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Introduction

Let M be a connected, smooth, orientable, paracompact, n dimensional
manifold. Let,&#x3E; be a Riemannian structure and 03C9 a volume form on M.
Let U be a compact, semi-simple Lie group and let G be the group of all
smooth mappings of M into U that equal the identity outside of a compact
set with pointwise multiplication. Let B denote an Ad(U)-invariant inner
product on u, the Lie algebra of U. Then certain "non-local" unitary
representations, T = T,&#x3E;,B,03C9, of G were introduced in [1] for U = SU(2)
and in [GGV, I, II], [AKT] for general U (see §5).
Our main results on these representations are

(1) If n  3 then T is irreducible.
(2) Let n = 2. Write m = Vol,&#x3E; (Vol,&#x3E; a volume element of M with

respect to , &#x3E;). Fix b a maximal abelian subalgebra of u and let
~···~B denote the norm on * corresponding to B. If ~03B1~B &#x3E; (803C0|(x)|)1/2
for x E M and all roots a of u relative to 4 then T is irreducible.
Whenever one has , ), B, ev as above then one has an inner

product (,), &#x3E;,B,03C9, on, 03A91c(M; u), the compactly supported smooth one
forms on M with values in u (see §6).

(3) If dim M = 2 then assume that , ), B, cv satisfy the condition in (2).
If dim M  2 then T, &#x3E;,B,03C9 and T, &#x3E;1,B1,03C91 are either equivalent or
disjoint. They are equivalent if and only if (,), &#x3E;,B,03C9 

= (,),&#x3E;1,B1,03C91.
Condition (2) can be made to hold by varying o and or B. (1), (3) for n  5
and U = SU(2) and 03C9, 03C91 the Riemannian volume elements are due to [I]
(as are the main "algebraic" ideas in the proof of the general case). (1), (2),
(3) without any conditions are asserted for n  2 and M non-compact in
[GGV, I]. But that paper is severely flawed. In [GGV, II] there is a proof of
(1), (3) for n  4 if M is the interior of a compact manifold with boundary
although it is not clear if this condition is necessary to their proof, since finite
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volume and non-compact seem to be enough) for the Riemannian volume
elements. In [AKT], (1) is proved for n  3 as is (2) and a slightly weaker
form of (3) for ~03B1~B &#x3E; (3203C0|(x)|)1/2, x E M for the same class of manifolds
as in [GGV, II] (since they refer to this paper for the details of the proof of
irreducibility). They also indicate the likelihood that the 32 can be replaced
by 8. We note that slight modifications of the original argument are necess-
ary in the case of compact M. Thus the new results in this paper involve

establishing the validity of (1), (2), (3) for general manifolds, replacing a 32
by an 8 and a stronger criterion for disjointness.

In this paper, the first four sections contain technical results on Gaussian
measures. The representation theory is in Sections 5 and 6. We suggest on
first reading that the reader start with Section 6 and refer back to the
necessary preliminaries.
As indicated above the main line of the proof of irreducibility is contained

in [I] and [GGV, I]. The différences involve precise results on uniform
mutual singularity of measures on spaces of distributions (our results can be
found in §3 and §4). We give a complete proof of the "algebraic" aspects of
the proof of irreducibility in §5, 6 for several reasons. One is that [GGV, I,
II] and [AKT] make use of undocumented "well known" results on direct
integrals (which are essentially proved in §5). Secondly, there is a rather
subtle argument regarding singularity of convolutions in [AKT], Lemma
3.2, for the case when n = 2 that we don’t understand (this of course, is not
meant to imply that it is wrong). We avoid this argument (which also
appears in [GGV, II], however there seems to be no problem with it if

n  3). Thirdly, the details of our argument are necessary in order to prove
(3). Fourthly, we fix a minor error in [GGV, II]. Finally, our proof should
be accessible to novices to quantum field theory and probability theory.

1. Gaussian measures

Let V be a locally convex, separable, topological vector space over R. Let
( , ) be a continuous, positive definite, symmetric, bilinear form (inner
product for short) on V. Let H be the Hilbert space completion of V with
respect to ( , ). If W is a topological vector space then we use the notation
W’ for the space of all continuous linear functionals on W endowed with the
weak topology.

If W is a finite dimensional subspace of V and ifQisa Borel set in W’ then
we set Zwn = {03BB E V’ : À1w E 03A9}. ZW,03A9 is called a cylinder set. Let A w be the
isomorphism of W onto W’ given by AW(v)(u) = (u,v). Let d wx denote the
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Lebesgue measure on W corresponding to an orthonormal basis of W
relative to ( , ). If dim W = n then we set (cf. [GV], IV, 3.1)

Let B = R(V’) denote the 6-algebra of sets generated by the cylinder sets.
We assume that 03BC = 03BC(,) has a countably additive extension to f!4. In this
case y is a probability measure which is called the Gaussian measure
associated with ( , ).
The following simple lemma will be used often in this paper.

LEMMA 1.1. Let v E V be such that (v, v) = 1. Then if r  1

Proof. By definition, the measure of the indicated set is

We now record two results. The first will be used later. The second is
standard but it gives a simple instance of the technique that we will use to
prove singularity of measures.

LEMMA 1.2. Let S, T ~ V’. Suppose that for each e &#x3E; 0 there exists Xe c- -4
such that 03BC(X03B5)  1 - e, Xe + À = Xe for À E T and 03BC(X03B5 + 03BB)  e for
À E S. Then there exists Y c- 4 such that 03BC(Y) = 1, Y + À = Yfor À E T
and J.1( Y + À) = 0 for À E S.

Proof. Set Zn - X2-n. Put Y = nk 1 ~~n=k Zn.

If h E H then we define Àh E V’ by 03BBh(v) = (v, h). If À E V’ then we say
03BB ~ H if 03BB = Àh for some h E H.

LEMMA 1.3. If À E V’. À ft H then there exists X E f!4 such that 03BC(X) = 1 and

J.1(X + À) = 0.
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Proof. Since À ft H there exists for each n  1, vn E V such that 03BB(vn)  n
and (vn , vn ) = 1. Set Zn = {03BE ~ V’: lç(vn)1  n/2}. Then Zn + 03BB c V’ - Zn.
So Lemma 1.1 implies that

and

Now apply the previous lemma with S = {03BB}, T the empty set.

2. Some observations about the first Sobelev space

We first prove a simple lemma which will be adequate to prove our results
on Gaussian measures for n  3. If q is a 1-form on Rn, 17 = 03A3~i dxi then
set

We use the notation B(x; r) for the open r-ball with center x in Ild". ~··· ~
will denote the usual Hilbert space norm on Rn.

LEMMA 2.1. Assume that n  3. Then there exists C(n) &#x3E; 0 depending only
on n such that for each 0  03B5  1/2 there exists f E Cx (B(0; 1)) with
(1) Iidh ~ = 1,
(2) f03B5(x)  03B5-n/2+1C(n) for llxll  c.

Proof Let h E C~(R) be such that h(x) = 1 for x  1 and h(x) = 0
for x  2. Set (as usual) r(x) = Ilxll. Put 9,(x) = h(r(x)le). Then

cpr E C~c(B(0; 1)) if 0  e  1/2 and d~03B5 = h’(r/03B5)dr/03B5. Let Qn denote
the volume of the n - 1 dimensional Euclidean sphere. Then

Set

and put



7

We now prove an analogous result for n = 2. In this case one can show (as
was pointed out to us by Roger Nussbaum) the estimates are best possible.

LEMMA 2.2. Let n - 2. Given 0  C  1 there exists for each 0  8  1,
h,c E C~c (B(O; 1)) such that
(1) ~df03B5,C~ = 1.
(2) f03B5,C(x)  (C/(203C0)1/2)|log 811/2 for ~x~  8.

Before we give the proof we recall some well known (or easily proved)
sophomore calculus results. If f is a continuous function on R2 then we say
that ôflax = u and ~f/~y = v in L2 if u and v are square integrable and
whenever g E C~c(R2)

Under this condition we write df = udx + vdy and we say that df exists in
L2.
The following assertion is an easy calculation using Stoke’s theorem.

(1) Let h be a piecewise smooth function on R with supp h c (- 00, a],
a  00, such that h is constant in a neighborhood of 0. Set

f(x) = h(r(x)). Then df exists in L2 and df = h’(r)dr.
If f ~ LI (R2) and if g E L2(R2) then we set (as usual)

The following result is also standard.
(2) Let f be continuous on R2 with supp f c B(0; 1 - q) for some

0  q  1 and suppose that df exists in L2. Then given e &#x3E; 0 there

exists 0  £5  ~ and 9 E C~c (B(O; £5)) such that

Indeed, the first inequality is true for any non-negative 9 with L1-norm one
without any assumption on £5, and the second is an easy consequence of
uniform continuity.
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We now give the proof of Lemma 2.2. For each 0  £5  1 - e define h,,ô
by

Set qJe,b(Z) = h03B5,03B4(r(z)) for z E R2. If we apply (1) above we have

Set C(E, b)2 = 2n/11 - (log (1 - 03B4))/log 03B5|. Let 03BC &#x3E; 0 be given. Then (2)
above implies that there exists U E C~c (B(0; ~)), 0  ~  ô, with u  0 and

i u = 1 such that

and

Put and

Now lim03B4,03BC~0(1 - 03BC)C(03B5, b)-l = (2n)-1/2. So we can takeh,c = g03B5,03B4,03BC for ô
and J.1 sufficiently small.
The following simple covering Lemma is sufficient for our purposes.

LEMMA 2.3. Let n  2. If 0  8  1/4 then there exist zl , z2, ..., zN E

B(O; 5/4) with N  (2n + 1)n/03B5n such that B(O; 1) c UNj=1B(zj; e).
Note. B(zj; 1) c B(O; 5/2). 
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Proof. This is standard. For each x E B(0; 1) let mi E Z be the unique
element that satisfies mi  xin/03B5  Mi + 1. Put m(x) = (ml , ... , mn).
Then ~ x - 03B5m(x)/n~ II  8. Also |mi|  n/03B5 + 1. Take the zj to be an
enumeration of the set {03B5m(x)/n: x E B(0; 1)}. Clearly, there are at most
2(n/03B5 + 3)n such points.

3. Singularity of translates of Gaussian measures

Let M be a smooth, orientable, paracompact, connected manifold of dimen-
sion n. Let W be a finite dimensional vector space over R. If M is non-

compact set V = C~c (M; W), the smooth compactly supported functions on
M with values in W. If M is compact then we fix once and for all a base point
xo E M and set V = {f ~ C~(M; W):f(x0) = 01. If K is a compact set in
M set CK (M; W ) equal to the smooth functions from M to W that equal
0 outside of K. We endow C:(M; W) with the topology of uniform conver-
gence with all derivatives. If M is non-compact then we endow V with
the "union topology" (cf. [GV], p. 330). If M is compact then we use
the topology of uniform convergence with all derivatives. Then V is either
a nuclear space or a "union of nuclear spaces" (cf. [GV], p. 330). Let
03A91(M; W ) denote the space of all 1-forms on M with values in W. Let ,&#x3E;
be a Riemannian structure on M, B an inner product on W and 03C9 a

volume form on M. If 03B1,03B2 E 03A91(M; W) then ax, Px e HomR (TMx , W).
We write (a, P)x for the Hilbert-Schmidt inner product of ax with 03B2x.
That is, (a, 03B2)x = Tr(f3: llx). If f, g E V then we set

(1, g) = (df, dg)x w.

Let 03BC denote the corresponding Gaussian measure on V’ (§1). Then y is
countably additive ([GV], Theorem 6, p. 333).

If v E W’ and if x E M (x ~ xo if M is compact) then we set

vx(f) = v(f(x)) for f ~ V. Then vx ~ V’andvx = 0 if and only if v = 0. We
set ~v~B = supB(w,w)=1 Iv(w)I . We also write cv = o Vol,&#x3E; as in the introduc-
tion. If it is necessary to indicate the dependence of (, ) and J.1 on , &#x3E;,
B, m then we write ( , ), &#x3E;,B,03C9 and 03BC, &#x3E;,B,03C9.

PROPOSITION 3.1. Let v 1 ..., vd E W’ - (0). Let ( , &#x3E;i, Bi, 03C9i be as above
for i = 1, 2. Set 03BCi = 03BC, &#x3E;,Bl,03C9l. If n  3 there is no additional condition. If
n = 2 we assume
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Then if n  2 there exists X E f!4 such that 03BCi(X) = 1 and P2(X + L(vJx) =
0 for x1,..., xd E M (M - xo if M is compact) with xi ~ Xj if i ~ j.

We will derive this result from a lemma which will also be used in §5.

LEMMA 3.2. Let 03BCi, i = 1.2 be as in Proposition 3.1. Assume that

v E W* - {0} and if dim M = 2 that ~v~B1 &#x3E; (803C0|1(x)|)1/2 for x ~ M. If U
is an open subset of M (not containing xo if M is compact) then there exists
Y E f!4 such that 03BC1 (Y) = 1, Y + qJy = Y for y E M - U, ~ E W*, and

03BC2(Y + vx) = 0 for x E U.

We first show that Lemma 3.2 implies Proposition 3.1. So assume it. Set
Md = {(x1, ... , xd) E xdM: xi ~ Xj if i =1= j(xi ~ xo if M is compact)}.
(1) If X E Md then there exists an open neighborhood, Ux , of x in Md and

Yx ~ B such that J.11 (Yx) = 1 and M2 ( Yx + 03A3(vj)yj) = 0 for y ~ Ux.
Let us show how (1) implies the proposition. Then we will use Lemma 3.2
to prove (1). Clearly, Md is separable. There is therefore a countable sub-

covering {Uxj} of {Ux}x~Md. Set Uj = Uxj and Y = Yxj. Then

Take X = ~Yi.
We now derive (1). Let x = (xl , ..., xd) . Let Wi, i = 1, ..., d be an

open neighborhood of xl such that W n W = 0 if i ~ j and Xo ft W if M
is compact. Let Ux = W, x ... x Wd. Let Yx be the " Y" of Lemma 3.2 for
U = Wl and v = VI. Then J.11 (Yx) = 1. If Y = (y1, ..., yd) E Ux then Yi E
M - W1 for j  2. Thus Yx + 03A3j2(vj)yj = Yx. Thus 03BC2(Yx + 03A3j1(vj)yj) =
0 for y e Ux. 
We are left with the proof of Lemma 3.2. As above the following "local"

assertion implies the lemma.
(2) If x E U then there exist a neightborhood, Ux, of x in U and Yx E f!4

such that 03BC1(Yx) = 1, Yx + ~y = Yx for 9 E W*, y E M - U and
,u2(Yx + Vy) = 0 if y ~ Ux.

We are left with the proof of (2). Since the proof in the case of n  3 fairly
simple and contains most of the essential ideas for the more delicate case of
n = 2, we will now give the complete proof for the case n  3. It would be
worthwhile to read this even if there is only interest in the case n = 2 which
we will prove in the next section.

Let x E U. Let (U1, W) be a chart for U such that x E U1 and
(i) 03A8(U1) = B(O; 3),
(ii) BP(x) = 0.
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Set V, = (03A8)-1(B(0; 5/2)). On Rn we use the usual Riemannian structure
and Lebesgue measure for the volume element. We will write ~···~i for the
pointwise norm on Hom (TM*, W ) corresponding to ,&#x3E;i and Bi. We fix
an arbitrary inner product, B, on W * and write ~ ~ Il for the norm on

(Rn)* Q W* corresponding to the usual inner product tensored with B.
(A) There exist constants D1, D2 &#x3E; 0 such that if f ~ C~c(V1; W ) then

Let {y1, ... , yn} be the local coordinates on U, corresponding to W. Set

g,,,,i(z) = dyp, dYq&#x3E;i,x, z E U1.

Then there exist 03B1i, 03B2i &#x3E; 0 such that if z E Closure (V1) then

Also, coilu, = ui dY1AdY2A ... Adyn . There exist y; , 03B4i &#x3E; 0 such that

There exist Mi, mi &#x3E; 0 such that

Take Dl = min {03B3i03B1imi}, D2 = max {03B4i03B2iMi}. (A) now follows.
Note. We will also use this result in our proof in the case n = 2.
Set Ux = 03A8-1(B(0; 1)).

(B) There exist E, F &#x3E; 0 such that if 1/4 &#x3E; s &#x3E; 0 there exists an open
covering W, i = 1, ... , N  E03B5-n, of Ux with W ~ V1 and there exist
fi,03B5 ~ C~c(V1) such that
(a) ~dfi,03B5~ = 1 and
(b) fi,03B5(z)  F03B5-n/2+1 1 for z ~ Wi.

Indeed, let f03B5 be as in Lemma 2.1 and z, , ... , zN be as in Lemma 2.3. Set
W = 03A8-1(B(zi; 03B5)). Put gi,03B5(y) = f03B5(03A8(y) - zi) if y ~ V1 and 0 otherwise.
Then ~dgi,03B5~1  (D2)1/2 by (A) and gi,03B5(y)  C(n)03B5-n/2+1. Set f,E -
gi,03B5/~dgi,03B5~1, F = C(n)/(D2)1/2 and E = (2n1/2 + 1). This proves (B).
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Let w E W be such that B1(w, w) - 1 and v(w) = ~v~B1. Set

03B1i,03B5 = h,£ ~ w. Then Il d03B1i,03B5 Il = 1. If u E W then

with C = F~v~B1.
Set Zj@,, = (À E V’: IÀ(aj,e)1  C03B5-n/2+1/2}. Then Lemma 1.1 implies that

If Y ft U then 03B1j,03B5(y) = 0 so Zj,03B5 + qJy = Zj,, for ç E W*. Also, if u E Ux
then

Hence Lemma 1.1 implies that

(A) implies that /1 03B1j,03B5 Il 2  (D21D1 )1/2. Set 03BE = C2D1 /8D2 . Take Z, = ~JZj,03B5.
Then

if U E Ux and Z03B5 + ~y = Z03B5 if ~ ~ W* and y ~ M - U. Since

lim03B5~003B5-ne-C203B5-n+2/8 = 0 this implies that given 8 &#x3E; 0 there exists

Y, c- A such that 03BC1(Y03B5) = 1, Y03B5 + ~y = Ye for 9 E W*, y E M - U and
03BC2(Y03B5 + vu ) = 0 for u E Ux . This combined with the argument in the proof
of Lemma 1.2 completes the proof of (2) in the case n  3.

4. The proof of Lemma 3.2 for n = 2

In this section we assume that n = 2, otherwise the assumptions and
notation are as in §3. To simplify notation, we denote , &#x3E;1, B1, úJ1 by the
same symbols without the subscripts. We will be using some elementary
Riemannian geometry. For this we refer to [H], Chapter 1. Let d(x, y) be the
Riemannian distance on M. If m E M then we denote by ~v~m the norm of
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v E TMm relative to , &#x3E;m. Put B(m; x; r) = {v E TMm : Ilv - xllm  rl
for x E TMm. If x E M we set Bx(r) = {y E M: d(x, y)  m}. For m ~ M,
let expm be the (geodesic) exponential map of M at m. For each m E M
let Sm &#x3E; 0 be such that expm : B(m; 0; sm) ~ Bm(sm) is a surjective
diffeomorphism.

If we identify T(TMm)v for v E TMm with TMm in the canonical way then
d(expm)0 = I for m E M. This implies that for each ô &#x3E; 0 there exists

0  11m(b)  sm such that if f ~ C~c (Bm(~m(03B4)) then

Here d,,x is the Lebesgue measure on TMm corresponding to an ortho-
normal basis relative to  , &#x3E;m.

Fix x E U. Choose s &#x3E; 0 such that Bx(3s) c U. Put r(03B4) =
min {s/3, ~x(03B4)/3}. Set U1 = Bx(3r(03B4)), VI = Bx(5r(03B4)/2), W1 = Bx(r(03B4)). We
now prove the assertion of (2), §3, for Ux = W, if à is chosen to be

sufficiently small. Let 0  03B6  1, and let f03B5,1-03B6 be as in lemma 2.2. Set
ue,,(x) = f03B5,1-03B6(x/r(03B4)). Then ~u03B5,03B6~ = 1 (here we are using the norms as in
§2) and

Let Zl, ... , ZN (N  (1 + 2/2)203B5-2 = Ee-2) be as in Lemma 2.3 for
e &#x3E; 0. Put Zi(03B4) = expx(B(x; r(03B4)zi; r(03B4)03B5)). Define 03BEi,03B5,03B4,03B6 ~ C~c(V1) by
03BEi,03B5,03B4,03B6(y) =0 if y ~ V1 and 03BEi,03B5,03B4,03B6(expx (y)) = u03B5,03B6(y - r(03B4)zi) for y E
B(x; r(03B4)zi; r(03B4)03B5). Put fi,03B5,03B4,03BE = 03BEi,03B5,03B403B6/~d03BEj,03B5,03B4,03B6~. Then (*) implies that

fi,03B5,03B4,03B6(Z)  (1 - 03B6)|(log e)/27r(l + £5)e(x)11/2 for z E Zi(03B4). (**)

Let w e W be such that v(w) = ~v~B and B(w, w) = 1. Put

Then ~d03B1i,03B5,03B4.03B6~ Il = 1 and if u ~ Zi(03B4) then

Our assumption on v implies that IlvllB &#x3E; (803C0|(x)|1/2. Thus we can choose
03B6 and £5 so small that
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for some y &#x3E; 0. Fix thèse values of £5 and (. Set 03B1j,03B5 = 03B1j,03B5,03B4,03B6 and Ux = W1.
Set Zj,03B5 = {03BB E V’ : |03BB(03B1j,03B5)|  (2 + y)llog 03B5|1/2}. Then lemma 1.1 implies

that

If u E M - U and ~ E W then ~u(03B1j,03B5) = 0 so Zj,e + gu = Zj,03B5. Also if u E
Zj then Zj,03B5 + (v)u ~ (À E V’: 03BB(03B1j,03B5 /~d03B1j,03B5 ~2)  y(2 + y)llog 03B5|1/2/~d03B1j,03B5 ~2}.
Thus, if we set çj = (y(2 + 03B3)/ ~d03B1j,03B5 112)212 then Lemma 1.1 implies that

Now §3 (A) implies that there exists a constant D &#x3E; 0 independent of j, e
such that Il d03B1j,03B5 Il  D. Thus if we set 03BE = y/2D2 then çj &#x3E; ç. Hence if u E Zj
then

Put Z03B5 = ~jZj,03B5. Then

Z03B5 + ~u = Z03B5 for ço E W*, u E M - U and

Thus given 03B5 &#x3E; 0 there exists Y, E f!4 such that 03BC(Y03B5)  1 - 8,

Y03B5 + ~y = Y03B5 for y ~ M - U, ~ ~ W* and 03BC2(Ys + vu)  03B5 for u ~ Ux.
The result now follows from the argument in the proof of Lemma 1.2.

5. Some représentation theory

As in §3, let M be a smooth, paracompact, connected, orientable manifold.
Let (W, ( , )) be a finite dimensional real inner product space. Fix a
Riemannian structure, ,&#x3E; and a volume element, co, on M. If M is

compact then fix a base point, xo , set V = C~c (M; W ) if M is non-compact
and V = {f ~ CI (M, W): f(x0) = 01 if M is compact. We set Q( f, g) =
(df, dg) as in §3. Let J.1 be the Gaussian measure on V’ corresponding
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to Q. We define a unitary representation, S, of V on L2(V’, 03BC) by
S(v)f(À) = e

Let VI’ V2, ... be a fixed sequence of non-zero (not necessarily distinct)
elements of W’. If dim M = 2 then we assume that ~vi~ &#x3E; (803C0|(x)|)1/2 for
x e M and all i. If I = (il , ..., id) define for x = (Xl’ ... , xd) e Md (see
§3), 03A8I(x)(f) = 03A3jvij(f(xj)), for f ~ V. Then 03A8I defines a continuous map-
ping of Md into V’ (with the weak topology). It is easily seen that

03A8(Md) ~ B. If E is a Hilbert vector bundle over Md+k for d  0, k  0 and
if úJ1 is a volume form on M then we set L2(E, 03C91) equal to the space of
square integrable cross sections of E (here we use the product measure cvd+k
on Md+k). If f ~ L2(E, 03C91), v e V and I = (i1, ..., id) then we set

Let , &#x3E;1, B1, Mi be respectively a Riemannian structure on M, an inner
product on W and a volume form on M. Let Q1 be the inner product defined
as above on V using ,&#x3E;1, BI and úJ1 in place of  , &#x3E;, B, M. Let MI be
the corresponding Gaussian measure on V’.

LEMMA 5.1. Let d &#x3E; 0. If C is a bounded linear operator from L2(V’, 03BC) to
L2(V’, 03BC1) ê L2(E, 03C91) such that CS(v) = S(v) Qx 03C3I,E(v)C for all v E V
then C = 0. 

Proof. We write 03A8I(x) = 03A8I(x1, ...,xd). Set Q(À) = 1 for all À- E V’. We
note that Closure(span(S(v)03A9)) = L2(V’, Il). Indeed, span {ei·(v):v e V} is
dense in L2(V’, 03BC) (cf. [Gu, §7.2]). This implies that C = 0 if and only if
Cn = 0. Let f = CQ. We assume that f ~ 0 and derive a contradiction.
Then we can look upon f as a function on V’ with values in L2(E). Thus we
can write feÀ-, x) E Ex . Let

Then C is a continuous linear map of L2(V’, 03BC) onto D. On V’ x M’I’ we
put the product measure, J.1 x úJ1+k. Let 0393(03BB,, x) = Â + 03A8I(x)~ v’ for
03BB e V’, x E M’+’. Then F is continous. We define a measure, y, on V’ as
follows:

Thus



16

Then the representation of V on D given by the restriction of S 0 03C3I,E
to D is equivalent with the representation, 03B2, of V on L2(V’, y) with
03B2(v)~(03BB) = ei03BB(v) ~(03BB). Thus C induces a continuous linear map, Ci, of
L2(V’, 03BC) into L2(V’, y) such that C1S(v) = 03B2(v)C1, v E V and C1Q = 03A91
(03A91 is the constant function 1 on V’ looked upon as an element of L2(V’, y)).
Now

On the other hand

Set C*103A91 = h. Then

Since both y and h(03BB) d03BC(03BB) are cylinder set measures (finite valued a-additive
measures on f!4), we see that this implies that dy = h(03BB) d03BC(03BB).

Proposition 3.1 implies that there exists X E f!4 such that 03BC(X) = 1

and 03BC1(X + 03A8I(x)) = 0 for all x E Md+k. Thus y(X) = J h(03BB) d03BC(03BB) =

IV1 h(À) d03BC(03BB) = (03A91, 03A91) = ~ f1l2. On the other hand y(X) = 0 by (*). This
is a contradiction, so the lemma follows.

We now assume that vl , ... , vr are distinct and satisfy the hypothesis
above. Let El , E2, ... , Er be Hermitian vector bundles over M. We
define an action of V on each Ei by 03C3j(v)x|(Ej)x = eivj(v(xj)) I. Let

E = E, 0 E2 EB ... EB Er with action ~ 03C3i = a. Let (DE be the d-fold
tensor product bundle over Md with the corresponding tensor product
action of V, ~d03C3. Let Sd, the symmetric group on d letters, act on Md by
permuting the coordinates. We also let s E Sd act on ~dE by el 0 ... Q ed
over (x1,..., xd) goes to s(e1 ~ ... ~ed) = es1 ~ ... ~esd over

(xsl , ... , xsd). Then ~d03C3(v) commutes with the action of Sd.
By our definition of Md the action of Sd is free. We therefore have a

manifold N d = SdB Md. Let 03C0 be the canonical projection of Md onto Nd. We
note that úJd "pushes down" to a measure on Nd. We write L2(~dE) for
L2(~dE, úJd). Let Hd be the space of all f ~ L2(~dE) such that

sf(x1,... , xd) = f(xs1,..., xsd). We define a representation, 03C4, of V on

by 03C4(v)f(x) = ~d03C3(v)xf(x).
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The following result is undoubtedly a very special case of a well known result
that is true for totally discontinuous actions of discrete groups. We include
a proof since it is short.

LEMMA 5.2. There exists an open subset, Fd, of Md such that n is injective on
Fd and Nd - nF d has measure 0.

Proof. Whitney has shown [W] that we may assume that M is a closed analytic
submanifold of RN for some large N. Choose a non-constant real analytic
function,f, on M. Set Fd = {(x1,..., xd):f(x1) &#x3E; f(x2) &#x3E; ... &#x3E; f(xd)}.
Then clearly sFd n Fd is empty if s ~ 1. Set fij(x1, ... , xd) = f(xi) -
f(xj) for i ~ j. Then fij is real analytic and non-constant on Md for i ~ j.
Now, the complement to USEsd sFd is Ul~j{x ~ Md:fij(x) = 01. Since the
zero set of a non-constant real analytic function has measure 0 relative to
any volume form, the result follows.
We will "abuse notation" and think of rc as projecting onto Fd. Also Hd

is, under these identifications, just L2(OdElFd) with the same action of V. Set
~dE|Fd = Ed. Then Ed splits into a direct sum ~EdI over I = (i1,... , id),
1  ij  r and

Let 03C4I,E be the representation of V on L2(Ef) given by 03C4I,E(v)f(x) =
03C4(v)f(x).

LEMMA 5.3. Let U c Nd be open. Let C be a continous linear operator on

L2(V’, 03BC) à L2(Ef) such that C(S(v) ~ 03C4I,E(v)) = (S(v) ~ 03C4I,E(v))C for all
v E V. Then C(L2(V’, 03BC) ê L’(EÎu» c L2(V’, 03BC)  L2(EdIBU).

Proof. Let Z = Nd - U. Then

a direct sum of invariant subspaces under S (D 03C4I,E. Thus we must show
that if C is a continuous linear operator from L2(V’, 03BC) à L2(EdIBU) to

L2(V’, 03BC) é L2(EdIBZ) such that C(S(v) Qx 03C4I,E(v)) = (S(v) (x) 03C4I,E(v))C for
all v E V then C = 0. We first reduce this result to a special case. Let x E U
and let y E Fd be such that 03C0(y) = x. Then there exist open neighborhoods
W , ... , Wd of yl , ... , Yd such that W (-) Wj = 0 if i ~ j and W, =
W, x W2 x ... x Wd c Fd. Now Ux03C0Wx = U. A countable number of
the 03C0Wx cover. Let Px be the projection of L2(EdI|U) onto L2(EdI|03C0Wx) given by
multiplication by the characteristic function of n V£ . If C(I Q Px ) = 0 for all
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x ~ 03C0-1U then C = 0. We may thus assume that U = W1  W2  ...  Wd
as above.

For this special case we need the following simple observation:
(1) Nd - U = 03C0((~i  d(M _ W)) nMd).
Set Zi = n(( x d(M - W )) ~Md). Let Qi be the projection of L2(E|z) onto
L2(EdI|Zl) given by multiplication by the characteristic function of Zi. Then
it is enough to prove that Ci = (I ~ Qi)C = 0 for all i = 1, ... , d. So
assume that Ci ~ 0. We now follow precisely the same line of argument as
in Lemma 5.1. Let f ~ L2(EdI|U) be such that g = Cif ~ 0. As above define

and

Let Qi be the representation of V on L2(V’, ui) given by (i(v)u)(03BB) =
ei03BB(v) u(03BB). Then Cl induces a continuous linear map, L, of L2(V’, 03C31) to
L2(V’, U2) such that if n, is the function identically equal to 1 on V’ as an

element of L2 ( V’, 03C3l) then L03A91 = 03A92 and L1(v) = 2(v)L f or v E V. As
above, this implies that there exists h E L2(V’, 6, ) such that d03C32 = hdal.
Lemma 3.2 implies that there exists X E f!4 such that 03BC(X + 03A8I(x)) = 0

for x E U and J.1(X + BJI¡(x)) = 1 for x E Z, (take X to be the X in Lemma
3.2 corresponding to Wi and vi). Thus 03B4(X) = 0 and 03C32 (X ) = ~g~2. On the
other hand, (*) implies that 03C32(X) = 0. We have derived our desired con-

tradiction. The lemma now follows.

If H is a Hilbert space then we denote by End H the space of all bounded
linear operators of H to H with the strong topology (the topology defined
by the semi-norms Il Tvll, v E H). If S c End H then we set Comm (S) =
{A E End H: A T = TA for all T ~ S}. The Von Neumann density Theorem
asserts that if S is a subalgebra of End H, containing I, such that if T E S
then T* E S then Comm(Comm(S)) = Closure(S) (cf. [D], p. 42).

LEMMA 5.4. Let the notation be as in the previous lemma. If v E V then
S(v) Q I c Closure(Span{S(v) ~ 03C4I,E(v): v e V)).

Proof. If X is a Borel set in Nd let ~X denote the characteristic function of X.
If f ~ L~(Nd) let Mf be the operator of multiplication by f on L2 (E ). Then

Closure(span{M~U: U open in N d 1) ::D {Mf:f ~ L~(Nd)}.
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Now the previous Lemma implies that

Comm(Comm(span{S(v) Qx 03C4I,E(v): v ~ V})) ~ {M~U: U open in Nd}.

Thus the density theorem implies that

Closure(span{S(v) Qx 03C4I,E(v): v ~ V}) = A

contains the operators 10 Mf, fe Loo (Nd). Since I Q L¡,E(V) is such an

operator, we see that A contains the operators

For the next lemma we assume in addition that if vi ~ vi and if (vi, Vj) &#x3E; 0

then vi - vj ~ {v1,..., vr}. We note that this implies that if vi-vj ~ 0
then ~vi - vj~  min {~vk~: k = 1, ... , r}. Indeed, if (vi, vj)  0 then

~vi - vj~2  |vi~2 + ~vj~2. If (vi, vj) &#x3E; 0 and vi ~ vj then vi - vj = Vk for
some k.

LEMMA 5.5. Let d, d’  0 and suppose that there exists a continuous non-zero
linear map of L2(V’, 03BC)  L2(EdI) into L2(V’, 03BC)  L2(EJ’) such that

C(S(v) Q 03C4I,E(v)) = (S(v) ~ 03C4J,E(v))C for all v e V. Then d = d’ and
I = J.

Proof Suppose that d ~ d’. Then by replacing C by C*, if necessary, we
may assume that d &#x3E; d’. If we argue as above it is enough to prove that C
is 0 on

L2(V’, 03BC)  L2(EdI|W1  ...  Wd)

for W1 x ··· x Wd c Fd and Wi ~ Wj = 03A6 if i ~ j. We thus replace C by
its restriction to this space. If Qi is the usual projection of L2(Ed’J) onto
L2(Ed’J|( d’(M-Wl))~Fd’) then Lemma 3.2 combined with the argument in
Lemma 5.3 implies that (I ~ Qi)C = 0.

Since d &#x3E; d’ it is easily seen that Ud 1 x d’ (M - W) - x dM. This proves
the result for d ~ d’. So assume that d = d’. In this case we may argue as
in the proof of Lemmas 5.2 and 5.3 to see that if ~ ~ L~(Nd) then
C(I ~ M~) = (I Q M~)C. This implies that if we define a new action, y, on
L2(EJ) given by

then C(S(v) Qx I) = (S(v) Qx y(v))C.
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Our new hypothesis implies that if vik - vjk ~ 0 and if dim M = 2 then
Il V1k - vjk ~ &#x3E; (8nlg(x)1)1/2 for x ~ M. So if I ~ J then Lemma 5.1 implies
that C = 0.

6. Unitary représentations of groups of smooth mappings

Let U be a compact Lie group. We write 1 for the identity element of U. Let
M be as in §3. Let  , &#x3E; be a Riemannian structure on M and let cv be a
volume element for M. Let G = {g E Coo (M; U): g(m) = 1 outside of a

compact set}. If K is a compact subset of M then we set GK = {g E G:
g(m) = 1 if m ft K}. We endow GK with the topology of uniform conver-
gence with all derivatives and look upon G as UKGK . Then G is a topological
group under pointwise multiplication.

Let u be the Lie algebra of U which we identify with TU1 (the tangent
space at 1) as usual. Fix B, an Ad(U)-invariant inner product on u. If x,
y ~ U then set R( y)x = xy-l. If W is a finite dimensional vector space
over R then let 03A91(M, W ) denote the space of all smooth 1-forms on
M with values in W. If K is a compact subset of M then we set n’ K (M; W)
equal to the space of ail 1 E QI (M; W ) such that 0 for x ft K. We
endow S2K(M; W ) with the topology of uniform convergence with all deriva-
tives. We set 03A91c(M; W) = UK03A91K(M; W ) with the corresponding union
topology.

Before we introduce the main results of this paper let us record a result
which we feel is necessary in the course of their proof. The argument below
is based on a suggestion of A. Borel.

LEMMA 6.1. d(C~c(M; W)) is closed in 03A91c(M; W).

Proof. It is enough to prove this result for W = R. Let N be a connected,
paracompact, orientable, smooth n-dimensional manifold. Set Zkc(N) =
{~ ~ 03A9kc(N): d~ = 0} and put Bkc(N) = d03A9k-1c(N) . Then Hkc(N) =
Zkc(N)/Bkc(N) is called the k-th (de Rham) cohomology of M with compact
support. If ~ E 03A9kc(N) and if v E S2n-k (N ) then set

Then (d1Jlv) = (-1)k-1(~|dv) for ~ e S2k-’(N), v e 03A9n-k(N) and if we set
Zk(N) = {~~03A9k(N):d~ = 0}, Bk(N) = d03A9k-1(N), Hk(N) = Zk(N)/Bk(N)
then ([deR; §22, §23]) ( 1 ) induces a nondegenerate pairing of Hkc(N) with
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Hn-k(N)(i.e.(~|Hn-k(N)) = 0 implies ~ = 0). Thus if dim Hn-1 (N)  00

then dim HJ (N)  oo .

(1) If dim Hn-1(N)  oo then dC~c(N) is closed in 03A91c(N).
Indeed, Zj (N) is clearly closed in 03A91c(N). Let Z be a finite dimensional
subspace of Z1c(N) such that Z1c(N) = dC~c(N) ~ Z. If N is compact, then
choose xo E N and let V = {f ~ C~(N):f(x0) = 01. If N is non-compact
then set V = Cc’ (N). We set A(v, z) = dv + z for v E V, z E Z. Then

is continuous and bijective. Since V x Z is an LF space this implies that A-1
is continuous. Thus A( V x {0}) = dC~c(N) is closed.
We now return to M. Let {Ui} be a covering of M such that all non-empty

finite intersections of the U are contractible (e.g., take a covering by convex
neighborhoods relative to , )). For m = 1, 2,..., define

Nm = UimUi. Then dim Hn-1(Nm)  oo for all m. If K is a compact subset
of M then K c Nm for some m. Thus ( 1 ) implies that dCK (M) is closed. This
completes the proof.

We now return to the situation at the beginning of this section. Let 03B2:
G ~ 03A91c(M; u) be defined by

(i.e., 03B2(g) = (dg)g-l). We set V = 03A91c(M; u) and define a representation n
of G on V by (03C3(g)~)x = Ad(g(x))(~x(v)), g E G, x E M, v E TMx. Then
f3(xy) = 03B2(x) + 03C3(x)03B2(y). We will sometimes write Ad(g)~ for 03C3(g)~.
For q, v E V, let

Here we use the inner product on TM* ~ u corresponding to  , &#x3E; and B.
It will sometimes be necessary to write

Let H denote the Hilbert space completion of V with respect to ( , ). Let
J.1 be the Gaussian measure corresponding to this inner product (§1). Then
J.1 is countably additive (cf. [GV], Theorem 6, p. 332). We note that if g E G
then Q(g) extends to a unitary operator on H and (a, H) is a unitary
representation of G.
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If f ~ L2(V’, Il) and if g E G then we set T(g)f(À) = ei03BB(03B2(g)) f(À. 6(g)).
Then (T, L2(V’, 03BC)) is a (strongly continuous) unitary representation of G.
We will also write T = Tc &#x3E;,B,03C9.

Let 4 be a maximal abelian subalgebra of u. Let à be the root system of
uc with respect to 1)c (here sub C indicates complexification). If a e A then

ah) = iî with a E ’. Let ~03B1~B be the norm of a relative to B|h. The main
theorem is

THEOREM 6.2. Assume that U is semi-simple. If dim M = 2 then we assume
that ~03B1~B &#x3E; (803C0|(x)|)1/2, for x E M (w = Vol,&#x3E;) and a E A. If dim M  2
then T , ),B,úJ is irreducible. Let  , &#x3E;1, B1, 03C91 be an arbitrary triple as above
and let J.1l be the corresponding Gaussian measure on V’. If C is a non-zero
bounded operator from L2(V’, J.1) to L2(V’, 03BC1) such that CT , &#x3E;,B,03C9 (g) =
T,&#x3E;1,B1,03C91 (g)C for g E G then

The proof of this result will involve more notation and concepts. For the
moment we assume that V is a locally convex, separable, topological vector
space over R. Let ( , ) be an inner product on V and let 03BC be the corre-
sponding Gaussian measure on V’. We assume that V1, V2 are closed
subspaces of V such that V = v ~ V2 and that (VI, V2 ) = 0. Let Mi be the
corresponding Gaussian measure on V’l for i = 1, 2. We assume that 03BCi is

countably additive for i = 1, 2. We identify lfi’ with {03BB E V’ : Â(V2) = 0}.
Then V’ - K’ EB V’2 . It is easily seen that 03BC = J.1l x J.12 (product measure).
Thus Fubini’s theorem implies that the map S from L2(V’1, 03BC1)  L2(V’2,03BC2)
to L2 ( V, 03BC) given by S( f Q g)(À + v) = f(À)g(v) is a unitary isomorphism.
Here à denotes completed tensor product.
We will also make use of the Fock space. Let F(H) = ~n0n(H)c.

Here n(H) is the completed n-fold symmetric power of H (the inner
product is defined by (vn, vn ) = IlvI12n). The subscript C will always indicate
complexification with the Hermitian extension if there is an inner product.
If h E H then set

Here h° = 0 and hn = h Q h 0 ... (D h, n-times. Then (EXP hl , EXP h2) =
e(h1,h2). The next results that we will be describing can be found in [Gu],
§2.1, §7.2. Span{EXP v: v E V} is dense in F(H). We set for v E V,



23

ev(03BB) = exp (i03BB(v) + (v, v)/2). Then span{ev: v e V} is dense in L2(V’, 03BC).
Furthermore {EXP (v): v E V} and {ev: v e V} are linearly independent
sets in their respective spaces. Since (ev, ew) = e(v,w) for v, w E V we can
define a natural isometry Fv: L2(V’, 03BC) ~ F(H) by FV(ev) = EXP v.
If V = Vl ~ V2 as above then F(H) = F(H1)  F (H2) and

FV(L2(V’1, 03BC1)lV’2) = Closure(span{EXP v: v e V1}). At this point we will
explain and fix an error in [GGV, II]. In that paper they look at a situation
such as this and consider the space Q = {f ~ L2(V’, J.1): f(. + À) = f(.)
for À e V’2}. We assert that if V2 ~ H2 then Q is not defined. Indeed, let
À ~ V’2 - H2 . Then there exists X E f!4 such that 03BC(X) = 1, J-l(X - À) = 0
(Lemma 1.2). Let xx be the characteristic function of X. If f ~ L2(V’, 03BC) then
xxf = f. But Xx(. + À) = ~X-03BB = 0 as an element of L2(V’, J-l). Thus if
’’/ E Q" then Xx+;.f = f so f = 0 in L2. We replace this nonsense with the
following result.

LEMMA 6.3. Let V = V1 ~ V2 = V3 ~ V4 be two decompositions of V as
above with closures in H, Hi, i = 1, 2, 3, 4. Suppose that Hl ~ H3 = (0).
Then L2(V’1, 03BC1)1V’2 ~ L2(V’3, 03BC3)1V’4 = 1V’. Here the 03BCi are the Gaussian
measures corresponding to (, )|Vl respectively and we assume that the proper-
ties above of (V1, V2) are satisfied by (V3, V4).

Proof. By the above we must show that (~ n(H1)) n (~ n(H3)) = 1. So
suppose that a = L an e (~ n(H1)) n (~ n(H3)). Then comparing
homogeneity, we see that an e Sn (Hl ) n n(H3) for all n. Thus we need only
show that sn (Hl) n n(H3) = (0) for n &#x3E; 0. If n = 1 this just says that
Hl n H3 = (0) as assumed. So assume, inductively, the desired result

for n (1). If a e H then define Ga: n+1 (H ) ~ n(H) by ~axn+1 =
(n + 1)(x, a)xn. Then Oa defines a bounded operator. Furthermore, if

x e n+1(H1) and oax = 0 for all a e Hl then x = 0. Now ~a(n+1 (Hi)) ~
n(Hi) for i = 1, 2 and a e Hl . Thus the inductive hypothesis implies that
~a(n+1(H1) n n+1(H3)) = (0) hence n+1(H1) ~ n+1(H3) = (0).

We now begin the proof of Theorem 6.2. Let 1) be a maximal abelian
subalgebra of u. Let ~ = {X ~ u: B(h, X) = 0}. Put v - 03A91c(M; 1)), and
V2 = 03A91c(M; h~). Then V = V1 ~ V2 as above. We fix a base point xo (as
usual) if M is compact, and set A = {f ~ C~(M; 1)): f(x0) = 0} if M is
compact and A - C~c(M; 1)) otherwise. Endow A with the topology given
as in §3, 4. We look upon A as an abelian topological group. Define W(a) =
T(exp a) for a e A. Then W defines a (strongly continuous) unitary
representation of A of L2(V’, 03BC).
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As above L2(V’, 03BC) = L2(V’1, 03BC1) ~ L2(V’2,03BC2). Under this identification
the action W is given as follows

Thus if we define W1(a)f(03BB) = ei03BB(da)f(03BB) for f~ L2(V’1,03BC1) and W2(a)f(03BE) =
f(03BE·03C3(exp a)) for f E L2(V;, 1l2) then under the above identification

W = W1 ~ n;. We now analyze each of the representations Wi, i = 1, 2.
Let Hi denote the Hilbert space completion of v, i = 1, 2. Let Fi = FVl:

L2(V’i, 03BCi) ~ F(Hi) (defined as above). We note that W2(a)eh = ea(expa)h for
h E h2. Thus

Here sm(a) is the representation on m(H2) corresponding to a(a)IH2.
We have (~) = ~03B1~0394(u)03B1, an orthogonal direct sum relative to the

Hermitian extension of B to uc (here, as usual, (uc),,, is the a-root space).
Let a, , ... , ar be an enumeration of A. Thus the complexification of the
vector bundle Hom(TM, h~) splits into a direct sum E1 ~ E2 ~ ... ~ Er
where Ei is the complexification of TM* and A acts on Ej via

03B2j(v)xu = eiâj(a(x)) u for u E (Ej)x. Let f3 denote the action 131 ~ ... ~03B2r on
E, S ... ~ Er = E. Then H2 = L2(E). Here we are using the notation in
§5. Thus dH2 = L2(dE) where (DE is a vector bundle over M’. The
action ~d03C3 goes over to ~d03B2 as in §5. Under this identification the action
of Sd on QdH2 given by s(v, ~ ... (8)Vd) = Vs1 1 (D ... ~vsd corresponds to
(s-1f)(x1, ...,xd) = s-1f(xs1, ... xsd). Let Fd be as in Lemma 5.2. Thus,
as in §5, d(H2) = L2(~dE|Fd). We write (as in §5) ~dE|Fd = Ed. Then
Ed = ~EdI an orthogonal direct sum over I = (il , ...,id), 1  ij  r
(here we have replaced the vj with j). The conditions on the roots in
Theorem 6.2 imply that the j satisfy all of the conditions on the vj. Indeed,
it is standard that if 03B1, 03C4 are roots and if 03B1 ~ r, and B(, r) &#x3E; 0 then 03B1 - 03C4

is a root. We therefore see that F(H2) ~ 1 (9 ~d&#x3E;0 ~IL2(EdI) where the
action on each L2(EdI) is given by 03C4I,E as in §5.
We now analyze W . Lemma 6.1 implies that dA is closed in V1. Let Z =

{h E Hl : (dA, h) = 0}. Then H1 = Closure(dA) 0 Z. Define Q(a, b) =
(da, db), a, b E A. Then Q defines a continuous inner product on A. Let J.1Q
be the corresponding Gaussian measure on A’. We define a representation
of A on L2(A’, 03BCQ), S, by S(a)f(À) = ei03BB(a)f(03BB). We note that as a represen-
tation of A, L2(V’1, 03BC1) ~ L2((dA)’, J.1’) ~ F(Z) with J.1’, the Gaussian
measure on (dA)’ induced by ( , ) restricted to dA and the action of A on



25

L2((dA)/, 03BC’) is given by 03BE(a)f(03BB) = ei03BB(da)f(03BB). Since d: A ~ dA is con-

tinuous, linear and bijective the closed graph theorem implies that it is a
topological isomorphism. The pullback of J.1’ is J.1Q. Thus as a representation
of A, (W1, L2(V’1, J.11)) is equivalent with (S Q I, L2(A’, 03BCQ) ~ F(Z)). Let
us recapitulate our analysis in the following result.

Lemma 6.4. ( W, L2(V’, 03BC)) is unitarily equivalent with the direct sum of
(S (g) l, L2(A’, 03BCQ) OO F(Z)) and

Furthermore, the unitary equivalence, F, can be chosen so that
F(L2(V’1, 03BC1)1V’2) = L2(A’, 03BCQ) OO F(Z).

We use this decomposition to prove the theorem.
(1) Closure(span{T(g)1V’: g E G}) = L2(V’, 03BC).
Indeed, let C: L2(V’, 03BC) ~ L2(V’, 03BC) be such that C · W(a) = W(a) · C for
a E A. Set Ci = FCF-1. Let P be the orthogonal projection of

onto L2(A’, J.1Q) ~ F(Z) and let Pd,l be the orthogonal projection onto

Then Lemma 5.5 implies that PC1Pd,I = Pd,IC1P = 0 and Pd,I CI Pd’,J = 0 if
d ~ d’ or if d = d’ and I ~ J. Thus Lemma 5.4 implies that

Closure(span{FW(a)F-1: a e A}) ~ {~S(a) ~ I: a e AI.

Now,

Closure(span{W(a): a e AI) = F-’ Closure(span{FW(a)F-1: a e AI)F.

Thus, if we set v(il)f(î) = e’(if(Â) for f ~ L2(V’, 03BC) and 1 c- V then

If x E u then x is contained in a maximal abelian subalgebra of u. Thus

Closure(span{T(g): g E G}) ~ {v(df):f ~ C~c(M; u)}.

Now T(g)v(X)T(g)-1 = v(Ad(g)X) for g E G, X ~ v.
We assert that L = span{Ad(g)df : g E G, f ~ C~c(M; u)} is dense in H. In

fact, the map X - Ad(exp X)df is real analytic from C~c(M; u) to H. We
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may thus differentiate to find that

[X, d Y] E Closure(span{Ad(g)df: g E G, f E C,’ (M; u)l)

for X, Y E Ccoo (M; u). If x, YEU and if f, g E CI (M) then consider X = fx,
y = gy. Then [X, d Y] = fdg @ [x, y]. Since u is assumed to be semi-simple
[u, u] = u. Thus if X, , ... , Xd is an orthonormal basis of u then

Closure(span{Ad(g)df : g E G, f ~ C~c(M; u)})

This latter set is obviously dense in H. We conclude that Closure(span{T(g):
g E G}) contains {v(X): X ~ L} with L c V a dense subspace of H. The
above described isomorphism of L2(V’, 03BC) with the Fock space on H now
implies that span{v(X) 1 v,: X E LI is dense in L2(V’, 03BC). This proves (1).
(2) If C is a continuous linear operator on L2(V’, 03BC) such that

C · T(g) = T(g) · C for all g E G then ClV’ ~ 1V’.
Let us show how (2) now implies the first assertion of the Theorem. Let C
be an operator as above that commutes with the action of T(g) for g E G.
Then C 1V’ = cl v,. This implies that C acts by cI on span{T(g)1V’ : g E G}.
(1) implies that this space is dense so C acts by cI. Hence T is irreducible.
We now prove (2). The argument in the proof of (1) implies that

CF-l(L2(A’, J.1Q) (8) ff(Z)) C F-’(L 2(A", J.1Q) ~ F(Z)) since in particular
CW(a) = W(a)C for a E A. But then C(L2(V’1, 03BC1) 1V’2) C L 1 MI) 1 V’2. To
complete the proof of (2), we need the following structural property of u
(this is where the semi-simplicity of U is used).
(3) There exists a maximal abelian subalgebra 41 of u such that

h ~ h1 = (0).
We note that there exists X E u such that if h E 1) and if [h, X] = 0 then
h = 0. Indeed, choose X E h~ such that its projection onto every root space
is non-zero. Set u1 = { Y ~ u: [Y, X] = 0}. Choose 1)1 to be a maximal
abelian subalgebra of ul . If Y E u and if [Y, 1)1] ] = (0) then, in particular,
[ Y, X] = 0. Thus Y ~ h1. So 1)1 is maximal abelian in u. Since ul n h - (0),
1)1 n h = (0). This proves (3).

Let V3 = 03A91c (M; h1) and V4 = 03A91c (M; 1)f ). Let J.13 , J.14 be the corresponding
Gaussian measures on V’3 and V’4. Then the above argument applied to bj 1
instead of1) implies that C(L2(V’3, 03BC3)l V’4) c L 3 03BC3)l V’4. Now Lemma 6.3

implies that L2(V’1, 03BC1)l V’2,03BC3)l V’4 = CI v,. This proves (2) and hence com-
pletes the proof of the first (irreducibility) part of Theorem 6.2.
We now prove the second assertion. Let C be as in the second part

of Theorem 6.2. We use the notation in Lemma 5.1. We also write V, for
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03A91c(M; b) and Vh~ for 03A91c(M; h~). We write 03BCh (resp. 03BC1,h) for the Gaussian
measures on V’h corresponding to the inner product ( , ),&#x3E;,B,03C9 = (, )
(respectively, ( , ),&#x3E;1,B1,03C91 = ( , )1),

Since lV’ is a cyclic vector for T,&#x3E;,B,03C9 = T, Clv, =1= 0. If we argue as in

the proof of (2) above using Lemma 5.1 we find that C(L2(V’h, 03BCh)l(Vh~)’) c
L2(V’h, 03BC1,h)l(Vh~) for all maximal abelian subalgebras 1) of u. Thus we apply
Lemma 6.3 and (3) we find that ClV’ ~ lV’. Set Q (respectively, 03A91) equal
to 1V, as an element of L2(V’, 03BC) (respectively, L2(V’, 03BC1)). Then we assume
that CQ = 03A91.

Since T is irreducible, C* C is a multiple of the identity. So we may assume
that C*Q1 = Q. This implies that

for all g E G. The obvious calculation of the left and right side of this
equation implies that

Now, if X ~ Ccoo(M; u) then 03B2(exp tX) = tdX + O(t2). We therefore
conclude that

We first show that (*) implies that B1 - tB for some t &#x3E; 0. Indeed,
let Xl , ... , Xd be an orthonormal basis of u relative to B such that

B1(Xi, Xj) = 03BBi03B4i,j. Set X = 03A3fi Q X with f E Ccoo(M). Then (*) implies
that

Since this is true for all such f , it is clear that all the 03BBi are equal to (say) t.

If we change úJ1 to tcvl we may thus assume that B = Bl .
The second part of Theorem 6.2 now follows from

LEMMA 6.5. If
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Proof. Let x E M. By taking local coordinates, we may assume that M = Rn
and x = 0. We fix the usual inner product, ( , ), on (Rn)* . Then v, v&#x3E;y =
(G( y)v, v) and v, v&#x3E;1,y = (GI ( y)v, v). We may assume that G(O) = I. Also
03C9 = udy and col = U1 dy. We must prove that u(0)I = U1 (0)G1 (0). Let 9 E
C~c(Rn) be arbitrary. For e &#x3E; 0, let qJe(Y) = qJ(yle). Then d~03B5(y) =
03B5-1d~(y/03B5). A direct calculation yields

If we divide this by En-2 and take the limit as 03B5 ~ 0 we find that

for all 9 E CI (Rn). We may choose an orthonormal basis of (Rn)* such that
Gj (0) is diagonal with entries 03BE1, ... , Çn. Set vi = u1(0)03BEi/u(0). Set

Then one has

for all 9 E C~c (Rn). This implies that D = Dv. Hence vi = 1 for all i. This

is the content of the lemma.
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