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0. Introduction

This article is concemed with the question of which elements in the cohomology
ring of a connected, complex, projective, n-dimensional manifold Y are
fundamental classes of algebraic cycles. The cycle class map

is well known to be surjective when p = 1 or n - 1. Although the "Hodge
conjecture" [H] asserts that t/lp is surjective for all p, this remains very much
in doubt. Recent attempts to verify this assertion in concrete, but non-trivial,
specific cases have met with mixed results. The goal has been to find Y such
that Hdp(Y) is large and then try to produce enough condimension p
algebraic cycles to show that 03C8p is surjective. When Y is a Fermat hypersurface
of dimension p ~ 0 mod 2, Hdp(Y) is generally large. Ran [R] and Shioda [S]
have been able to show that t/lp is surjective in many instances. In contrast
to these positive results, is the situation with abelian varieties. Let R be an
order in a CM field, K, and let (Y, 0) be a p[K: Q]-dimensional abelian
variety together with an embedding 0 : R ~ End(Y) which induces on
H0(Y, 03A9Y) the structure of a free K (D C-module. If p &#x3E; 1, Weil [W]
showed that HdP is not generally generated by products of divisors. For
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general varieties of this type, the image of 03C8p has remained mysterious.
In fact, this particular class of varieties has often been suggested as a
good place to begin to search for a possible counterexample to the Hodge
conjecture. A consequence of the results to be presented here is that
the Hodge conjecture is true at a general point in moduli for at least
one of these families. For other work on the Hodge conjecture for abelian
varieties the reader is referred to [D-M], [M], [Ri], [S2], and [S3].

In the first section of this paper we consider a Hodge structure on certain
self-products of a curve with an automorphism, which is isomorphic to the
Hodge structure studied by Weil when K is cyclotomic. This Hodge structure
may be described via the representation of the automorphism group of the
product variety on the cohomology. In fact the method also yields interesting
Hodge classes on self-products of certain higher dimensional varieties. The
next step is to produce algebraic cycles whose cohomology classes generate
this Hodge structure. This is accomplished in Theorem 2.0 for a substantial,
but by no means exhaustive, fraction of the Weil-type Hodge structures on
products of curves. The proof involves an explicit and rather natural
geometric construction. Finally, Theorem 2.0 is applied to verify the Hodge
conjecture in the case of the Weil Hodge structure on abelian 4-folds with
complex multiplication from the cyclotomic field of cube roots of one

(Theorem 3.2).
The reader who has many pressing obligations can most quickly get a

feeling for the general flavor of the techniques in this paper by restricting
attention to the case where the automorphisms have no fixed points.
By initially adopting this somewhat narrow focus he or she may entirely
dispense with the more technical considerations including all of §1 after the
proof of (1.6a) and all of §2 following the paragraph which preceeds (2.3)
with the exception of the first case in Lemma 2.6. This is sufficient to
understand the proof of Theorem 2.0 in the special case r = 0. The final
section concerning cycles on abelian varieties has been written so that it
essentially depends only on this special case of Theorem 2.0.

1. Hodge classes

The purpose of this section is to introduce a particular Hodge substruc-
ture in the middle dimensional cohomology of certain self-products of
complex projective manifolds. Although eventually attention shall be
restricted to the case of Riemann surfaces, the initial considerations

go through for certain higher dimensional manifolds without additional
effort.
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Let C be a complex, connected submanifold of projective space, m an
integer greater than one, and 03C3: Z/m ~ Aut(C) an injective homomorphism.
Fix an integer k and let V denote the largest 7L/m-submodule of Hk (C, Q)
with the property that V (8) C is a sum of weight spaces for primitive
Z/m-characters. Then V is, in a natural way, a vector space over the

cyclotomic field QCum) whose dimension will be denoted by h. In this paper
it is further assumed that k is odd, k = dim C, V (D C has a two-step
Hodge decomposition (i.e. V ~ C ~ Vp,k-p (8) Vk-p,p) and that primitive
Z/m-characters do not contribute to the Z/m-representation H’(C, C) for
i ~ k. These hypotheses are satisfied when C is a curve or a Fano threefold
with rank Pic(C) = 1 and in other situations as well. The image N of the
obvious homomorphism

is normalized by the symmetric group, ph, of all permutations of the
factors in the product. The same holds for the image N of the subgroup
(VI’ ..., vh) E (Z/m)h : 03A3 vi = 0}. Then G := Nph is normal in G := ph
and /G ~ 7L/m. Finally write £5: Z/m ~ Aut(Ch ) for the homomorphism
03B4(v) = (03C3(v), d(0), ... , 03C3(0)). This paper is concerned with the largest
G-submodule U c Hkh (Ch , Q)G for which U (8) C is a sum of weight spaces
for primitive G/G-characters. The Hodge structure U may be better under-
stood with the help of the Künneth formula. Define 03BE: Hk(C, Q)~h ~
Hkh(Ch, Q) by 03BE(~1 (D ... Ox ~h) = p1*~1 U ... lJ Ph*~h where pi: Ch ~ C
is projection on the ith factor.

LEMMA 1.1: U = (03BE(V~h))G.

Proof Künneth pieces of the form Hk-j (C) 0 H(k-1)h+j(Ch-1) with j ~ 0
are orthogonal to the representation U since £5, or some permutation
composed with £5, does not act by a primitive character on such pieces. Thus
U c im(03BE). Let W c Hk(C, Q) denote the Z/m-submodule complementary
to V. If i ~ 0 or h, 03BE(V~i 0 W~(h-i))N = 0. Thus U c (03BE(V~h))G. Since à
acts by primitive characters on (03BE(V~h))G, the lemma follows. D

LEMMA 1.2: The action of /G makes U a one dimensional Q(03BCm)-vector space.

Proo, f : We may write V ~ C ~ ~1ih ~~ Vix where the inner sum is over
primitive Z/m-characters and each v x is a one dimensional representation
on which Z/m acts by x. Note that 03BE(V~h)N is isomorphic to the sum of
those weight spaces Vi1,~1 (8) ... O Vih,~h on which the element of (7L/m)h,
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(1, - 1, 0, ... , 0), and permutations thereof act trivially. This implies
;(l = ...= Xh - Since k is odd, 03BE induces an isomorphism from the anti-
symmetric tensors 039BhV c V~h to (03BE(V~h))ph. The projection

of V~h onto the anti-symmetric tensors annihilates the subspace Vi1,~ (D
... Q J’ih,x unless (i1,..., ih) is a permutation of (1, ..., h). Choose a
basis Vi,x for each JI;,x. Then

The lemma follows.

In the decomposition V ~ C ~ ~iih px V,x we may require that either
Vi,~ c Vp,k-p or Vi,~ c Vk-p,p for every pair (i, X). This makes it easy to read
off the Hodge decomposition of U (8) C, once one knows the multiplicity vx
with which each primitive Z/m-character x appears in the representation
Vp,k-p. ln fact Z/m acts on U (8) C via £5 and the one dimensional weight space
corresponding to the cnaracter x has Hodge type ( pvx + (k - p)(h - vx ),
(k - p)vx + (h - v~)p). It follows without difficulty that U (D C has pure
Hodge type (kh/2, kh/2) exactly when v~ = h/2 for all x. In particular, h
must be even.

REMARK 1.4: Suppose dim. C = 1. Now the symmetric product, Sh C,
is smooth and U may be regarded as belonging to the subalgebra of
H’ (Sh C, Q) generated by H1(ShC, Q). In fact, if one defines Wi,X =

03A31jh p*jvi,~ ~ Hl (Ch, C)ph, then it is straightforward to check that (h!)03BE o
p(v1,~ (8) ... (8) Vh,x) = COI,x lJ ... u Wh,x. Notice that {03C91,~, ..., Coh,X 1 is
a basis for the subspace of Hl (Ch, C)ph on which Z/m, through its diagonal
action on Ch, acts by the character x.

Let lE denote the universal line bundle on C x Pic0(C) which is uniquely
defined up to translation on Pic0(C) and write Alb(C) := Pic0(Pic0(C)). The
choice of a base point co on C gives rise to a morphism
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Writing the functorial action of t ~ Z/m on Alb(C) by juxtaposition we have

Since E is Z/m-equivariant up to translation in Alb(C), pullback 039E¡:
H1 (Alb(C), Q) - H1(Ch, Q)ph is a 7L/m-equivariant isomorphism. For each
primitive character x, let {03C9’1,~, ..., 03C9’h,~} be a basis for the x-eigenspace of
Hl (Alb(C), C). Set U" = Span {03C9’1,~ ~ ... u 03C9’h,~} as X ranges over the
primitive characters. Then 039E*L" = U. Thus the Hodge structure U is
pulled back from the Jacobian of C.
The following lemma connects the numerical invariant, h, of the Hodge

structure, V, with the topology of C. Consider the canonical quotient map
of analytic spaces n : C - 03C3&#x3E;BC =: X and the open subset  = {x E X:
#(03C0-1(x)) = m}.

LEMMA 1.5: h = - e(), where e denotes the topological Euler characteristic.

Proof : Fix a primitive 7L/m-character X and let hi denote the multiplicity with
which this character appears in the Z/m-module Hi(C, C). By standard
character theory hi = m -1 LtEZ/m ~(- t) tr (03C3i(t)), where ai is the represen-
tation on Hi(C, C) induced by 03C3. Since we are assuming hi = h03B4ik and k is
odd,

The fixed locus, C7(), is a compact submanifold whose normal bundle has
a canonical complex structure. Thus the sign term, sgn(det(Id - Du)), in
the Lefschetz fixed point formula [Gi, p. 93] is 1. Substitution into this

formula yields

For each non-zero subgroup H  Z/m, let CH denote the subset of points
whose stabilizer is exactly H. Then
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Recall that the Hodge decomposition of U is determined by the multiplicities,
vx . An appropriate form of the holomorphic Lefschetz fixed point theorem
may be used to obtain a formula for vx . The next two lemmas are special
cases of this general phenomenon.

LEMMA 1.6a: Suppose that (C, 03C3) satisfy the hypotheses set forth at the

beginning of this section. If in addition, 1L/m operates without fzxed points, then
vx = h/2 for each primitive character, X.

Proof : Let (v~)i denite the multiplicity with which X appears in the 1L/m-
representation H’(C, 03A9k-1C), which will be denoted by ai. Then

Since there are no fixed points, the final term vanishes by the;Lefschetz fixed
point theorem [A-B, Thm. 2]. This shows that vx is independent of the choice
of primitive character, x. Since all primitive characters occur with the same
multiplicity, h, in V ~ C the lemma follows.

It is also possible to deduce the lemma from the Riemann-Roch theorem
by dealing directly with the weight space Hp (C, 03A9k-pC)~. For an appropriate
invertible sheaf lE on X with p~m ~ OX we have

By the Riemann-Roch theorem this expression depends only on the numerical
equivalence class of the total Chern class of Y (D Q’-P. In particular it is
independent of the choice of torsion line bundle, lE, and hence independent
of the choice of x. D

EXAMPLE: Let xj, 0  j  4 be homogeneous coordinates on p4. Define
u: Z/5 - Aut(P4C) by xj o 03C3(t) = exp (203C0-1 jtl5)xj. Take C to be any
non-singular quintic hypersurface which is invariant under the Z/5-action
and disjoint from the five fixed points in p4. Since H0(C, 03A93C) is invariant,
the hypotheses of this section are satisfied. One computes h = -e(X) =
- e(C)/5 = 40. By the above considerations, the Hodge sub-structure
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U c HI2°(C40, Q) has pure Hodge type (60, 60). It is unknown to the

author whether or not U is generated by fundamental classes of algebraic
cycles.

We shall now give a formula for vx in the case dim. C = 1. Let s denote

the number of points in the branch locus B = {b1, ... , , b, 1 c X of
the map n : C - X. There is a natural way to associate to 03C0 an orbit in

(1L/m - {0})s for the diagonal action of (Z/m)*. In fact the field extension
C(X) c C(C) is determined by a cyclic, order m, subgroup of C(X)*/C(X)*m.
A generator f gives rise to a mod m divisor, (f) = 03A31js ajbj E Div(X)/m,
and hence to an s-tuple (03B11, ..., 03B1s) E (Z/m - {0})s. A change in the
choice of generator f changes the s-tuple by the diagonal action of an
element of (Z/m)*. For computational purposes fix f ~ C(X)* such that
C(C) rr C(X)[y]/ym - f and y o 03C3(t) = 03B5(t) y where e is a primitive Z/m-
character. We may arrange, by replacing f with e’"f and y with ey for
appropriate e E C(X)*, that ( f ) = 03A31js (1jbj + mD with 0  aj  m
and B n Supp(D) = 0. Let g denote the genus of C. Given a coset e E 1L/m,
~&#x3E;m E Z will denote the unique representative in the interval [0, m - 1].
Note that any primitive Z/m-character is of the form x(t) = e(nt) for some
n E (1L/m)*. With this notation we prove

Proof: First observe that the right hand side is an integer, since (-h + s)/2
is the holomorphic Euler characteristic h0(OX) - h1 (OX) and E a; = 0 mod m
because deg. ( f ) = 0.

Let (v,)i denote the multiplicity with which x appears in the representation
Ui |Hl(OC). Then

By the holomorphic Lefschetz fixed point theorem [GH, p. 422]

’ 1 have learned that this lemma has a long history, dating all the way back to Hurwitz.
See I. Morrison and H. Pinkham, Galois Weierstrass points and Hurwitz characters, Ann. of
Math. 124 (1986) 591-625, Thm. 3.5 for a different proof, references, and discussion of related
results.
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where ~c(t) · Id is the map induced on the contangent space at c by u(t).
Suppose that n(c) = bi, and di = gcd(03B1i, m). Then c will be fixed by a(t)
exactly when t E diZ/m. There is a local parameter w at bi such that w03B1l = f.
Thus C is locally isomorphic to the normalization of ymld, - W(X,/d, = 0. In

particular there is a local parameter v at c with v03B1l/dl = y. One has v - a(t) =
03B5(tdi/03B1i)v, which computes ~c(t). Rewrite (1.7),

where the inner sum is over those i such that 1  i  s and di|t,

The inner sum is Â(e) = 03A3t~dlZ/m-{0} e(tt)(1 - 03B5(t))-1 where ~ = -n03B1i/di E
(7L/(m/di))*. This expression may be evaluated as follows [H-Z, p. 171]:
First 03BB(0) = (-1 + m/di)/2. Then 03BB(1) - 03BB(0) = (1 - m/di) and

03BB(j) - 03BB(j - 1) = 1 if 1  j  m/di. Summing yields,

so (1.8) becomes

Since the lemma follows.

COROLLARY 1.9: Vx = h/2 for every primitive 7L/m-character X if and only if
s = 2r and 03A31i2r n03B1i&#x3E;m = mr for all n E (7L/m)*.

REMARK 1. 10: The set of 2r-truples (âl , ... , oc2r) E (7L/m - {0})2r satisfying
the condition of the Corollary will be denoted B2r-2m. Evidently, _42mr-2 is
stable under the diagonal action of (7L/m) * . This set has been closely studied
in the context of the degree m, dimension 2r - 2, Fermat hypersurface,
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F2r-2m. In fact 81;;’-2 may be viewed as a subset of the characters on (Z/m)2r/
(diagonal). This group acts on H2r-2(F2r-2m, C). A weight space is contained
in (H2r-2(F2r-2m, Q) n Hr-1,r-1(F2r-2m)) (8) C exactly when the corresponding
character lies in 81;;’-2. (See [R], [S] for details.)
A 2r-tuple in (7L/m - {0})2r is called simple, if after a permutation of the

indices, 03B12i = - 03B12i-1. The set of such is denoted, D2r-2m. It is invariant under
the diagonal action of (7L/m)* and is contained in 81;;’-2. In practice D2r-2m
seems to be a rather large subset of B2r-2m. The conditions under which thèse
sets coincide has been determined by Aoki.

AOKI’S THEOREM [A]: In order that D2r-2m = B2r-2m, it is necessary and
sufficient that m satisfies one of the following conditions:
(i ) m is prime or m = 4,
(U) Every prime divisor of m is greater than 2r.

REMARK 1.11: Much of the foregoing makes sense for C a smooth irreduc-
ible variety over an algebraically closed field of characteristic prime to m. In
particular, the definitions of h and U c Hkh(Ch, Q~)G ~ Hkh(Ch, Q~(kh/2))G
go through in the context of étale cohomology. If C is a curve, there is, as
before, an associated (Z/m)*-orbit in (7L/m - {0})2r.

2. Algebraic cycles

Let C be an irreducible, smooth, projective curve over an algebraically
closed field k of characteristic prime to a fixed integer m &#x3E; 1. Suppose that
an embedding (J: Z/m ~ Aut(C) is given. Assume that the invariant h
associated to (C, 03C3) in §1 is even. This implies that the number of branch
points of the canonical quotient map 03C0: C - X is an even number (1.5),
which will be denoted 2r. The purpose of this section is to prove

THEOREM 2.0: If the (Z/m)* orbit in (Z/m - {0})2r associated to (C, 03C3) is

simple, then the subspace U c Hh(Ch, Q~(h/2)) is generated by fundamental
classes of algebraic cycles.

Here ~ is a prime different from char(k). We carry over the notations of §1
to the present situation. In particular k(C) ~ k(X)[y]/(ym - f ) where
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with 1  03B1j  m - 1, 03B12i-1 ~ -03B12i mod m, and Supp(D) ~ {b1, ... ,
b2r} = 0. Note that the simplicity hypothesis is automatically satisfied if
r = 0 or 1.

In order to construct the desired codimension h/2 algebraic cycles on Ch
we consider the commutative diagram

where W0 = GB Ch and all morphisms except ao are canonical quotient maps
for the obvious finite group action. Since the subspace of cohomology U is
G-invariant, it is appropriate to look for the cycles on Wo . In fact, we intend
to produce an h/2 dimensional projective space Po c Sh X for which
Po  03B20 W0 consists of m irreducible components. These components will in
essence be the sought after algebraic cycles. Consider the morphism

The fiber ~-1 (0), which will be denoted P~, is a projective space of dimen-
sion h - q = q - 2 + 2r (unless r = 0, in which case the dimension is
q - 1) which contains the q - 1 dimensional linear space (empty if q = 0)
P -00 = {(03A31j2r bj) + d’: d’ ~ |KX|}.

It is necessary to understand the branch locus of Po. This will be done
by giving an explicit local description of 03B20 in a neighborhood of an
arbitrary point of W0. To this end let X’ - X - Supp(D), and denote by
Pi: Ch ~ C (resp. pri : Xh ~ X) projection onto the ith factor. Note that
y = 03A01ih y o pi e k(Ch)G and  o 03B4(t) = 03B5(t), so  generates k(W0) over
k(ShX). Since m - 03A01ih f ° pri = 0, 03B2-10 (Sh X’) is the normalization
of Spec k[ShX’][v]/(vm - 03A01ih f ° pri). It is possible to find a cover

ShX’(1) ~ ... ~ Sh X’(h+1) of ShX where X’(~) = X - Supp(D~), {Supp D1,
... , Supp Dh+1, B} are pairwise disjoint and k(C) ~ k(X)[y~]/(ym~ - f~)
where (f~) = 03A31j2r 03B1jbj + mD~.

Let Sj = yx(bj x Xh- l ). Then Sj ~ Sh-1 X is a smooth divisor on Sh X.
The following lemma shows that arbitrary intersections of Sj’s are transverse
and that ~1j2r Sj is the branch locus of 03B20.
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LEMMA 2.2: Given x E ShX’(k), let J = {1  j  2r::i E Sj}. Then there are
functions {Sj}j~J vanishing at x such that
(i) {Sj}j~J gives rise to a linearly independent subset of the cotangent space,

(ii ) there is an open affine neighborhood Spec A of  such that Sj = 0 defines
51 n Spec A and W0|Spc A is the normalization of Spec A[v]/(vm -
(unit)IIjEJ SJ1).

Proof: For j E J let J-Lj denote the multiplicity with which bj appears in the
unordered h-tuple x and define Oj = le , y, - Ifïy denotes a local parameter
on X at bj, then a set of elements of mx whose images in mx/mx are linearly
independent is given by

U {elementary symmetric functions in 03C4j o pri where ej -1 1  i  0j ) .
jeJ

In particular, setting sj = 03A003B8J-1  i  03B8J 03C4j o pri, we see that (i) holds. Also,
Sj = 0 defines 51 locally. Since f = (unit)03C403B1Jj locally on X near bj, 03A01ih f o
pri = (unit) 03A0j~J S03B1Jj in a neighborhood of x. D

If r = 0, it is now a simple matter to construct the desired algebraic cycles.
Let Po = P~ = P-~ C ,S’2q-2 X. Since Po is étale, Po splits into m connected
components, one of which will be denoted Q. Associated to a primitive
7/m-character x is an algebraic cycle z~ = LtEZ/m x(- t)ô(t)*Q with coef-
ficients in Q(03BCm) which satisfies 03B4(t)*z~ = X(t)zx. By (2.6) the highest Chern
class of the normal bundle NP0/ShX ~ NQ/W0 does not vanish, so Q - z~ ~ 0.
Thus the cohomology class of zx is non-trivial and lies in U Q Q~(03BCm). It is
also evident that U Q Q~(03BCm) is generated by the "eigenvectors" zx as X
ranges over the primitive Z/m-characters.
When r &#x3E; 0, the trick is to choose the projective space Po so that it splits

into irreducible components in fl and then to compute some intersection
numbers, in spite of the singularities of W0. Of course, the choice of Po is
rather delicate, since it must meet the branch locus in a very special way. We
first define linear subspaces Vi = (Poo) n S1 n ... n 2i-1 n S2i n ... n
’s2r-1 n S2r of (P~) and then set P0 = Span{V1, ... , Vr}. Basic facts about
these subspaces are gathered together in

LEMMA 2.3:

is a proper subset, the intersection 
transverse.
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Proof:
(i) The first equality is obvious. As for the second, one inclusion is clear,

and the dimensions are the same by Riemann-Roch.
(ii) Since h - 1 JI &#x3E; 2q - 2, ~j~J Sj ~ Sh-|J| X is smooth over Pico X with

fiber a projective space.
(iii) By (i) and (ii) the linear space Vi contains P-~ as a codimension one

subspace. The assumption Vi c Span{~~~K V~} implies T i c S2i-1 n S2i
which implies Vi c ~1j2r Sj ~ P~ = P-~. This is a contradiction.

(iv) The assumption Po c S2i implies Vi c S2i and hence that T i c

~j~2i-1 Sj ~ P~ = P-~. This is a contradiction. Thus S2i n Po has
codimension one in Po. By the same argument S2i-1 ~ Po is a codimen-
sion one linear subspace. But S2i n Po and S2i-1 ~ Po each contain
Span{ VI, ... , V , ..., Vr} which also has codimension one.

(v) Since P - 00 is a codimension one subspace of each v, one has by (iii) that
dim. Po = dim. P-~ + r = q - 1 + r = h/2.

(vi) This follows from (iv) and (iii). D

We shall show that Po splits into m irreducible components in fl by
successively blowing up certain smooth codimension two subvarieties of
ShX until the strict transform of Po is disjoint from the branch locus.
Although this is not the quickest approach, it has the advantage of making
intersection computations possible.

Let (ShX)0 = ShX, Sl,o = Si and Ko = S1,0 ~ S2,0’ For i x r define

inductively Qi: (ShX)i ~ (ShX)i-1 to be the blow up along Ki-1 =
S2i-1,i-1 ~ S2i,i-1 where Sj,i-1 is the strict transform of Sj,o with respect to
Q1 o ... o Qi-1. Since for each subset J ~ {1, ... , 2r} the intersection

~j~J Sj,o is transverse, an induction argument shows that each Sj, is non-
singular and the intersection ~j~J Sj,i is transverse. Let Pi denote the strict
transform of Po in (ShX)i.

LEMMA 2.4: For each i  r, Pi is isomorphic to Po and its disjoint from
~j2i Sj,i.

Proof: Given x E Po (k), let J = {1  j  2r: x E Sj} and let J2 = {j E J:
j - 0 mod 2}. Choose functions tl, ..., th/2 in the local ring of ShX at x
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such that (tl , ... , th/2) is the ideal of Po. Let sj define ( locally. Then
{Sj}j~J2 ~ {t1, ..., th/2} gives rise to a linearly independent set in mx/m2x
(2.3vi). Of course, J2 = ~ ~ J = ~ ~ a neighborhood of x in ShX is not
affected by any of the blow ups, Qi. Assume that J2 is not empty and that 2i
is the smallest element. There is an equality of ideals (S2i-1, tl, ... , th/2 ) =
(s2i, t1, ..., th/2) (2.3ii, iv). After a linear change in the coordinates tl, ... , th/2
we arrange that s2i-1 = as2i + tl mod mx with a ~ 0 (2.2i, 2.3iv). Locally,
Qi is the blow up of the ideal (S2i -l’ S2i). Near x, the center of the blow up
meets Pi-1(= P0 locally) in codimension one. Thus Qi|Pl: Pi ~ Pi-1 is an

isomorphism in a neighborhood of x. An immediate computation in local
coordinates shows that S2i-1,i and S2i,i do not meet Pi at the point above x.
If we denote the inverse image of x in Pi by x again, then the situation is the
same as before except J must be replaced by J - {2i - 1, 2i} and J2 by
J2 - {2i}. Repeating the above argument finitely many times until J

becomes empty verifies that the assertions of the lemma hold above the point
x E Po (k). But x was arbitrary. D

For 1  i  r define inductively W to be the normalization of Wi-1  Qi
(ShX)i. Write ~i: W ~ Wi-1 for the composition of normalization and
projection onto the first factor in the fiber product and 03B2i: Wi ~ (ShX)i for
the composition of normalization and projection onto the second factor.

LEMMA 2.5: Given x E (ShX)i, define J = {1  j  2r: x E Sj,i}. Choose
functions Sj which define Sj,i locally. Then there is an affine open neighborhood,
Spec A, of x such that Wi|Spec A is the normalization of Spec A[v]/(vm -
(unit) 1-1j.j s03B1Jj).

Pro of: The exceptional divisor for each blow up, Qt, has multiplicity
l12t-1 + l12t = m in the total transform of the branch locus of fi, - 1 because
(03B11, ..., a2r) is a simple 2r-tuple. Thus the exceptional divisor does not
contribute to the branch locus of 03B2~. Now (2.5) follows from (2.2). D

By (2.5), the branch locus of the map 03B2i: Wi ~ (ShX)i is supported on
~1j2r Si, i. By (2.4), 03B2r is étale over a neighborhood of Pr. Since Pr is simply
connected, Pr 1 (Pr) is the union of m distinct connected components, one of
which is denoted Q. As W is constructed via a series of base changes and
normalizations, the action of G/G on ?0 lifts to Wr. Thus, we may associate
to each primitive Z/m-character x the cycle with cyclotomic coefficients
z~ = LtEZ/m x(- t)b(t)* Q. Observe that for all n E 7L/m, b(n)*zx = X (n)zx .
The pullback of the cohomology class [z~] via the inclusion i : Q ~ Wr is the
highest Chern class of the normal bundle ch/2(NQ/Wr) ~ Hh(Q, Q). Since
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NQ/Wr ~ NPr/(ShX)r, the next lemma shows that the cohomology class [zx e
Hh(Wr, Q~(h/2)) is not zero.

LEMMA 2.6: Let H e H2(Pr, Q~(1)) deno te the class of a hyperplane. Then
= ±(H)h/2.

Proof : Consider first the case r = 0. Then h = 2q - 2, Po = P~, and Po:
W0 ~ ShX is étale. The choice of a point on X gives an embedding ShX ~
Sh+1 X which realizes P~ as a fiber of the obvious smooth morphism
Sh+1 X ~ Pic0 X. In the exact sequence of normal bundles

the right most term is isomorphic to the hyperplane bundle. The relation
between total Chern classes, c(NP~/ShX) = c(OPq-1(1))-1 follows, and the
case r = 0 of the lemma is proved.

If r = 1, h  2q and we still have P0 = Poo. The exceptional divisor El for
the blow up o 1: (ShX)1 ~ Sh X is isomorphic to P(NK0/ShX) ~ P((NS1/ShX 0
NS2/ShX)|K0). Let RI denote the restriction of this P1 bundle to P-~ c Ko .
Since NS1/ShX|P-~ ~ NS2/ShX|P-~, we have R1 ~ P-~  P1. Apply the

following sublemma 2.7 to the case V = (ShX)1, T = (~ o Q1)-1(0), T1 = P1,
T2 = Ri, S = P-~ to produce an exact sequence

The first term is isomorphic to the structure sheaf of Pl and the last term to
the structure sheaf of P-~. Hence the following equalities hold in the Chow
ring of P1.

To complete the proof of the lemma when r = 1 it remains only to
establish

SUBLEMMA 2.7: Let Tl and T2 denote two distinct non-singular codimension p
subvarieties of a smooth variety V. Suppose that the subschemes T and S
defined by the ideal sheaves IT = ITI n IT2 and Is = ITI + IT2 are local

complete intersections. Then there is an exact sequence of conormal sheaves,
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Proof: Tensor the exact sequence

with OV/IT1. The resulting term on the right is

The map 1 1 induces a map

By hypothesis both sides are locally free (!JV/ITI modules of the same rank and
the cokernel is supported on S. It follows that 03C8 is injective. Q.E.D.

If r &#x3E; 1, Po is a proper linear subspace of Poo. Consider the exact sequence

where the subscript i denotes, as usual, the strict transform with respect to
Q1... o Qi: (ShX)i ~ Sh X. Since h &#x3E; 2q, S2i-1 (B S2i meets every fiber of q
in a codimension two linear space. Thus (P~)i is a fiber of the smooth
morphism ~oQ1o ··· o Qi: (ShX)i ~ Pic°X, so the right most sheaf in the
sequence is globally free for each i. As for the first sheaf in the sequence,
(P~)i (for 1 x r - 1) is obtained by blowing up P~ ~ (p2r+q-2 along a
sequence of i codimension two linear spaces which are in general position
subject to the constraint that they contain the codimension 2r - 2 linear
space P-~ (2.3ii). Each time such a codimension two linear subspace is
blown up one gets a morphism to P’ with some fiber containing the strict
transform of P° . Thus there is a morphism (P~)r-1 ~ (P1)r-1 where a fiber
contains Pr-l’ Since the codimension of P,_ is r - 1, the fiber is in fact
equal to Pr-1. After the final blow up, the fiber of the morphism (Poo)r ~
(P1)r-1 containing Pr is the union of two irreducible components Pr ~ Rr,
where Rr ~ prlq-2 X (pl meets Pr along Pr+q-2 X {0}. The considerations of
sublemma 2.7 apply and, exactly as in the case r = 1, we find c(NvPr/(P~)r- =
(1 - H) - where H is the class of a hyperplane in Pr . D

Until further notice we restrict to the case k = C.
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Because Wo is the quotient of a smooth variety by a finite group, Poincaré
duality between singular homology and cohomology with Q-coefficients
holds [St. Prop. 1.4]. Furthermore, from (2.5) it is evident that each W is also
locally analytically a quotient, so Poincaré duality with Q-coefficients holds
here as well. By resolution of singularities, a subvariety, Z, of W maybe
regarded as the image of a non-singular variety, Z, under a birational
morphism g :  ~ Z. The fundamental homology class of 2 is denoted &#x3E;
The element of H. (Wi, Q) which corresponds to g*&#x3E; by Poincaré duality
is independent of the choice of desingularization and is denoted [Z]. The
natural map ~: ll§ - Wo, gives rise, via Poincaré duality, to a Gysin map
(p.: Hh(Wr, Q) - Hh(W0, Q) which is compatible with the cycle class map
and the push forward of dimension h/2 algebraic cycles.

Since 9: lV§ - W. is G/G equivariant, the cohomology class [~*(z~)] lies
in the subspace U ~ C c Hh(W0, C) ~ Hh (Ch, C)G. In order to show
[~*(z~)] ~ 0, consider the class [z’~] := ~* o ~*[z~] - [zx ~ Hh(Wr, C). By
the projection formula, this is an element of Ker ~* ~ Hh(Wr, C)/
cp*Hh(Wo, C). It is also an eigenvector on which Z/m acts by the primitive
character x. The following lemma shows tht [zx ] = 0. Since it has already
been shown that [z~] ~ 0, this allows one to conclude that ~*[~*(z~)] =1= 0.

LEMMA 2.8: Primitive characters o,f’G/G do not occur in the decomposition of
the representation H. (U/;, C)/cp; H. (Wi-1, C).

Proof: Let K; -1 ce U/; -1 denote the inverse image of Ki -1 ~ (ShX)i-1,
viewed as an analytic set. Write Ei for the P1-bundle over Ki _ which is the
exceptional divisor for Qi: (ShX)i ~ (ShX)i-1. Let F c W be the inverse
image of Ei. The commutative diagram with exact rows

gives rise, in a standard way, to a long exact sequence

To prove the lemma it suffices to show that no primitive G/G-character
appears in the decomposition of the representation Hn(Fi, C). For this,
choose a prime p lm such that the 71/ p branched cover 03C0p: 03C3(p)&#x3E;B C ~ X is
ramified over b2i-1. Since 03B12i ~ - a2i -1 mod m, b2i is also a branch point of
03C0p. Let F denote the quotient of F by the unique index p subgroup of /G.
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SUBLEMMA 2.9: Let K: Fi ~ Ei be the obvious 7L/p-branched cover. Then
03BA*: H.(Ei, C) ~ H.(Fi, c) is an isomorphism.

Proof : The two disjoint sections of the P1-bundle Qi|El: Ei ~ Kl -1 given
by Ei n S2i-l,i and Ei n S2i,i contribute to the branch locus of K. The
remainder of the branch locus consists of the divisor R = 03A3j~j Ei n Sj,i,
where J = {j: 1  j  2r, j ~ 2i or 2i - 1, and 03C0p is branched over bj}.
Observe that K: 03BA-1(R) ~ R is a homeomorphism. Consider the commutative
diagram with exact rows

Let -4 = 03A3j~J Ki-1 n Sj,i-1. Note that R = (Qi|El)-1 (R). So both Ei - R
and Fi 03BA-1(R) are P1-bundles, with section, over Ki-1 - R. By the
Leyray-Hirsch theorem [BT, Thm. 5.11 ], the degree n cohomology of each
of these spaces is isomorphic to ~a+b=n Ha(Ki-1 - f!/l, C) 0 Hb(P1, C). It
is easy to deduce that 03BA*: H« (Et - R, C) ~ H° (F - 03BA-1(R), C) is an

isomorphism. Averaging a COO differential form under the action of71/p gives
rise to a map 03BA*: H.(Fi - 03BA-1 (R), C) - H.(Ei - R, C), which is an

isomorphism since 03BA* o K* = p Id.

The Poincaré dual of 03BA* is 03BA*c which must also be an isomorphism. The
sublemma follows from the five lemma applied to the preceding commutative
diagram.
Now the sublemma tells us that

from which (2.8) follows. D

It has now been shown that [9,(z,)] E U 0 C is not zero for an arbitrary
primitive character x on G/G. Since U (8) C is the sum of weight spaces for
primitive characters, each weight space having dimension one (1.2), the
proof of Theorem 2.0 is now complete in the case k = C. The case when k
is algebraically closed of characteristic zero follows immediately.
Now suppose that k is an algebraically closed field of positive characteristic

prime to m. In order to push through the preceding argument in this case one
would need to define a Gysin map ~*: Hh(Wr, Q«h/2)) - Hh(W0, Q~(h/2)),
presumably by proving Poincaré duality for these mildly singular varieties.
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Then one would need to construct an appropriately functorial cycle class
map to the cohomology of these singular varieties without resorting to
resolution of singularities. 1 find it simpler to deduce the theorem in positive
characteristic from the result in characteristic zero via a specialization
argument. The first step is to show that n: C ~ X lifts to chararacteristic
zero.

Let A be a complete discrete valuation ring with residue field k and
fraction field K of characteristic zero. By deformation theory there exists a
scheme X smooth and projective over A with special fiber X. The branch
points bl , ... , b2r E X(k) may be lifted to sections b1, ..., b2r ~ X(A) by
Hensel’s Lemma. Write X (resp. bi) for the generic fibers of X (resp. bi).
By replacing K by a finite extension, we may find a divisor D on X such

that (03A31i2r 03B1ibi) + mD is linearly equivalent to zero. Let f be a function
on X with this divisor. Adjoining an m’th root of f gives rise to a Galois
extension 03C0: C ~ X. Since the closed fiber of X is rationally equivalent to
zero, f may be chosen so that its divisor on X is (E 03B1ibi) + mD, where D
denotes the closure of D in X. Since we are free to replace K by a finite
extension, it is easy to find a divisor D’ on X linearly equivalent to D and
to arrange that the supports of the divisors D, D’ and X ocibi are pairwise
disjoint. Let g be a function with divisor D’ - D. By adjoining to the
coordinate ring of X - D an m’th root of f and to X - D’ an m’th root
of gm f and gluing and normalizing, we construct a model C of C finite
over X and smooth over the integers in a finite extension of the original
field, K.

It is not necessarily the case that the closed fiber of C is isomorphic to
our original curve C. However, the Z/m-covers of X with a fixed associ-
ated mod m divisor class X aibi E (Div(X)/m)/(diagonal(Z/m)* action) are
transitively permuted by the action of the m-torsion subgroup, Pic0(X) [m].
Given such a cover obtained by taking an m’th root of a function f ’ with
divisor (fI) = X 03B1ibi + mD’, we may find an m-torsion divisor class

(D - D’) and a function f with (f ) = X 03B1ibi + mD such that the cover
associated to fl/m is the original cover 03C0: C - X. Using the well known fact
that the specialization map Pic° (X) - Pic0(X) is an isomorphism on torsion
prime to char. k, we may (and will) choose D so that the restriction of
-x: C ~ X to the special fiber is the original covering n: C ~ X.

Consider the commutative diagram of specialization maps [F, 4.4]
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The interesting piece of the cohomology UCK is contained in the image of the
left hand verticle map. Thus the image of ct contains Uc, which proves (2.0)
when char k &#x3E; 0.

REMARK 2.10: (Concerning the case of non-simple 2r-tuples) Suppose that
the ground field is C and that the 2r-tuple associated to the pair (C, 03C3)
satisfies the conditions of Corollary (1.9) but is not simple. In this case 1 do
not know how to explicitly construct cycles who cohomology classes generate
the Hodge structure U. Nonetheless, if h = 4, we can verify the Hodge
conjecture for U in a significant number of cases. Since h = -e(X - B) =
2q - 2 + 2r, there are only four possibilities for the pair (q, r), namely
(3, 0), (2, 1), (1, 2), (0, 3). In the first two cases, the 2r-tuple is necessarily
simple. In the third case, we shall argue that fl is uniruled. Since the Hodge
conjecture is known for smooth uniruled 4-folds [C-M] or [B-S], it follows
from standard arguments that U c H4(C4, Q) is contained in the image of
the cycle class map.
To construct a rational curve through a given point w E W0(C), consider

the image x E S4X(C). The fiber 1 - (q(1)) is isomorphic to P3. There is a line
in the fiber through x which meets the linear spaces S1 n S2 n ~-1(~(x)) and
S3 n S4 n il (~(x)). The inverse image of this line in W0 is a rational curve
through w, since it is a cover of Pl ramified in at most two points.

If (q, r) = (0, 3) and if 03B11 + 03B12 = m then an argument analogous to the
one above shows that Wo is again uniruled.

REMARK 2.11: (On the image of the Abel-Jacobi homomorphism for 1-cycles
on C3). Suppose for a moment that the base field is C and that the invariant
h associated to the pair (C, 03C3) is odd and greater than one. Then the number
of branch points of the canonical quotient map is an odd number, s &#x3E; 3.

We shall assume that an associated s-tuple (al , ... , as) E (Z/m - JOI)s is
such that (al , ..., 03B1s-2 , 03B1s-1 + ocs) is a simple (s - 1 )-tuple. By Lemma (1.6),
v~ E {(h - 1)/2, (h + 1)/2} for each primitive Z/m character x. The Hodge
structure U c Hh(Ch) has Hodge type ((h - 1)/2, (h + 1)/2) + ((h + 1)/2,
(h - 1)/2). A more general form of the Hodge conjecture than that dis-
cussed in the introduction implies that the image of the Abel-Jacobi
homomorphism on null-homologous, dimension (h - 1)/2 cycles on Ch
contains the subtorus, JU := UC/(F(h+1)/2UC + Uc n Hh(Ch, 71)), of the
intermediate Jacobian of Ch.

Although 1 do not presently see how to prove this in general, when h = 3
one need only verify that fl is uniruled. In fact the Abel-Jacobi map is well
known to be surjective for smooth uniruled 3-folds, so the desired result will
follow from standard facts about resolution of singularities and functoriality
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of the Abel-Jacobi homomorphism. Now the above assumptions actually
imply that fl is uniruled for any odd h. To see this observe that any closed
fiber of 1: ShX ~ Pic0(X) is isomorphic to (pq-2+s. Given any closed point
x in the fiber, there is a line e through x which meets each of the (s - 1 )/2
linear spaces S1 n S2 n ~-1(~(x)), ..., Ss-2 ~ Ss-1 ~ ~-1(~(x)). The nor-
malization of 03B2-10 (~) can be ramified only over the points Ss n t and
Ss-2 ~ Ss-1 ~ e. Any cover of Pb ramified in at most two points is rational.
Thus W0 is covered by rational curves.

REMARK 2.12: (Extra automorphisms of curves) Let C be a smooth projective
curve and 03C3: 7L/m -+ Aut(C) an embedding with associated invariant h = 2
and associated 2r-tuple simple. In this case the proof of Theorem 2.0 shows
that the automorphism group of C is larger than Z/m. Since h = 2q -
2 + 2r, (q, r) is one of the following three pairs: (0, 2), (1, 1) or (2, 0). In
each case there is an involution of the quotient curve X which lifts to C. If
q = 2, take the hyperelliptic involution. If q = 1, take the involution which
switches the two branch points and has quotient P 1. When q = 0 there are
four branch points. There is at least one involution of P which stabilizes the
branch locus, leaves no branch point fixed and acts by multiplication by - 1
on the associated element of (Z/m - {0})4. (Indeed, with notation for the
branch locus {b1, b2, b3, b4} as in the second paragraph of this section choose
~, 03BA E Aut(P1) with 03BA(b1) = 0, 03BA(b2) = oo , 03BA(b3) = 1 and qJ(x) = 03BA(b4)/x
for all x E P1. Then 03BA-1 o ~ o x is an involution of the desired type.) In each
case the image of the graph of this involution in S2 X is the projective space
which we have referred to as Po in the proof of (2.0). The m irreducible
components of the pullback of P° in C2 are graphs of automorphisms. In fact,
Aut(C) contains the dihedral group Dm (by convention D2 = Z/2 x Z/2).
The elements of the non-trivial coset of im(03C3: Z/m ~ Dm ) give rise to the
graphs lying over Po. Because the map Dm ~ Aut(Jac(C)) is injective, we
have for m &#x3E; 2 a factorization

where Q(J-Lm)+ denotes the maximal totally real subfield of the cyclotomic
field. Thus Jac(C) contains two distinct isogenous abelian subvarieties with
real multiplication. The fact that M2(Q(03BCm)+ is not a division algebra is
consistent with the observation that our family of curves contains degenerate
members whose Jacobians have multiplicative reduction. The degenerate
curves are easily constructed as cyclic covers of singular curves, X.

This peculiar geometric phenomenon is related to the following equally
surprising fact concerning endomorphism rings of abelian varieties. Let F be
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a degree 2n CM-field which is contained in the endomorphism algebra of a
2n-dimensional complex abelian variety, A. Suppose that the action of F on
Lie(A) makes the latter into a free rank one F (x) C algebra. Then the
endomorphism algebra of A actually contains a quaternion algebra with
center the maximal real subfield of F [Sh, Prop. 18].

REMARK 2.13: (Concerning fields of definition of cycles) Let C be a smooth
projective geometrically irreducible curve defined over a field L. Suppose
that L contains m distinct mth roots of unity, that there is an embedding
a: Z/m - Aut(CL ), that the invariant h = -e(XL - BL ) is even, and that
the associated 2r-tuple over L is simple. In addition we shall assume that the
individual branch points are L-rational. With these assumptions 1 claim that
the cycles produced on C’ in the proof of (2.0) are defined over an extension
L’ of L with Gal(L’/L) rr Z/m. In any case, it is clear that the construction
of the projective space Po goes through over L. One can produce an element
f, of the function field L(X) such that L(C) = L(X)[y]/(ym - f ) and such
that := 03A01ih f o pri gives an element of the local ring of Sh X at the
codimension h/2 point Po (see the discussion just prior to Lemma 2.2). Write
f for the image of f in the function field L(Po). By the construction of Po, the
divisor of f is the mth power of an L-rational divisor on Po. Since the
sequence

remains exact after taking Gal(L/L) invariants (Hilbert’s Theorem 90), the
mth power of an L-rational degree zero divisor on Po is the divisor of the mth
power of a function in L(Po)*. Thus there is e E L* such thatlt E L(Po)*m.
The fiber over the generic point of Po may be written Spec L(Po ) x ShX Wo
~ Spec L(P0)[]/m - f by the discussion prior to (2.2). So the cycles
produced in the proof of (2.0) are rational over L(e’Im).

If no restrictions are placed on the rationality of the individual branch
points other than that the branch divisor B be L-rational, then the above
claim will not in general be true. Even the cohomology classes of the cycles
will generally not be defined over L(tl/m).

3. An application to certain abelian varieties

In this section the results of §2 are used to construct explicit algebraic
cycles which generate the Hodge substructure of Weil for certain abelian
varieties. Our technique applies most directly when the associated complex
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multiplication field is cyclotomic. It seems to be of little or no use when the
CM field is non-abelian or non-Galois over Q. Even in the cyclotomic case
the results are not as complete as one might hope unless both the degree of
the CM field and the dimension of the abelian variety are small. Very loosely
speaking, Theorem 2.0 allows us to construct algebraic cycles on certain
"generalized Prym varieties". In most, but not all cases, such varieties form
a subspace of positive codimension in the moduli of all Weil abelian varieties
of fixed dimension with multiplication by a fixed cyclotomic field.

Let m be an integer greater than two and ~(m) = #(Z/m)*. Write R for
an order in the cyclotomic field, K = Q(03BCm), and let (A, 0) denote a complex
abelian variety together with a ring homomorphism 0 : R - End(A) satisfying
03B8(1) = Id. Then 0 induces the structure of K-vector space on H1(A, Q). Let
h = dimKH1 (A, Q). Following Weil [W] (see also [G, §1] and [D-M, §4]) we
may associate to this data a Hodge substructure U’ c AhH1 (A, Q) ~
Hh(A, Q). To describe V let 03C81, ... , 03C8~(m) denote the distinct embeddings
of K into C. Observe that each character appears with multiplicity h
in the representation of the torus K* in H1(A, Q) p C. Then U’ is the
unique K*-sub-representation of AhH1(A, Q) which after tensoring with
C becomes isomorphic to the sum of weight spaces. ~1i~(m) t/l7. Let
{03C9’1,03C8l, ... , 03C9’h,03C8l} be a basis for the 03C8i-eigenspace of H1(A, Q) Q C. Then
{03C9’1,03C8l 039B ··· 039B is a basis for U’ ~ C. Suppose now that
H0(A, f’A) is a free K 0 C module. In other words each 03C8i appears with
multiplicity h/2 in the representation of K* on H1,0(A). We may then choose
03C9’j,03C8i to lie in H1,0(A) when j x h/2 and to lie in H0,1 (A) when j &#x3E; h/2. In this
case U’ ~ C has pure Hodge type (h/2, h/2). This construction generalizes
to the case that K is an arbitrary CM field, but we shall ignore this.
Now let (C, 03C3) be a smooth, irreducible, complex, projective curve together

with an embedding a: Z/m ~ Aut(C). We shall be interested in the abelian
subvariety B c Alb(C) whose tangent space is the subspace of TeAlb(C)~
H°(C, Qc)* where 71/m acts by primitive characters. More precisely, B is the
image of the composition, P, of all elements Y-,cH (Id - t) E End(Alb(C))
as H ranges over the non-zero subgroups of Z/m. Since B has the correct sort
of multiplication from K, U’ c Hh(B, Q) is defined. In the notation of (1.4),
U" = P*U’, U = 039E*U". We can now state the following corrollary of (2.0).

CORROLLARY 3.1: If (C, 03C3) satisfies the hypotheses of (2.0), then VI c

Hh(B, Q) is generated by fundamental classes of codimension h/2 algebraic
cycles.

Proof: Let j: B ~ Alb(C) denote the inclusion. Then po j E End(B) is

multiplication by a non-zero scalar. Thus it suffices to show that U" = P* U’
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is generated by algebraic cycles. Recall the notation 039E: Ch -+ Alb(C) from
(1.4) and write W for the cohomology class of the canonical polarization on
Alb(C). Given a e H° (Alb(C), Q) the projection formula and Poincaré’s
formula [G-H, p. 350] yield

By the hard Lefschetz theorem wg-h: Hh(Alb(C), Q) - H2g-h(Alb(C), Q)
is an isomorphism. According to a theorem of Lieberman [K; 2A11.2, 2.3]
the inverse to the hard Lefschetz isomorphism on an abelian variety is

"algebraic". In particular there is an algebraic cycle on Alb(C) x Alb(C)
whose cohomology class, T, satisfies pr2*(T·pr1*(03B1 · Wg-h)) = 03B1 for all a,
where pri denotes projection on the ith factor in the product. Thus

The Corrollary follows since U is generated by algebraic cycles (2.0). D

Suppose that A is a complex abelian variety with a Z/m-action such that
H’ (A, Q) inherits the structure of an h-dimensional K-vector space. In this
case the fixed locus of any non-trivial element of Z/m consists of finitely
many points. If dim(A) &#x3E; 1, A will contain Z/m-stable smooth curves C
disjoint from the fixed locus. In general it is too much to expect that the cycle
classes constructed in (2.0) in the middle dimensional cohomology of some
power of C will give rise to interesting cycle classes on A. One problem is that
if C has large intersection number with an ample divisor on A, the correct
power of C to take in (2.0) will be much larger than dim(A).

Nonetheless it is true that (2.0) may be used to prove the Hodge conjecture
at the general point in moduli for a few of Weil’s families of abelian varieties
provided both m and h are sufficiently small. We may get some idea as to
how small these invariants must be by counting moduli. Suppose that A is
a complex, polarized, abelian variety with a Z/m-action such that W(A, S2A)
becomes a free 0(pm) (8) C module of rank h/2. The cotangent space to the
space of those deformations of A to which the polarization and the group
action lift is isomorphic to the Z/m-invariant subspace of Sym2H°(A, 03A9A).
This has dimension (~(m)/2) (h/2)2. On the other hand we may determine the
number of moduli of pairs, (C, u), where 03C3: Z/m ~ Aut(C) is injective and
the associated invariant is an even number, h. Recall that h is related to the
genus, q, of the quotient curve, X, and the number of branch points, 2r, by
the formula h = 2q - 2 + 2r. If q  2, X moves in a family of dimension
3q - 3. It is easy to see that the number of moduli for pairs (C, a) is
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3q - 3 + 2r. In fact this formula is valid when q = 0 or 1 as well. For fixed
h the number of moduli is largest when r = 0, in which case it is (3/2)h. Since
the dimension of the moduli space for polarized abelian varieties, A, with
Z/m action is actually equal to the dimension of the cotangent space, it is
apparent that the general abelian variety in this family will not be dominated
by the Jacobian of one of our curves, C, unless 3/2  hcp(m)/8. Now the
Hodge structure Hh(C, Q) is only interesting from the point of view of the
Hodge conjecture when h  4. Thus the only pairs (h, m) for which the
method of proof of (3.1) has a chance to establish the Hodge conjecture at
a general point in the moduli of a Weil family are (4, 3), (4, 4), (6, 3), (6, 4).
(The case m = 6 is ignored, since it is equivalent to the case m = 3).
Most of the remainder of this section is devoted to proving the Hodge

conjecture in the case (4, 3).

THEOREM 3.2: Let K = Q(03BC3), R an order in K, A a complex 4-dimensional
abelian variety, and 0: R ~ End(A) a unitary ring homomorphism. Assume
that each embedding 03C8i: K - C, i ~ {1, 2}, appears with multiplicity two in
the K*-representation HI,O(A). Then Weil’s Hodge substructure, U’, is

generated by fundamental classes of two-dimensional algebraic cycles on A.

Pro of: In approximate terms the idea is to dominate A by a fourfold
self-product of a genus seven curve with a fixed point free, order three,
automorphism. The cycles on this product are constructed by means of (2.0).
They push forward to give the required cycles on A.

First construct a suitable family of genus seven curves. We begin with a
connected component of the fine moduli space for genus three curves whose

jacobians have a full level 3-structure. After an étale base change we may
construct

where r is the pullback of the universal family of genus three curves, n is an
étale Z/3-cover corresponding to a 3-torsion section of Pic0X/N, and the
family of genus 7 curves y has a section, SI. The element P E End(Albb/N)
defined earlier in this section is simply P = 3 · Id - 03A3t~Z/3 03C3(t) in the

present context. The image of P, denoted 81, is an abelian subscheme of
relative dimension 4 over J’V. Now 81 inherits a polarization from Albb/N
and we may assume, after an additional étale base extension if necessary,
that 4 has a full level n-structure for some prime n &#x3E; 3.
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Next we recall the existence of a moduli space parametrizing the abelian
varieties of interest.

LEMMA 3.3: There is a polarized abelian scheme l1: A ~ W having the
following properties:

(i) 1/Î is a smooth irreducible quasi-projective variety of dimension 4.
(ii ) l1 has relative dimension 4.

(iii) There is an injective homomorphism u: 71/3 -+ Aut(A/W). The auto-
morphisms fix the identity section and the polarizing class. Furthermore,
the rank 4 vector bundle 03B1*03A9A/W is the direct sum of rank two sub-bundles
on which Z/3 acts by nontrivial conjugate characters.

(iv) The kernel of multiplication by n, d[n], is isomorphic to (71/n)8 as a group
scheme over "fI/.

(v) If (A, 0) satisfies the hypothesis of Theorem 3.2, then there is a closed
point w E 1/Î and an isogeny j: A ~ dw which is compatible with the
action of the order R c Z[03BC3] on the two varieties.

(vi) There is a Cartesian diagram

where 03A6 is a morphism of polarized abelian schemes with level n-structure.

Proof: The reader is referred to [W] and [G, §1], but will have to fill in some
details himself.
The existence of the section s, of wll enables one to define the standard

morphism

Our intention is to show that the composition

is dominant. Since the image of E is, up to a non-zero scalar multiple, an
intersection of relatively ample divisors, P o 039E is certainly dominant. By
(3.3, vi) it suffices to produce a closed point o E X where the tangent map
T.9 is surjective.
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Eventually, T0~ will be described in terms of an easily computed map
between sheaf cohomology vector spaces. In order to effect this reduction,
we recall the yoga of the Kodaira-Spencer map. Let S/C be a finite type
scheme, s e S(C), and 1: Z - S a smooth proper morphism with connected
fibers. The Kodaira-Spencer map

is constructed from the coboundary in the exact cohomology sequence
associated to

Given a group action 03C3: G ~ Aut(Z/S), there is an induced action on
(3.5) and the image of xz lies in the invariant subspace Hl (Z,, 03B8Zs)03C3.
Given a commutative diagram

where 03C8(s) = s’ with Y and f’ as above, there is induced a commutative
diagram

where 03A8# denotes the compositum of the obvious maps

If (3.6) is Cartesian, q¡* and T’F are ismorphisms. Using the resulting
identification we may abbreviate (3.7) with the commutative diagram,
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Write C (resp. B) for the fiber bo (resp. Bo) over a closed point o ~ X. An
application of (3.8) to the diagram (3.3vi) gives rise to a commutative diagram

Now maps T~(o) W isomorphically to the invariants, H7, of the subspace
H c H1(B, OB) which is annihilated by cup product with the polarizing
class under the pairing

Thus to show that T0~ is surjective it suffices to show that the image of K(J4
which is contained in H03C3 is in fact all of Ha.

From (3.7) there is a commutative diagram

where t denotes the Lie algebra of B and the top horizontal map may be
factored as

We have the following identifications of dual spaces:

LEMMA 3.11: With these identifications the dual of (3.10) may be written

where m and fil are the tautological multiplication maps.
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Proof’: This is essentially proved in [B, 7.5].

Thus to show that K1,I surjects onto H03C3 we must show that the natural

multiplication map m injects or equivalently that

is injective. Since each factor on the left has dimension two and since
lE Q úJx Q (2-1 (8) 03C9X)-1 has no global sections, the base point free

pencil trick [A-C-G-H, p. 126] assures injectivity once we have checked
that the linear system H0(X, L-1 (D cvx) has no base points. If p were a base
point, then

So we could find a point q ~ p with L ~ OX(q - p). Since L~3 ~ (9x,
there is some f ~ C(X) with div(f) = 3q - 3p. The resulting degree 3
morphism f: X ~ P1 is branched above at most six points other than
0 and oo (Hurwitz). Modulo the action of Aut((P1, {0, ~}) the branch locus
is free to move in a 5-parameter family. But the moduli space for genus 3
curves has dimension 6. Hence a general genus 3 curve X can not be realized
as a degree 3 cover of P1 which is totally ramified at two points. The base
point freeness of the linear system H0(X, 2-1 ~ wx) for general X follows.
Thus for a general closed point o E N the tangent map To~ is surjective.
This completes the proof that 9: N ~ 11/, and hence 03A6: B ~ A, is
dominant.
Now given an Abelian four-fold with complex multiplication (A, 0)

satisfying the hypotheses of Theorem 3.2, choose a closed point w E 11/ and
an isogeny j : A ~ Aw satisfying (3.3v). If w E im(ç) for some closed point
o E N, the Hodge structure U’ maybe regarded as a subspace of H4(Bo, Q).
In this case (3.2) follows from Corollary 3.1.
Now suppose w e im(~). Choose an irreducible curve T c JV for

which w E im ~(T) and write e for the generic point of T. Let 8’ - 8

correspond to a finite field extension with the property that cycles con-
structed in the proof of Theorem 2.0 on (b03B5)4 are rational over 8’. Let T’ be
a smooth curve with generic point e’ which maps surjectively to im 9 (T)
and write dr for the pullback of A to T’. Let w’ E T’ map to w. There
is a specialization map CH2(A03B5’) ~ CH2 (dw’) [F] and a specialization
isomorphism H4(A03B5, Qt(2))  H4(Aw’, Q~(2)). These are compatible with
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cycle class maps [SGA 6, X.7.13-7.16]. It follows that j*U’ ~ H4(Aw, Q~(2))
is generated by fundamental classes of algebraic cycles. This completes the
proof of (3.2).

REMARK 3.13: Let A’ denote a complex abelian 3-fold with an action of Z/3
which respects the group law. Suppose that in the resulting representation
on the tangent space at the identity one primitive Z/3-character appears with
multiplicity one and the other with multiplicity two. Let A" denote the blow
up of A’ at the finite set of points which comprise the fixed locus of the
Z/3-action. The resulting Z/3-action on A" fixes certain smooth rational
curves and isolated points in the exceptional locus. By blowing these up and
taking the quotient, one arrives at a smooth threefold, Y, of Kodaira
dimension zero, with Hodge numbers h3,0 = h1,0 = 0, h2,1 = 1, h2,0 = 2.
Theorem (3.2) may be used to show that the Abel-Jacobi homomorphism
for null-homologous, codimension two cycles on Y is surjective. In fact one
need only apply (3.2) to the Abelian 4-fold E x A’ where E ~ C/Z[03BC3]. If
A’ is the Jacobian of a smooth genus three curve C with function field

C(C) ~ C(t)[y]/y3 - (t - bl )2 03A02i5 (t - b;), then the surjectivity also
follows from Remark 2.11. Details are left to the reader.

Acknowledgements

1 wish to thank Adam Ginensky and especially Spencer Bloch for introducing
me to the subject of algebraic cycles on abelian varieties several years ago
when 1 was a graduate student at the University of Chicago.

References

[A] Aoki, N., On some arithmetic problems related to the Hodge cycles on the
Fermat varieties, Math. Ann. 266 (1983) 23-54.

[A-B] Atiyah, M.F. and Bott, R., A Lefschetz fixed point formula for elliptic differential
operators, Bull. of the A.M.S. 72 (1966) 245-250.

[A-C-G-H] Arbarello, E. et al., Geometry of Algebraic Curves, Vol. 1, Grundlehren der
math. Wissenschaften 267, Springer, New York (1985).

[B] Beauville, A., Variétés de Prym et Jacobiennes Intermédiares, Ann. Scient. Éc.
Norm. Sup., 4e serie, t. 10 (1977) 309-391.

[B-S] Bloch, S. and Srinivas, V., Remarks on correspondences and algebraic cycles,
Amer. J. of Math. 105 (1983) 1235-1254.

[B-T] Bott, R. and Tu, L., Differential Forms in Algebraic Topology. Springer, New
York (1982).

[C-M] Conte, A. and Murre, J.P., The Hodge conjecture for fourfolds admitting a
covering by rational curves, Math. Ann. 238 (1978) 79-88.



32

[D-M] Deligne, P., Hodge cycles on Abelian varieties, Notes by J.S. Milne, in "Hodge
cycles, Motives, and Shimura varieties", Lect. Notes in Math., 900, Springer
(1982).

[F] Fulton, W., Rational equivalence on singular varieties, Publ. Math. I.H.E.S. 45
(1975) 147-167.

[G] Gross, B., On the periods of Abelian integrals and a formula of Chowla and
Selberg, Invent. Math. 45 (1978) 193-211.

[G-H] Griffiths, P. and Harris, J., Principles of Algebraic Geometry. John Wiley and
Sons, New York (1978).

[Gi] Gilkey, P., Lefschetz fixed point formulas and the heat equation, in Partial
differential equations and geometry, Proceedings of the Park City Conference,
ed. C. Byrnes, Marcel Dekker Lecture Notes in Pure and Applied Mathematics
48 (1979) 91-147.

[H] Hodge, W.V.D., The topological invariants of algebraic varieties, Proc. Int.

Cong. Math. 182-192 (1950).
[H-Z] Hirzebruch, F. and Zagier, D., The Atiyah-Singer Theorem and Elementary

Number Theory. Publish or Perish, Boston (1974).
[K] Kleiman, S.L., Algebraic cycles and the Weil conjectures, in Dix Exposés sur la

Cohomologie des Schémas, North-Holland, Amsterdam, 359-386 (1968).
[M] Murty, V.K., Exceptional Hodge classes on certain Abelian varieties, Math.

Ann. 268 (1984) 197-206.
[O] Oort, F., Finite group schemes, local moduli for Abelian varieties, and lifting

problems, in Algebraic Geometry, Oslo 1970 (F. Oort, ed.), Wolters-Noordhoff,
233-254 (1972).

[R] Ran, Z., Cycles on Fermat hypersurfaces, Compositio Math. 42 (1980) 121-142.
[Ri] Ribet, K., Hodge classes on certain types of Abelian varieties, Am. J. Math. 105

(1983) 523-538.
[S] Shioda, T., The Hodge conjecture for Fermat varieties, Math. Ann. 245 (1979)

175-184.

[S2] Shioda, T., Algebraic Cycles on Abelian varieties of Fermat type, Math. Ann.
258 (1981) 65-80.

[S3] Shioda, T., What is known about the Hodge conjecture?, in Advanced Studies in
Pure Mathematics 1, Algebraic Varieties and Analytic Varities, 55-68 (1983).

[SGA6] Berthelot, P., Grothendieck, A., Illusie, L., et al., Théorie des Intersections et
Théoreme de Riemann-Roch, SGA 6 1966/67, Springer Lecture Notes 225
(1971).

[Sh] Shimura, G., On analytic families of polarized Abelian varieties and automorphic
functions, Ann. of Math. 78 (1963) 149-192.

[St] Steenbrink, J.H.M., Mixed Hodge structure on the vanishing cohomology, in
Real and Complex Singularities, Oslo 1976, P. Holm (ed.), Sijthoff and Noordhoff,
525-563 (1977).

[W] Weil, A., Abelian varieties and the Hodge ring, in Collected Papers III, (1979)
421-429.


