Xo (N) defined as above, see lemma 2.7, for
N ~ 2g , 29, 22 33, 23 33 cf. corollary 1.11, remark 1.12. Under the assumption
on u as above, Dl ~ 0 by lemma 2.7.

LEMMA 2.10. Under the assumption as above for N ~ 37, 28, 29, 22 33, 23 33,
assumes tha t Dl ~ 0 and l  5. Then wN* (Dl) ~ Dl, and u(0), u(~) are not
the fixed points of wN.

(Note that wN Tl = TjWN on J0(N), since wN is defined over Q, see lemma
2.6.) The assumption Dl ~ 0 shows that (1 + 1)(u(0)) ~ (TlwNu03C3(~))
nor (Tlu03C3(0)), see the proof in lemma 2.7. Suppose that WN * (DI) = Dl. Then
the similar argument as in the proof of lemma 2.7 shows that u(0) and u(~)
are the fixed points of wN, since 1  5. Let p be a prime divisor of N with
p II N or p  11. Then u defines an automorphism of the minimal model
0(N) ~ Spec W(Fp), see lemma 2.5. If p JIN, then u(O) ~ Fp and

u(oo) Q Fp are not the supersingular points (, because g0(N)  2). By our
assumption and corollary 2.9, the automorphism u is not defined over Q,
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and N is divisible by the square of a prime q  7 see lemma 2.5. Therefore
if p  11, then io (N) Q Fp has at least three supersingular points, and the
points u(0) and u(oo) define the sections of different irreducible components
of !Ío(N) (8) Ü=p see corollary 1.14. Hence N is a form 2a 3b 5c 7d for integers
a, b, c, d - 0 or  2. Let S be the set of rational primes which ramify in
F(N). Then we see that S = {2, 3}, {2}, {3}, {5} or {7}, see corollary 1.14,
remark 1.15, lemma 2.5, proposition 2.8. Put N = N21N2 for the square free
integer N2. Let kN be the class field of Q(-N2) associated with the
order with conductor Nl. Then the condition WNU(O) = u(0) gives the
inequality that [F(N): Q]  [k(N): Q(-N2)], which is satisfied only
for N = 26, see (1.16). For N = 26, F(N) = Q(03B68) and kN is the class
field of Q(-1) of degree 4, see loc.cit. Thus u(0) is not a fixed point
of wN . D

COROLLARY 2.11. Under the notation and assumption as in lemma 2.10, let SN
be the number of the fixed points of WN on Xo (N). Then SN  4(l + 1).

Proof. Put D+ = (1 + 1)(u(0)) + (Tlu03C3(~)) and D- = (1 + 1)(u(~)) +
(Tlu03C3(0)) for a Frobenius element 03C3 = 03C3l of the rational prime 1. Let n + , n _
be the numbers of the fixed points of wN belonging to Supp (D+) and
Supp (D _ ), respectively. Then Supp (wN*(D+)) (resp. Supp (wN*(D_)))
contains exactly n+ (resp. n_) fixed points of wN. Consider the rational
function f on Xo (N) whose divisor (f) = DI = D+ - D_ (~ 0, by our
assumption). Put g = wN *(f)/f - 1, which is not a constant function, see
lemma 2.10. For a fixed point x of wN not belonging to Supp (D+) ~
Supp (D_), g(x) = 0. Then 4(l + 1) - (n + + n_)  the degree of

g  SN - (n+ + n_). 0

Now under the assumption that u(0) and u(oo) are not cusps, we estimate
the least prime number 1 not dividing N. Let pn be the n-th prime number.
We know the following estimate of pn for n  4 [30] theorem 3:

Let l(N) be the least prime number not dividing N.

LEMMA 2.13. Under the notation and the assumption as above, l(N)  19.

Proof. We may assume that N ~ 28, 29 , 22 33, 23 33. Put N = Nl N2 for
the square free integer N2 . Let ni (i = 1, 2) be the numbers of the prime
divisors of Ni, and n be the number of the prime divisors of N. We
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will show that n  7, applying lemma 2.10. We know the following (1.16):

As well known, n2  ord2 h(-N2) if N2 ~ 1 mod 4, and n2 -1 
ord2 h( - N2 ) if N2 ~ 1 mod 4 (see e.g., [2]). Then the above formula of SN
gives the estimate that SN  2n for n  7. Then corollary 2.11 and (2.12)
give the following estimate of SN for n  7:

Then by a calculation, we get n  7. 0

Let p be a prime divisor of N with r = ordp N. Put M = M/pr , and let
03C0 = 03C0N,M: X0(N) ~ io (M) be the natural morphism. For a prime number
1 not dividing N, let Dl be the divisor defined in lemma 2.7. For N =1= 28, 29,
22 33, 23 33, ci (D,) = 0 on Jo (N), so that the image 03C0(cl(Dl)) = 0 under the
natural homomorphism n: Jo (N) - J0(M) of jacobian varieties. Let Ej =
(1 + 1)(03C0u(0)) + (Tnu7(oo» - (1 + 1)(03C0u(~)) - (Tl03C0u03C3(0)) be a divisor
of Xo (M ). Then El ~ 0 (for N ~ 2’, 2’, 22 33, 23 33), since

03C0(Tl|J0(N)) = (Tl|Jo (M))03C0. We give a criterion for E, =1= 0.

LEMMA 2.14. Under the notation as above, assume that u(O) and u(oo) are not
cusps. If the following conditions are satisfied, then E, =1= 0: There exists a

prime divisor q of N with t = ordq N such that g0(N/qt)  1 and that q
satisfies the following conditions (i), (ii) and (iii):

which satisfies one of the conditions (i), (ii) for q in lemma

Proof. It suffices to show that under the conditions as above

03C0u(0) ~ 03C0u(~), see the proof of lemma 2.7. Any automorphisms u of
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Xo (N) is defined over the field F (N), see corollary 1.11, lemma 2.5. Let q be
a prime of F(N) lying over the rational prime q which satisfies the above
conditions. Then u defines the automorphism u of the minimal model
 ~ Spec (9, of Xo (N) Q F (N)q , where (9, is the completion of the ring of
integers of F(N) along q. Let Z’ - Eo and Z = Et be the irreducible
components of Pro(N) 0 F q cf. § 1. Then Z ~ Z’ ~ Pro(N/qt) (8) IFq, see

[4] VI, which are smooth over Fq. By our assumption g0(N/qt)  1. Then by
the construction of the minimal model  ~ Xo (N) (8) (!Jq (birational
map), Z and Z’ do not become points on . Denote also by Z and Z’ the
proper transforms of Z and Z’ by the birational map  ~ io (N) ~ (!Jq.
Then u(0) ~ x(q) and u(oo) Q 03BA(q) are sections of (Z u Z’)h (=Z u Z’-
{supersingular points}), see corollary 1.14, remark 1.15 and the conditions
on q as above. As 0 Q x(q) belongs to Z’h and oo Q 03BA(q) belongs to Zh , so
that u(0) ~ x(q) and u(oo) (8) x(q) are the sections of the different irreduc-
ible components c Z u Z’. Denote also by Z and Z’ the images of Z and
Z’ under the natural morphism of X0(N) to X0(M). Then 03C0u(0) (D K(q) and
03C0u(~) O x(q) are the sections of the different irreducible components.
Hence 03C0u(0) ~ 03C0(u(~). D

LEMMA 2.15 (see [22, 23]). Let M &#x3E; 1 be an integer and p be a prime number
not dividing M. Let D = 03A3tni(xi) be a divisor of Xo (M) of degree d = Ltni
with ni  1. Assume that D is defined over a composite of quadratic fields and
that dim W(Xo(M), O(D)) &#x3E; 1. Then

Proof. It is immediate from the upper semicontinuity, see E.G.A. IV (7.7.5)
1. ~

LEMMA 2.16. Let p  3 be a prime number which satisfies one of the following
conditions (i) ordp N  1, (ii) p  11, or (iii) p = 5 or 7 satisfies one of the
conditions (i), (ii) in Remark 1.15. Then for any automorphism u of Xo(N), if
u(O) and u(oo) are not cusps, then u(O) (8) Fp or u(oo) ~ iFp is not a cusp.

Proof. Under the assumption on p as above, u(O) ~ Fp and u(oo) ~ iFp are
the sections of the smooth part Xo(Nymooth, and u is defined over Qurp, see
corollary 1.11, Remark 1.12, 1.15, lemma 2.5. Suppose that u(0) ~ Fp and
u(~) (D Fp are cusps. Let CI and C2 be the cusps on X0(N) such that
CI ~ Fp = u(0) (D Fp and C2 (D Fp = u(~) ~ Fp. Consider the section x
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the Néron model J0(N)/W(Fp) defined by

(Note that under the condition on p as above, Ci are defined over Our). By
the choice of C;, x 0 Fp = 0. The classes u(cl(0) - (~)) = cl((u(0)) -
(u(~))) and cl((C1) - (C2)) are of finite order, see [13] proposition 3.2. Then
by the specialization lemma [26] §3 (3.3.2), [15] lemma 1.1, x is the unit
section. If F(N) = Q and N ~ 37, then u(0) and u(oo) are cusps, see
corollary 2.9. For the case N = 37, see [16] § 5. If u(0) and u(oo) are not
cusps and N =1= 37, then Xo (N) must be hyperelliptic and the hyperelliptic
involution sends 0 to a cusp, see [22] theorem 2. D

Now applying (1.17), lemma 2.13, 2.14, 2.15, 2.16, we can prove main
theorem.

THEOREM 2.17. For the modular curves X0(N) with g0(N)  2, Aut Xo (N) -
B0(N), provided N ~ 37, 63.

Proof It is enough to discuss the case F(N) ~ Q, see remark 1.15, corollary
2.9. Suppose that Aut X0(N) ~ Bo (N). Then there exists an automorphism
u of X0(N) such that u(0) and u(~) are not cusps, see corollary 2.4. At first,
we treat the cases for N =1= 28, 29 , 22 33, 23 33. Let 1 = l(N) be the least prime
number not dividing N, and D = Dl = (1 + 1)(u(0)) + (Tu7(oo» -
(1 + 1)(u(~)) - (1 + 1)(u(~)) - (Tjul (0)) (~ 0) be the divisor of Xo (N)
defined in lemma 2.7 for 03C3 = a,. Then D is defined over F(N) (corollary
1.11, lemma 2.5), 0 ~ D and 1  19 by lemma 2.7, 2.13. We apply lemma
2.14. For 1 = 13, 17 and 19, applying lemma 2.14, 2.15 to p - 2, we see that
1  11. For 1 = 11, applying the above lemmas to p = 2, we see N =
2 · 32 · 5 · 7, 23 · 32 · 5 · 7, 23 · 32 · 5 . 7, 24 . 32 · 5 · 7, 25 · 32 · 5 . 7, 2’ - 3. 5 · 7
or 2’ - 3 - 5 7. Further applying lemma 2.14, 2.15 to p = 3 and 5, we see
N ~ 24 · 32 · 5 · 7, 25 · 32 · 57 · 7, 25 · 3 · 5 - 7. For 1 = 7, the same argument
as above shows that N = 2 · 32 · 5, 22 · 32 · -5,2 3- 32 5, 24 · 3 . 5, 25 · 3 · 5,
2 · 33 · 5, 22 · 33 · 5 or 2 · 32 · 52. For 1=5, N=2’-3-7, 24 · 3 · 11,
24 . 3 . 13, 24 · 32 · 7, 22 · 32 · 11, 2 · 33 · 7, 2 · 32 · 7, 2 · 32 · 11, 2. 32 . 13,
2 ’ 32 ’ 17, 2 ’ 3 2 . 19, 2 ’ 32 ’ 23, 2’ ’ 3, 26. 3, 25 ’ 32 , 25 · 3, 24 ’ 32 , 24 ’ 32 , 
24 - 3, 23 · 32 , 22 3B 22 · 33, 2 - 24 or 2 - 33 . For 1 = 3, N = 26 , 27, 25 · 5,
24 · 5, 24 · 7, 24 · 13 or 2 · 52. For l = 2, N = 34, 32 · 5, 32 · 7, 32 · 7, 32 · 11,
32 - 13, 32 · 17, 3 · 5 2, 53 or 52 . 7. For the remaining cases, we apply lemma
2.16. Choose a prime number p  3 which satisfies one of the conditions
(i), (ii), (iii) in lemma 2.16, and splits in F(N) for N =1= 28, 29, 22 33, 23 33,
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and in k’(N) for N = 28, 29, 22 33, 23 33 (see corollary 1.11, remark 1.12,
lemma 2.5). By a calculation, we see that there is a prime number p  3 as
above such that X0(N)(Fp) consists of the cusps (and the supersingular
points if p~N), provided N ~ 22 · 3B 32 · 7, 32 · 13, 2 - 52 , 3 - 52 , 5’ ’ 7, 53 .
Thus lemma 2.16 gives the result, except for N = 22 · 32, 32 · 7, 32 · 13,
2 . 52, 3-5’and 53 .

In the following, we give the proofs for N = 50, 75, 125, 175, 108 and 117.
Let  = 0(N) ~ Spec Z be the minimal model of Xo (N). For a prime
divisor p of N with p~N, Aut Xo(N) becomes a subgroup of Aut  (8) Fp.
Let Z, Z’ be the irreducible components of 1,(N) Q Fp (p~N), and
Autz El Q Fp be the subgroup of Aut iil ~ -Fp consisting the auto-

morphisms which fix Z (, hence fix Z’). We denote also by Z, Z’ the proper
transforms of Z and Z’ under the quadratic transformation ~ X =
X0(N). For the pairs (N, p) = (50, 2), (75, 3), (175, 7), (63, 7) and (117, 13),
X0(N/p) ~ P1Q. For a pair (N, p) as above, if an automorphism u fixes Z
and has more than three fixed points on Z, then u = id. For N as above and
an automorphism u of Xo (N), u or uwN fixes Z and Z’. Let J = Jo (N) be the
jacobian variety of Xo (N), and u be an automorphism of Xo (N) which fixes
Z for (N, p) as above.

Prooffor N = 50: Autz fi ~ Fp ~ Z/2Z and it is generated by the canoni-
cal involution w25, see below:

Proof for N = 75: The set of the 1F9-rational points on Z (~ X0(25) ~ F3)
consists of the F3 -rational cusps Cl , C2, non cuspidal F3 -rational points C3,
C4, and the supersingular points. Then u acts on the set {C1, C2, C3, C4}.
For 1 ~ 03C3 ~ Gal (Q(5)/Q), u03C3(Ci) = (u(Ci))(3) = u(Ci ), where (u(Ci))(3) is
the image of u (Ç) under the Frobenius map Z - Z. Then u-1 u03C3 has more
than four fixed points on Z, so that u7 = u. Then by lemma 2.5, 2.8, u
belongs to the subgroup B0(75).

Proof for N = 125: Put JI = J, = (w + 1) J and J_ = (w - 1) J, where
w = wl2s . Then J_ is isogenous over 0 to a product of two 0-simple abelian
varieties J2 and J3 with dim J2 = 4, dim J3 = 2, see [5, 36] table 5. The
abelian varieties J, and J3 are simple over C, and they are isogenous with
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each other over Q(5), see [18] [29]. The abelian variety J2 is isogenous over
Q(5) to a product of two abelian varieties, loc.cit. Let V = VJ, Vi = VJl
be the tangent spaces of J and Ji at the unit sections. Suppose that an
automorphism u of X0(125) is not defined over Q.

Claim uw = wu: Put v = wuwu-l. Then v acts trivially on J2, since u acts
on J2 (see above) and w = - 1 on J2. Suppose v ~ id. Let Y be the quotient
X0(125)/v&#x3E; with genus gY, and (2)d be the degree of v. Then gY  4 and
the Riemann-Hurwitz formula yields d = 2 and gy = 4. Thus v acts on
VI Q V2 under - 1, hence v = - 1 on JI + J2. Then v(~ w) is defined over
Q. But the non trivial automorphism of X0(125) defined over Q is w,

proposition 2.8.
The above claim shows that the action of u is compatible with the

decomposition V = Vl Q V2 Q V3, hence with J = JI + J2 + J3. Put
v = u03C3u-1 (~id.) for 1 ~ 03C3 ~ Gal (Q(5)/Q). Let Y be the quotient
X0(125)/v&#x3E; with genus gy, and (2)d be the degree of v. As noted as
above, all endomorphisms of J1 and J3 are defined over Q, so that v acts
trivially on J, + J3. Then the Riemann-Hurwitz formula shows that d = 2
and gy = 4. Then v = - 1 on J2, and v is defined over Q. But w =1= v.

Prooffor N = 175: Let oci, 03B1’i = 03B1(7)i (1  i  8) be the supersingular points
on X0(175) Q F7. Let E (/F7) be an elliptic curve with modular invariant
j(E) = 1728, and A, A’ be the independent cyclic subgroups of order 25
which are fixed by Aut E ~ 71/471. Then (E, A’) ~ (E/A, E25/A), and the
pairs (E, A), (E, A’) represent the supersingular points, say al and al , and
w25(03B11) = al , u({03B11, 03B1’1}) = {03B11, 03B1’1}, see below. Since u and w25 fix the
irreducible components Z and Z’, v = u or w25 fixes 03B11, a and Z. Let T be
the subgroup of Aut Z (~ PGL2) consisting of automorphisms which fix
al , 03B1’1. Then T is the non split torus. If v does not belong to the subgroup
B0(175), then u is not defined over F7, and the order of v is 16 or divisible
by 3, see lemma 2.5, proposition 2.8. In both cases as above, v acts on the
set {03B1i, 03B1’i}2i8. Then v have more than three fixed points on Z. Therefore
v = id., and it contradicts to our assumption.

Proof for N = 108: Any automorphism of Xo(108) is defined over the class
field k’ = k(108)’ of Q( 3), see Remark 1.12. The rational prime 31
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splits in k’, and X(F31) consists of the cusps Cl (1  1 5 18) and non
cuspidal points xi (1  i  18). Let u be an automorphism of X0(108). If
u is defined over Q(-3), applying lemma 2.16 to p = 7, we see that u
belongs to Bo(108). Suppose that u is not defined over Q(-3), and let
1 ~ 6 e Gal (k’/Q(-3)). Applying lemma 2.16 to p = 7, we see that
# {{u(Ci)}i n {Ci}i}  1 and # {{u03C3(Ci)}i n {Ci}i}  1, see corollary 2.4.
Then # {{u(Ci)}i ~ {u03C3(Ci)}i}  16, hence # {{u03C3 u-1 (Ci)}i ~ {Ci}i}  16.
Put y = ue u (~id.). Then there are cusps P, , P’1, P2, P2 such that
03B3(P1) (8) F31 = Pi ~ F31 and 03B3(P2) Q F31 = P’2 ~ F31. Consider the section
x = cl((y(PI)) - (03B3(P2)) - (Pl) + ( P2 )) of the jacobian variety J =
J0(108). Then x is of finite order [ 13] proposition 3.2, and x Q F31 is the unit
section. By the specialization lemma [26] § 3 (3.3.2), [15] lemma 1.1, x is the
unit section, so that 03B3(Pi) are cusps, since X0(108) is not hyperelliptic [22].
Therefore y belongs to B0(108), see corollary 2.4. Let Jc be the abelian
subvariety (/Q) of J with complex multiplication, and JH be the abelian
subvariety (/Q) without complex multiplication. Then dim Jc = 6 and
dim JH = 4 [36] table 5. All endomorphisms of JH are defined over Q(-3)
(proposition 1.3), so that y = id. on JH. Let Y be the quotient Âo(108)/(y)
with genus gy a 4, and (2 )d be the degree of y. The Riemann-Hurwitz
formula shows that (i) d = 2, gy = 4, 5 or (ii) d = 3, gy = 4. Let Jc, (resp.
JC2) be the abelian subvariety (/Q) of JC associated with the eigen forms
of TI (1 x 6) which have same eigen values with the new forms of level 36
and 108 (resp. 27). Then Jc = JC1 + JC2, dim JCI = dim JC2 = 3, and

EndQ(-3) JC ~ Q ~ End JCI (8) Q x End JC2 Q Q, where EndQ(-3) is

the subring consisting of endomorphisms defined over Q(-3).

sign of the eigen
values of (w4, w27)

dimensions of

the factors

The automorphism y acts trivially on J., w4 acts on Jc, under - 1, and w27
acts on JC2 under - 1. Then dim ker (w,,,yw,,,y-1 - 1: J - J)  7 for
m = 4 and 27. Then the Riemann-Hurwitz formula shows that 03B3w4 = w403B3
and YW27 = w2703B3. Put E = (w27 - 1)JC1, which is an elliptic curve (/Q) with
conductor 36, see above. Then y acts on E under + 1. Therefore the second
case (ii) as above does not occur. In the first case, dim (wm y + 1) J  6 for
m = 4, 27 or 108, see the above table. The same argument as above yields
03B3 = wm for m = 4, 27 or 108. But wm do not act trivially on J,, see above,
Thus we get a contradiction.
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For points xl, 1  i  r, let Aut(xl) Z be the subgroup of Aut Z con-
sisting of automorphisms which fix Xi ’s.

Proof for N = 117: Let 03B1i, al = 03B1(13)i (1  i  6) be the supersingular
points on Xo (117) 0 F13. The subgroup B0(117) n Autz (8) F13 acts tran-
sitively on the set {03B1l, 03B1’i}1l6. There are two pairs of the supersingular
points, say {03B11, 03B1’1} and {03B12, oc" 2 l, such that a ’1 = w9(03B11) and 03B1’2 = w9(03B19).
For any u E Aut X0(117) n Autz fi 0 1F13’ there is an automorphism
y E B0(117) such that v = uy fixes Z, a 1 and 03B1’1. Note that any auto-
morphism of Xo(117) is defined over Q(-3) cf. lemma 2.5. The subgroup
T = Aut(03B11,03B1’1) Z is the non split torus, and v belongs to T(F13) - Z/14Z. If
the order of v is divisible by 7, then v2 acts on the set (a; , 03B1’i}2i6, and it has
the other fixed points oci, lL; for an integer i  2. Therefore v2 = id. The

automorphisms w13vw13v and w9vw9v fix Z and al , al , since W13(lLJ = al. If
v ~ id., then T n Aut Xo(117) = v&#x3E;, see above. Therefore v commutes
with wg and w13. For 1 ~ 6 e Gal (Q( 3 )/Q) and m = 9, 13, v03C3 wm =
(vwm)03C3 = wmv03C3. For 03B5, 03B5’ = ±, put J03B5,03B5’ = (W9 + 03B51)(w13 + 03B5’1) J. Then we
have the following table cf. [36] table 5.

The old part Jo1d of J is isogenous to J0(39) x J0(39) [1], so that the

Q-simple factors of Jold have multiplicative reduction at the rational prime
3 and 13 [4], and the ring of endomorphisms of such a factor is generated
by Hecke operators [ 18] [29]. Let yj = (1 0 j/3 1) mod 03930(117), which commutes
with w13. Then the twisting operator il = y 1 - 72 acts on (w13 + 1 ) J =

J++ + J-+ [35] §4, [18, 29]. Since ~(J++) does not have multiplicative
reduction at the rational prime 3 [18, 29], J_ + is isogenous over Q to the
product J+ + x ~(J++). Put J+- = A+- + E+- for Q-rational abelian
subvariety A+- of dimension two and an elliptic curve E+-. Then we see that
q acts on A+- (see above table) and that A+- is isogenous to a product to
two elliptic curves. We here note that any abelian subvariety of J has
multiplicutive reduction at 13 [4] (above table). Now consider the auto-
morphisms u and v. If v = id., the u belongs to B0(117). Suppose v ~ id..

Claim: The action of v on J+ + + J+- is 0-rational: As noted as above, v
acts Q-rationally on J+ + and E+ -, so that v acts on J+ + and E+ - under
+ 1. Denote also by v the involution of X+ = X0(117)/w9&#x3E; (Note that v
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commutes with w9). Let X+ ~ Spec Z be the minimal model of X+, and
/3i = image of {03B1i, 03B1’i) (i = 1, 2) be the F13 -rational supersingular points of
X+ 0 F13. The other supersingular points on X, (D F13 are not defined over
F13. By lemma 2.5, v is defined over Q(-3), so that v (8) F13 is defined over
F13. As v fixes j8i, so that v fixes also 03B22, and does not fix the other
supersingular points. Let 03A3 be the dual graph of the special fibre X, ~ F13.
Then Hl (X, Z) ~ Gm is canonically isogenous to the connected component
of J+/Z (D F13 of the unit section, where J+ is the jacobian variety of X+ [4]
VI, [25] §8 (8.1). Denote also by v the involution of X+ (8) Z13 induced by
v. The action of v on Hl (X, Z) is represented by the matrix

The jacobian variety J+ is canonically isomorphic to (wg + 1) J, since
the double covering X0(117) ~ X+ has ramification points. Then

(v + 1)(w9 + 1) J is of dimension three. As noted as above, v acts on J++,
A+ - and E+-, and it acts under + 1 on J++ and E+ - . If v = -1 on J++,
then v = id. on J+ - = A+ _ + E+- (see above representation). Then v
acts Q-rationally on (w9 + 1) J = J++ + J+-. Now consider the case
v = id. on J++. If v acts trivially on E+ -, then v acts on A+- under - 1,
and its action is Q-rational. Now suppose that v = - 1 on E+-. Then
(v + 1)A+- is an elliptic curve. The involution vwl3 acts trivially on
J++ + E+ - , and (VWI3 + 1)A+- is an elliptic curve. Then the Riemann-
Hurwitz formula gives a contradiction.
The above claim shows that v acts Q-rationally on X+ = X0(117)/w9&#x3E;.

Let Ci, W9(Ci) (1  i  4) be the cusps on X0(117), and Di = image of
{Ci, w9(Ci)} be the (Q-rational) cusps on X+. As X+ (F5) consists of the
cusps Di (D F, cf. [4] VI 3.2, so that v sends the set {Di ~ F5}i to itself. Then
v sends the set {Ci 0 F5 1 to itself. Therefore by the lemma 2.16, we see that
v, hence u also, belongs to B0(117). n

We add a result on Aut Xo (63) below. It seems that Aut Xo (63) will be
determined by using the defining equation of Xo (63) with an explicit rep-
resentation of Bo (63).



76

PROPOSITION 2.18. The index of B0(63) in Aut Xo (63) is one or two. If
Aut XO(63) * Bo(63), then there exists an automorphism u such that
u2 = w9, w7u = w7u. The representation of Aut Xo(63) on the tangent space
of Jo(63) is as follows:

Proof. The modular curve Z ~ X0(9) ~ F7 is defined by the equation

with w9* (t) = 3/t [6] IV § 2. The cusps are defined by C~ : t = 0, Co :
t = oo, C1: t = 1, C2: t = 3. Let 03B3~ be the automorphism of Xo(63)
represented by the matrix (6 1/3 1) (or (o -1/3 1)). Then 03B3~*(t) = t/(t + 4),
since 03B3~(C~) = C~, 03B3~(C0) = C1 and 03B3~(C1) = C2. Let 03B1i, 03B1’i = lLF)bethe
supersingular points on Z defined by al : t = 2J=T, 03B12 = 03B3~(03B11) and
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03B13 = y 00 (03B12). Then W9 fixes al and and exchanges oci with oc" for i = 2, 3.
On 1 (8) F7 = X0(63) ~ F7, W7 exchanges oci with ag for i = 1, 2, 3. The

automorphism groups of the objects associating to the points oci, ag are all
{±1}, so that 1 (8) Z7 --+ Spec Z7 is the minimal model of Xo (63) Q Q7,
see [4] VI §6. For any u E Aut Xo (63) n Aut Z, there exists an element
y E B0(63) such that v = yu fixes Z, Z’, al and 03B1’1. The subgroup
T = Aut(03B11,03B1’1) Z is the non split torus, and W9 belongs to T(F7) ~ Z/8Z.
Note that for any automorphisms g of Xo (63), g Q F7 is defined over F7, see
lemma 2.5. The automorphism v acts on the set {03B12, OC’2, OC3, 03B1’3}, and it has
no fixed point on this set if v ~ id. Therefore the order of v divides 4. If v
is of order four, then for w = v or v-1, w * (t) = (2t + 4)/( - t + 2),
w(03B12) = lL3, W(lL3) = a2 and v2 - w9 . Let 03A3 be the dual graph of the special
fibre 1 (D F7, and e2i-1, e2i (1  i  3) be the paths which are associated
with the points ai and ag with the orientation from Z to Z’. The represen-
tation of the automorphisms on H1(03A3, Z) for the basis xi = ei+1 - e1
(1  i  5) is as follows:

Thenw7v = vw7. Put J03B5,03B5’ = (W9 + el)(w7 + 03B5’1) J for 03B5, 03B5’ = +. Then we
have the following table [36] table 5.
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The abelian subvariety J+ _ is isogenous over Q(-3) to a product of two
elliptic curves. Note that any abelian subvariety of J = J0(63) has multi-
plicutive reduction at the rational prime 7. Changing the basis (from
{xi}1i5 to {x’i = 2XI + 03A35i=2 xi, x’2 = X2 + x3, X’3 = x4 + x5, X’4 ==
x2 - X3 x’5 = x4 - X5 1), we get the representation as in this proposition.

D

REMARK 2.19. Let r = r(3) n 03930(7) be the modular group, and Xr be the
modular curve /Q(-3) associated with r:

Then Xr is isomorphic to Xo (63) over Q(-3), since 03930(63) = g-1 rg,
+ 1) for g = (3a 21c b 3d) for integers a, b, c, d with 3ad - 7bc = 1. Let

B = Br be the subgroup of Aut Xr generated by 2 x 2 matrices, and H be
the subgroup generated by the elements g E 03930(7) with g ~ (* 0 0 *) or (0 * * 0)
mod 3. Then H is a normal subgroup of Aut Xr isomorphic to (Z/2Z)2 cf.
proposition 2.18. Let Y = Xr /H be the modular group (, ~ X0(1)), which
is of genus two. Then the function field of Y is generated by the functions
x and y with the relations:

see [6] IV § 2. Using the minimal model of Y over the base 717, by the similar
argument as in the proof of the proposition 2.18, we see that the index of
the subgroup B/H in Aut Y is two. Further we see that exists an auto-
morphism g of Y which is not represented by any 2 x 2 matrix defined by

for 03BB, 03BB with 03BB + 03BB = -13, 03BB03BB = 49, see loc. cit.. Further if B0(63) ~
Aut Xo(63), then Aut Y = {Aut X0(63)}/H.
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