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Introduction

This work is devoted to the construction of three types of L functions. In

particular we consider an algebraic group G (over a number field) whose
L-group LG has the form of a semi-direct product (SL2(C) x SL2(C) x
SL2()  WK where the Weil group WK acts on the connected component
SL2(C) x SL2(C) x SL2() via permuting the factors. LG has a natural
8 degree representation 03C3’ on C2 Q C2 Q C2. We then consider an automor-
phic cuspidal representation Il of G(A) ; Langlands has associated to Il and
03C3’ a L function L(II, 03C3’ s). The purpose of this work is to give a Rankin type
integral representation of L(II, 03C3’, s) and thereby deduce the functional
equation and meromorphic continuation (with exact location of the possible
finite number of poles) of this L function.

In April, 1985 Professor Paul Garrett communicated to us that he
succeeded in constructing an integral representing the Dirichlet series of
3 holomorphic modular forms. His work was very important to us. We
started to analyze his work by determining the structure on the space
P3BGSp3 under the action of (GL2 x GL2 x GL2)0. We found there exists
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a finite number of orbits and all the orbits except the unique open orbit are
negligible (in the sense of [P-R-(I)]). This leads to the natural generalization
where we consider the action of GL2 (IK)O (K a semi-simple Abelian algebra
of degree 3 over K) on P3BGSp3. There are three types of semi-simple
Abelian algebras K over K (i.e. K = K ~ K ~ K, K ~ K1 with K1 a
quadratic extension of K, and K2, a cubic extension of K).

In each of these cases we have an embedding of GL2(K)0 = {g E
GL2(K)|det g E Kx} into GSp3 . Under the action of GL2 (K)’ on P3B GSP3
there are a finite number of orbits and all the orbits except the unique open
orbit are negligible. This allows us, following the methods of [P-R-(I)], to
construct a Rankin type integral representation of the L function L(03A0, a’, s).
As a consequence we deduce that L(03A0, 0-’, s) has at most 4 poles. We are able
to define local yv and Lv factors (associated to the local component IYJ for
all finite places v in K. This is based on a very detailed study of the analytic
properties of the Siegel type Eisenstein series on GSpn (general n). We
emphasize here that these methods are similar to those in [P-R-(I)] and
[P-R-(II)].

It is possible to analyze L(II, 03C3’, s) also by using the work of Shahidi and
Langlands. This is an instance where Il has a standard Whittaker model.
This work is based on a study of a cuspidal Eisenstein series on a group of
type "twisted" D4.
We describe the contents of the manuscript.
In §0 we review the Langlands construction of the L function L(03A0, 03C3’, s)

mentioned above. Also we consider the functional equation satisfied by
LS(03A0, u", s) given in [Sh].

In § 1 we determine in Lemma 1.1 the exact orbit structure of GL2(IK)O in
the space P3BGSp3 = the variety of maximal isotropic subspaces of k6
(relative to a skew symmetric form). We find in Corollary 1 to Lemma 1.1
the isotropy group of the various orbits. We note that the isotropy group of
the unique open GL2(IK)O orbit in P3BGSp3 is an Euler subgroup in the sense
of [P]. This guarantees that there is a nice local theory associated to the local
zeta integrals of §3 (i.e. functional equation, etc.).

In §2 we prove the basic identity relating to the Rankin integral of a
Eisenstein series as GSp3 and a cusp form (in Il) on GL2 (K)° (integrated over
GL2(K)0BGL2(AK)0) to a zeta integral of a partial Whittaker transform
03A603C9,03C9’,s (of an element in the induced representation IS = indGSp3P3 (...)) and
a Whittaker function based in II. This allows us to show that this Rankin

integral is then Eulerian.
In §3 we develop the local theory of the zeta integral constructed in §2.

Namely, we prove in Proposition 3.1 the generic uniqueness principle about
the zeta integral (3-1). As a consequence we have the functional equation of
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the zeta integral in Corollary 1 to Proposition 3.1. Then we begin the calcu-
lation of (3-1 ) when all the data are "unramified". We show in Theorem 3.1
that in such an instance the zeta integral equals the local factor Lv(03A0v, 6’,
(s + 1)/2) times the product of two Abelian zeta functions in the numerator.
The importance of this numerator is that globally it precisely gives the
correct normalizing factor for the Eisenstein series used in the Rankin
integral. The proof of Theorem 3.1 requires two parts. We need first to
determine an explicit generating series representing the zeta integral in terms
of the characters of SL2 x SL2 x SL2() finite dimensional modules.

Secondly, we must relate this generating series to the factor Lv(I1v, a’, s).
The key idea here is that Lv(03A0v, 03C3’, s) can be interpreted as a "Poincare
polynomial" determining the decomposition of SL2 x SL2 x SL2()
acting on the space of polynomials on the vector space C2 Q C2 Q C2. In
this context we consider the isogeny between 0(4) and SL2 x SL2. Then
Lv(I1v, 6’, s) represents the Rankin product of 0(4) and SL2 ; in particular
the representation of 0(4) x SL2 in Y is viewed as the restriction of the
oscillator representation of the dual reductive pair O(4)compact x Sp2 to its
maximal compact subgroup O(4)compact x U(2). From this fact we finish the
proof of Theorem 3.1. We note that such a use of an oscillator representation
plays a critical role in the calculation of more general Rankin integral
representations of the type G x GLn where G is any classical group.

In Appendix 3 of §3 we consider the question of rationality of the local
zeta integrals; here we use techniques adapted from [P-R-(III)].

In §4 we study the analytic properties of a special family of Eisenstein
series constructed from an Abelian character (g ~ Idet gls) on the Siegel
parabolic in GSpn . We note here that this discussion is valid for general n. This
analysis is a continuation of the work in [P-R-(I)]. Here we make’a detailed
analysis of the intertwining operators that arise in the constant term of the
given family of Eisenstein series. In particular we require a complete analysis
of the local intertwining operators. In fact we find the "good" normalizing
factor for such operators (Theorem 4.2) that cancels off the possible poles.
The main idea in this section is to decompose such local intertwining
operators into a product of two intertwining operators. The first operator
corresponds basically to the intertwining operator coming from the "open
cell" in PrBGSpr (where r  n). The second operator is an intertwining
operator arising from an induced representation of GLn, coming from a
maximal parabolic having a Levi component of the form GLn-, r x GLr. The
analytic analysis of the first operator is accomplished in the Appendix to §4
using basic invariant theory of the linear action of GLn on the space Symn
of n x n symmetric matrices. The analytic properties of the second family of
intertwining operators is determined in a similar but somewhat easier manner.
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One critical point here is that once the correct normalizing factor is found
for each family of operators, it does not sufHce to multiply the two factors
together to obtain the correct normalizing factor for the given fixed inter-
twining operator. We may introduce extraneous poles this way (this is

precisely the problem of why we cannot use the usual Harish Chandra
theory to analyze our given intertwining operators). However, by a very
subtle analysis of the irreducibility properties of the representations Is
(for general s) we can get rid of the extraneous poles. We note that this works
for general n if K is a local nonarchimedean field. In the archimedean

case we can do this only for the cases n  3. The main difficulty is the

determination of the values of s where Is is reducible (for K archimedean).
Then in §5 we collect together the results of §2 to §4 and prove (Theorem 5.1)

that the restricted LS(03A0, 6’, s) has a meromorphic continuation with possible
poles at s = 0, 1 4, 3 4 and 1. At this point we introduce a new family of sections
in IndGSp3P3 (...) as input information for the construction of Eisenstein series.
This is done for each finite place v. From this we are able to define a
local factor Lv(03A0v, 6’, s) (associated to IIv ) which has the form 1IP(q:;’B)
with P a polynomial in [X] so that P(O) = 1. Moreover, we also get an

8(IIv, 6v , s) factor which has no zeroes or poles. Then as a conséquence we
can define Lfin(03A0, 6’, s) and show (Theorem 5.2) that Lfin has a finite number
of possible poles (at s = 0, 4 4 and 1). Moreover, we have a functional
equation relating Lfin (II, 6’, s) to Lfin (II, u, 1 - s) with an 8fin factor built
from the 03B5(03A0v, 03C3’v, s) factors defined above.

Notation

(1) If K is a local nonarchimedean field, let (Ç be the ring of integers and n,
the prime element in (Ç. Let q = card [/03C0].

(2) Let K be a local nonarchimedean field and 03C8 a nontrivial additive
character in K. We say 03C8 has order 0 if 03C8 is trivial on t9, but not on
03C0-1O

(3) Let be the usual local zeta function of a field Kv. If S is any finite set
of primes in a number field K, then (s = 03A0v~S03B6v. We use a similar notation
for any general Ls function with local factor Lv.

(4) Let S(X) denote the Schwartz Bruhat space of functions on X. If X is
an Archimedean object, then S(X) = C~c(X) the COO functions of compact
support in X.
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(5) Let G be a group and L a subgroup with x: L ~ KX a homomorphism.
Then we consider the quasicharacter in L given by 1 ~~ |~(l )|sK. We consider
the map of S(G ) to indGL (l -- |~(l)|sK) given by the map

We say an element of indGL(~ - |~(~)|s) is an entire section (in s) if it can
be obtained by the above construction.

(6) We consider the formation of Eisenstein series in the following special
case. Namely we let G be a reductive group, P a parabolic subgroup with a
decomposition MN with M the Levi component and N the unipotent
radical. Let 03B4P be the usual Jacobian associated to P. Then the map
m -- £5p(m) is a character on M and we form the family of induced
representations (indGP(|03B4P|s) as given above. We note that we can do this both
locally at primes v or globally relative to A. In particular a global "entire"
section fs is of the type above where the object 0 E S(G(A)) = Q Sv (Gv ) is
a finite linear combination of functions of the form ~~v with ov = the
characteristic function of the special maximal compact subgroup K, of Gv
for almost all primes v. This implies that fs is a finite linear combination of
~v (s)v where for almost all v, (s)v is the unique Ku invariant function in
IndGvPv(|03B4P|s). Then the family of Eisenstein series we consider has the form

Here the series converges for Re (s) sufficiently large. Moreover we know
from the Langlands theory that the Eisenstein series above has a meromorphic
continuation to C provided that (s)~ is a Koo finite function for all oc

primes.

§0. L functions associated to "twisted" D4

We recall here a particular case of the construction of L functions given in
[L] and [Sh].

Let G be a connected group over a number field K isomorphic to a
"twisted " adjoint group of type D4. Then we know that the associated L
group LG has the form Spin,  WK (semi-direct) with Spin8, the usual
Spin group, and WK the Weil group of K. We know that WK acts on the
Dynkin diagram of D4 via the following method. Namely there exists a
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homomorphism of WK ~ S3 = symmetries of D4. The kernel of such a map
factors through an appropriate normal extension L of K, i.e., Wl WL --
Gal (L/K ) ~~ S3 . Then the action of WK on D4 is defined through Gal (L/K),
and the appropriate LG is thus constructed. We note that the possibilities of
this image of WK in S3 are

(i) S3 itself,

We consider the relevant parabolic LP of LG which is obtained from the
Dynkin diagram of D4 by removing the center point of the diagram. In
such an instance LP = LM · LN where LM, the Levi component has the
form (SL2() x SL2() x SL2() x x) x WK. Here WK acts by
permuting the three SL2 factors (induced from the homomorphism of
WK ~ Gal (L/K) ~~ S3) and fixing the Cx factor. LN is the unipotent
radical of LP.
The group M in G (twisted adjoint type D4) then has the following

structure. Modulo the centre ZM, ZmBM can be isogenous to one of the four
possibilities

(i) RK¡/K(PGL2), KI a non Galois cubic extension of K,
(ii) RK1/K(PGL2), K1 a Galois cubic extension of K,
(iii) RK1/K(PGL2) x PGL2, KI a quadratic extension of K and
(iv) PGL2 x PGL2 x PGL2.

Here RK/K represents restriction of scalars. We note that it is important to
distinguish cases (i) and (ii) since the corresponding LM will be distinct.
We consider the adjoint representation U of LM on the space LA(LN). In

particular this representation has the following form. It is the direct sum of
two representations. The first piece is the one dimensional representation
which is trivial on (SL2 x SL2 x SL2  {1})  WK and maps ({1, 1, 1, ri, 1)
to rz. The second subspace is an eight dimensional representation given
by the following data. If g = (gl’ , g2 , g3, 03BB) E SL2 x SL2 x SL2 x x,
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then 03C3’(g) = (03C32(g1) O 03C32(g2) Q9 03C32(g3))03BB where a2 is the standard two
dimensional representation of SL2. The element (1, 03BE) (03BE ~ WK) maps via o-’
to the permutation 03BE’(v1 0 V2 @ v3) = v03BE’(1) ~ Vç’(2) @ v03BE’(3) where 03BE’ is the
permutation defined through the map WK ~ Gal (L/K) ~~~ S3.
We now let II be an automorphic cuspidal representation of M(A). We are

going to associate to II and cr’ above the Rankin triple L function L(II, 6’, s).
The explicit procedure of such a construction must be modified slightly in

order to accomodate the lack of suitable local factors at bad primes.
Indeed we look at the associated local groups Gv (of G given above) which

are quasi split. As above, we can define the L groups and the relevant
parabolics LPv in LGv . In such an instance ZvBMv is isogeneous to cases (ii),
(iii) or (iv) (given above). Moreover the representation w : LMv ~ Aut (LWv)
has exactly the same description as in the global case.
Then consider the decomposition of II = Qv IIv into irreducible local

factors. We consider a finite prime v where IIv is a unramified spherical
principal series. Then if Gv is quasisplit, we note that Mv is quasisplit. It is
then possible by the Satake isomorphism Theorem to associate to IIv a
certain conjugacy class in LMv of the form (gv, Fr) where Fr corresponds to
a Frobenius generator of the cyclic group Gal (Lv/Kv) and gv is a certain
semisimple element in LM0v. In any case, we define the local factor associated
to IIv and w as

Then let S be the set of primes which include the Archimedean ones and
those finite v where either Gv is not quasisplit or IIv is not a spherical
principal series. We then define the restricted Ls function associated to II
and Q’:

Then the general theory of [L] implies that LS(03A0, 03C3’, s) has a meromorphic
continuation in the s variable. Moreover, we also know from [Sh] that there
exists an associated functional equation of the following form:

where e is a finite product of local factors given in terms of local intertwining
operators in [Sh].
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At this point we can describe the local factors in Ls in more detail.
For instance assume that the local factor I1v determines a spherical principal

series representation of R,11,(PGL2) (KI a cubic Galois extension of K).
Then the corresponding conjugacy class in LMv has the form

where A is some diagonal matrix and Fr acts via the permutation vl 0
v2 Q V3 ~ V2 Q v3 Q v1. If 03A0v determines a spherical principal series

representation of R,IIK(PGL2) x PGL2 (KI quadratic extension of K), then
the corresponding conjugacy class in LMv has the form

where A and B are diagonal matrices and Fr acts via the permutation
VI OO v2 OO V3 ~ v2 OO VI OO v3.

Finally if llv determines a spherical principal series of PGL2 x PGL2 
PGL2, the corresponding conjugacy class in LMv has the form

where A, B and C are diagonal matrices and Fr acts trivially on 2 ~
2 O 2!

§1. Orbit structure

We let K be a semisimple Abelian algebra of degree 3 over a global field K.
In such an instance we know that K is (i) a field extension of degree 3 over
K, or (ii) the direct sum (as algebras) K, (B K where Kl is a field extension
of degree 2 over K, or (iii) K EB K EB K, 3 copies of the field K.
We let GL2 (K) = the general linear group of K of degree 2. In the cases

above (i) GL2 = Gl2(K), K cubic extension of K, or (ii) GL2 = GL2 (K,) x
GL2(K) or (iii) GL2 = GL2(K) x GL2(K) x GL2(K).
On the space K (B K we consider the skew symmetric form given by:

A[(x, y), (x’, y’)] - xy’ - x’y. Then taking the canonical trace form on K
we form a K-valued skew symmetric form trK/KoA = A’.
We let GSp(A’) be the group of similitudes relative to A’. In particular

GSp(A’) ~ GSp3(K) .
Moreover let GL2(K)0 = {g E GL2(1K)/g E GSp3(K)}. Thus in par-

ticular we note that in case (i) GL2 (K)’ = {g E GL2(K)/(det g) E Kxl, in
case (ii) GL2(K)0 = {g = (g1, g2)|det g1 = det g2} and case (iii)
GL2(IK)O = {(g1, g2, g3)|det gl = det g2 = det g3}.



39

We let P be the parabolic subgroup of GSp3(K) which stabilizes a fixed
maximal isotropic subspace of A’. Then the space PB GSP3 consists of all
maximal isotropic subspaces.
The first point is to determine the GL2(1K)0 orbits in the space PBGSp3.

This calculation is similar to that given in [P-R-(I)] where we define the
GSp,, x GSp,, orbits in PB GSp2n .

LEMMA 1.1

(1) Let K = K Et) K Et) K. Consider the decomposition of A’ as a direct sum
A’1 ,Et) A2 Et) A’3 where A’i is the standard 2 dimensional alternating form.
Le t Vi = {(z1, Z2, z3) E K2 X K2 x K21z t = Zk - 0 if k =1= i, t =1= i}.
Then define X(a1,a2,a3) = (X E PBGSp3IX ~ Vi has dimension ail. Here
0  ai  1. Then the GL2 (IK)O orbits consist of the sets X(0,0,0), X(1,0,0),
XCO, 1,0)’ X(0,0,1) and X(1,1,1).

(2) Let K be a cubic extension of K. Let Z = {(t, O)lt E K} and Y =
{(03B21, f32)1f31 E K. 1, P2 E K so that trK/K(03B22) = 01. Then Z and Y are
maximal isotropic subspaces and the GL2 (K) orbits in PB GSP3 consist of
(Z)GL2(1K)0 and (Y) . GL2(1K)0.

(3) Let K = KI Et) K, KI a quadratic extension of K. Consider the decompo-
sition of A’ as a direct sum Al Et) A2 where Al (A2 resp.) is the standard
alternating form on K, (K resp). Let VI = {(z, O)lz E K, Et) K1} and
V2 = {(0, w)|w E K Et) K}. Then define

is the GL2(K1)0 orbit of the isotropic subspace Y’ = {(B1, f32) E K1 ~
K1|03B21 e K. 1 and 132 E K1 with trK1/K(03B22) = 0}} and

is the GL2(K1)0 orbit of the isotropic subspace Z’ = {(t, 0) E K, ~
K1|t1 ~ K1}}

Then Xl , X2 and X3 are the GL2 (K)° orbits in PB GSP3 .

Proof. We first consider case (2).
Assume that we are given a GL2(K)0 orbit X in PB GSp3 . Then we can

assume that X contains a subspace W which contains the element (1, 0)
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(recall SL2(K) operates transitively on the set K E) K - (0, 0)). Thus W
has a K-basis of the form {(1, 0), (xl, yl), (x2, Y2)1 where trK/K(yi) = 0. If

y, and Y2 are not K-linearly independent, then W is GL2 (IK)O conjugate to
W’, a subspace which contains a basis of the form {(1, 0), (x’, 0), (0, y’)}
(with tr K/I(( y’) = 0 and tr K/K(X’ y’) = 01) or {(1, 0), (x’, 0), (z’, 0)1 In the
first case if we apply (01 Ó) (t 0(y’)-1) to W’, we obtain Y given above.
Now we can assume that y1 and Y2 are K-linearly independent. Then we

can apply an element of the form (103B1 0) (a E K) to W to get a subspace W’
which has a basis of the form

{(1, 0), (0, y1), (XI y2)} where trK/K(y1) = 0

and trK/K(xy1) = 0. If x ~ K · 1, then we are finished proving our statement.
However, if x ft K · 1 then x can be written as A · 1 + BY21Y1 with

A, B E K and B ~ 0 (we note that 1 and Y21YI span the K subspace
{03BE|trK/K(03B6y1) = 0}. Then we can apply the element

to the subspace Y to achieve W’.

We now consider case (3). Given a subspace Xo E PBGSp3, we see that
dim (X n V, ) and dim (X n V2 ) are invariants of the GL2(1K)0 orbit of X.

In particular we assume that Xo has the property that dim (X° n V1) = 2.
This implies that Xo n V2 has dimension 1; thus the GL2 (K)’ orbit of X,
intersected by V1 consists of at most two GL2 (K, ) orbits given in (3) above
(i.e. (Y’)GL2(K1)0 and (Z’)GL2(K1)0). Thus it follows that the space Xo
belongs to either Xl or X2 given in (3)!
Then we assume X. satisfies dim (Xo ~ V1) = 1.

Moreoever, we can assume (up to GL2(1K)0 conjugacy) that X. contains an
element of the form ((1, 0), (1, 0)) (~(K1 Ef) K1) C (K Ef) K)). On the other
hand, Xo ~ V1 must be spanned by ((x, 03BC), (0, 0)) with x E K and J.1 E KI
satisfying trK1/K(03BC) = 0. However, we can conjugate by an element of the
form ((103BE 01), (6 t)) in GL2(K)0 to deduce that Xo n VI = span of ((0, 03BC),
(0, 0)). Finally we see easily that Xo has a basis of the form {((1, 0), (1, 0)),
((0, Il), (0, 0)), ((1, x), (y1, y2))} with trK1/K(x) + y2 = 0. But again we
conjugate this span by an element of the form ((6 01), (103BE’ 01)) to achieve a new
subspace X’0 with basis {((1, 0), (1, 0)), ((0, J.1), (0, 0)), ((1, x), (01 Y2»I-
However, we note that

Span {((1, 0), (1, 0)), ((0, J.1), (0, 0)), ((0, x), (0, y2))}
= Span {((1, 0), (1, 0)), «0, Y), (0, 0», ((1, x), (1, Y2»I-
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Then the latter space is conjugate to X’0 via an element of the form ((10 ’), 1
(1 0 03BE" 1)).

Finally we consider case (1).
Suppose X is a given GL2(1K)0 orbit with T E X having the property that

T n y is a one dimensional subspace of V1; in particular this implies
that T ~ (V2 ~ V3) is a two dimensional space. Thus X n (V2 ~ V3) can be
decomposed into GL2(K ~ K)0 orbits (here GL2 (K ~ K)0 = {(g1, g2) E
GL2 (K) x GL2 (K)l det gl = det g2}) of a given type. In particular X has a
representative To so that either (1) dim To ~ V2 = dim To r-) V3 = 1 or (2)
dim To n V2 = dim To ~ V3 = 0 (this is just the GL2 (K 0 K)° version of
(1) above; this is a special case of Theorems proved in [P-R-(I)] for the action
of GSp1 x GSP1 on PB GSp2 !).
Thus we must show that X(0,0,0) is a single GL2(K)0 orbit. First we observe

that T E X(O,O,O) has the property that T ~ (V1 ~ V2) is a one dimensional
subspace of VI ~ V2. Indeed if T n (V1 ~ V2) is two dimensional, then any
vector z E T with z e T n (V1 C V2) (z = (z1 , z2 , z3 ) ~ V1 (B V2 ED V3)
has the property that (zl , z2 , 0) E T; hence (0, 0, z3) E T ~ V3 and thus
T ~ V3 ~ {0}!
Thus for T E X(0,0,0) we have that both T n (V1 ~ V2) and T n ( V2 ~ V3)

are one dimensional subspaces! In particular if el = (0, 1) and eo = (1, 0)
belong to K (B K, then we find a T’ E X(0,0,0) which is GL2(K)0 equivalent to
T and which contains the vectors (eo, - eo, 0) and (0, eo, - eo ) (using the
decomposition Vl (B V2 ~ V3 and identifying each Vi with K ~ K). Thus a
third basis element of T’ has the form (el, el , el ) + (03BBe0, peo, Qeo) with
03BB, J.1 and Q scalars in K.
However, we observe that if we take the space To spanned by {(e1, el, el ),

(e0, - e0, 0), (0, e0, - e0)}, then the element ((1 ?), (103BC ?), (1 0 1)) E GL2(K)0
applied to To yields T’ above! Q.E.D.

From Lemma 1.1 we can determine each orbit as a homogeneous space.

COROLLARY 1 TO LEMMA 1.1

have similar structure for X(0,1,0) and X(0,0,1).
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REMARK 1.1. We note that the subgroups R(o,o,o) in (1) and R in (2) and (3)
above are Euler subgroups of GL2(K)’ in the sense of [P]. This comment is
expanded upon in §3. Moreover, we note that the isotropy groups ~ R(o,o,o)
or R have the property that each contains as a normal subgroup the
unipotent radical of some parabolic subgroup of GL2(K)0. This is the

defining condition of being "negligible" given in [P-R-(II)]. We use this
property in an essential way in §2.

§2. Basic identity

We let GSp3(A), P(A) and GL2(K)0(A) be the adelized groups given in §1.
We start with a cusp form F on GL2(K)(A). That is F belongs to

L2cusp(GL2(K)(K)BGL2(K)(A)).
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Moreover, we assume that F transforms according to a fixed central charac-
ter  of Z(A) (where Z = the center of GL2(K)).

If F ~ II an irreducible cuspidal representation of GL2(K) (A), we let 03C903A0
be the central character of II restricted to Z(A). If K = K ~ K ~ K then
 = úJn = wj Q úJ2 @ W3 with 03A0 - 03A01 Q II2 0 03A03 and wi = central
character of fli (a representation of GL2(A)), and if K = K1 ~ K then
 = 03C903A0 = úJ1 Q W2 with 1-1 = 03A01 Q II2 and úJ1 = central character of II1
(representation of GL2 (AK¡)) and W2 = central character of II2 (representa-
tion of GL2(A)).
Then we note P is the semidirect product

GL3(K) · Kx - · Sym3(K)

given by

Then we consider the character on the group GL3(A). A" ’ Sym3(A)
given by

Then we form the induced representation

At this point we require a certain compatibility between w, w’, and ÕJ.
Namely, we want to insure that the characters  and 03BB03C9,03C9’,s when restricted

to the Center Z’ of GSp3 are equal. We note here that Z’ has finite index in
Center (GL2 (K)O). In concrete terms this means that in (i) (K cubic extension
of K) -1(03BB) = 03C9(03BB3 )03C9’(03BB2) where ÕJ is a character on GL1(A) = AxK, in
(ii) (K = Kl ~ K, K1 quadratic extension of K) -1(03BB) = 03C9-1103C9-12(03BB) =
03C9(03BB3)03C9’(03BB2) where W1 and W2 are characters on AxK1 and AxK (with  =

co ~ 03C92), and in (iii) (K = K Et) K ~ K) -1(03BB) = 03C9-11· 03C9-12· W;l(,1) =
03C9(03BB3)03C9’(03BB2) where 03C9i are characters on AxK (with &#x26; = W1 Q úJ2 ~ (3).

Then we let 03A603C9,03C9’,s, ~ I03C9,03C9’,s.
We form the associated Eisenstein series
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The series converges for s such that Re (s) is large. Moreover, E(03A603C9,03C9’,s) has
a meromorphic continuation in s to all of C provided the data in the
formation of 03A603C9,03C9’,s is K-finite for the oc primes (see (6) in the Notation
Section).
Then we form the Rankin integral of F and E(03A603C9,03C9’,s),

We note that since Z’ is of finite index in Center (GL2(K)0) we see that
Z/(A)BCenter (GL2(K)0)(A) is compact. Hence the above integral (2-2) is
absolutely convergent (since E(03A603C9,03C9’,s) is slowly increasing and F( ) is rapidly
decreasing on Z’(A) . GL2(K)0(K)BGL2(K)0(A)).
The basic identity involves computing (2-2) in another fashion using

Lemma 1.1. Namely we decompose

In particular this means that (2-2) equals a finite sum

where y, runs over a set of representatives of GL2(K)0 orbits in PB GSp3 and
L03B31 = {g ~ GL2(K)0|g-103B3ig ~ P}.

In Corollary 1 to Lemma 1.1 we determine each L03B3l explicitly. Then we
decompose the integral in (2-3) as

However, we can determine the inner integral. If Ly, is negligible in the
sense of Remark 1.1, then there is a normal subgroup N of Ly, where Nl is
the unipotent radical of a parabolic in GL2(K)’. Thus we can write

But by the above hypothesis (F is cusp form) we see that the inner integral
vanishes identically for all eg!
Thus the remaining isotropy subgroup Li is a Euler subgroup (see

Remark 1.1).
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We recall here that if II is an irreducible automorphic cuspidal representa-
tion of GL2(AL) (L = some global field which is a finite extension of K),
then II admits a nondegenerate Whittaker model. That is, given a non-zero
additive character on AK K and f ~ II, then there exists W03C8f E IndGL2(AL)N(AL)(03C8)
so that

where N = ((10 *1)}, P = {(*0 *1)} and 03C8 is the character (1 x0 1) ~ 03C8(trL/K(x)) =
I1VEK (I1w/v 03C8v (trLwlKv (xw))).
We choose certain subgroups now in GL2(1K)0. In case (i) (K cubic exten-

sion), let W = {(10 z·1K1)|z e K}. In case (ii) (K = Kl Ef) K, K1 quadratic
extension), W = {(1 z·lK0 1), ( 10 z1))|z ~ K}. And in case (iii) (K = K ~
K Ef) K ) let W = {((10 1), (à z1), (Ó 1))lz E K}. In each case we consider the
additive character on W given by z ~~~ 03C8(z). Then we let

Here z E W is embedded into GL2(K)0 by the above prescription.
In case (i) (K cubic extension), let N = {(1 x0 1)|x E K}. In case (ii) (K =

K, ~ K, KI quadratic extension), let N = {((1 x0 1), (ô y1))|x E K1, y E KI.
And in case (iii) (K = K ~ K ~ K), let N = {((1 x0 1), (ô y1), (1 z0 1))
lx, y, z c- KI.
Thus we can compute (2-2) explicitly.

THEOREM 2.1

(1) Let K be a cubic extension of K; let TI be an irreducible automorphic
cuspidal representation of GL2(AK). Then (2-2) equals

with F E II.

(2) Let K = KI ED K with KI a quadratic extension of K. Let III and II2 be
irreducible automorphic cuspidal representations of GL2(AKI) and

GL2(AK). Then (2-2) equals

with F = 1 ~ F2 ~ III ~ 03A02.
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(3) Let K = K ~ K (B K. Let TIl, 03A02 and 03A03 be irreducible automorphic
cuspidal representations of GL2(AK). Then (2-2) equals

REMARK. Before we start the proof of Theorem 2.1 we note that all of the
integrals (2-5), (2-6) and (2-7) are Eulerian integrals. Indeed we note that we
can choose 03A603C9,03C9’,s = Ov 03A603C9v,03C9’v,s and W03C8F = Qv wtvv. In such a case (2-5)
equals

A similar formula holds for (2-6) and (2-7). See the beginning of §3 for the
definition of W£v.

Proof of Theorem 2.1. We calculate (2-4) by substituting F(g) - 03A3a~Kx W03C8F
((g ;)g). Then we integrate F over the space M(K)BM(A) where M =

{(1 03BE0 1)|trK/K(03BE) = 01. Hence we get

Here we use the fact that K = K· 1K ~ M.
Then we have that (2-4) equals

But we note that (03B1 00 03B2) = (03BB0 003BB)(03B1’0 01) with = 13 and os" = alf3. Hence
(2-9) equals
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But then combining M E8 W = N we deduce that (2-10) equals

This completes the proof of case (1).
We note that proofs of (2-6) and (2-7) are similar and hence omitted.

Q.E.D.

Thus the problem becomes one of evaluating the local integrals

§3. Local theory

In this section we develop the local theory of the zetal integral defined at the
end of §2. In particular we prove the generic uniqueness principle (Proposi-
tion 3.1) of this zeta integral; this fact coupled with rationality of the zeta
integral allows us to establish a functional equation for the zeta integral
(Corollary 1 to Proposition 3.1). Then we compute the local zeta integral
when all the data are unramified (Theorem 3.1). Next we establish in Proposi-
tion 3.2 that the general zeta integral is absolutely convergent for Re (s)
large. Then in Proposition 3.3 we show that the data can be chosen in such
a way that the zeta integral becomes independent of s. In Appendix 1 to §3
we discuss the validity of the above Propositions in the Archimedean case.
In Appendix 2 of §3 we compute the local zeta integral in the unramified case
using the representation theory of a certain oscillator representation. In
Appendix 3 to §3 we consider the question of rationality of the zeta integral
in the case K = K ~ K ~ K.
We let K be a local field. We let 03C8 be a character of order zero on K.
We let indGSp3P(03BB03C9,03C9’,s) = I03C9,03C9’,s be defined as in §2.
We let 03A603C9,03C9’,s E I03C9.03C9’,s.
We assume in case (i) (K, a cubic extension of K) that II is an arbitrary,

admissible, irreducible, generic representation of GL2(K), in case (ii)
(K = K, ~ K, Kl a quadratic extension of K) that II = II1 0 II2 is an
arbitrary, irreducible, admissible, generic representation of GL2(K1) x
GL2 (K), and in case (iii) (K = K EB K EB K) that Il = 03A01 ~ II2 ~ II3 is
an admissible, irreducible, generic representation of GL2(K) x GL2(K) x
GL2(K).

COMP 2532-17
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Then in any case when we write Wl for F e II we mean: Wl in case (i),
Wl = Wli ~ W03C8F2 in case (ii), and W03C8F = W03C8F1 Q W03C8F2 Q W03C8F3 in case (iii).
Then we consider the local zeta integral

We assume at this point that the local integral above converges for s such
that Re (s) large (proved below in Proposition 3.2).

Moreover, for such s (3-1) defines a GL2(K)0 invariant bilinear form on

I03C9,03C9’,s ~ il.

Or in other words, (3-1) defines an element in BilGL2(K)0(I03C9,03C9’,s, II). We then
prove the following uniqueness statement (similar to that in [J-P-S] and
[P-R-(III)]). If v = + oo, we require in Bil ... ( , ) separate continuity in
each component (relative to COO topology).

PROPOSITION 3.1. The space BilGL2(K)0(I03C9,03C9’,s, II) is at most a one dimensional
space except for a finite number (countable and discrete set) of values of s if
v  oo ( if v = + ~).

Proof. The proof depends on the enumeration of the GL2 (K)’ orbits in
PBGSp3 given in Lemma 1.1.
We assume that v  oo.

We begin with case (iii). The strategy of the proof is to analyze each
GL2(K)’ orbit separately and determine

HomGL2(K)0(indGL2(K)0L03B3l(K)(03BB03C9,03C9’,s(03B3i)), TI1 0 2 0 03A03)
where 03BB03C9,03C9’s(03B3) is the restriction of Àw,w’s to L’l’ (K). However, by use of
Frobenius reciprocity the dimension of the latter space is majorized by the
dimension of

with ~i a certain character on L03B3i.
At this point we need to enumerate the L in Lemma 1.1. Indeed start-

ing with the Xs orbit, then HomL03B3(5) (03A01 ~ 03A02 ~ 03A03, 03BB03C9,03C9’,s(03B3s)-1 ~ ~5) ~
HomL’03B3(5) ((03A01)N ~ (03A02)N ~ (03A03)N, 03BB03C9,03C9’,s(03B35)-1 O Xs). Hère L’03B35 = {((03B1 00 03B2),
(03B1’0 003B2’), (03B1"0 003B2"))|03B103B2 = a’ f3’ = 03B1"03B2"}. Moreover, 03BB03C9,03C9’,s(03B35)[(03B1 00 03B2), (03B1’0 003B2’), (r 003B2")] =
03C9(03B103B1’03B1")|03B103B1’03B1"|s+2|03B103B2|-((3/2)s+3)03C9’(03B103B2). But we know that (03A0i)N is at most a
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two dimensional space and a module of{(03B10 003B2)|03B1, f3 e KX} of finite type. This
implies that HomL’03B3(5) (...,) = 0 for all but a finite number of s.
Then we consider in a similar way the orbit X2. In particular for

HomL03B3(2) (...,) ~ 0 we require that 112 is dual to 113 and that (03A01)N carries
the character (r)|r|s+2 on the subgroup {(r0 0r-1)|r ~ Kx} with  a fixed

character. Hence again we deduce that Hom L03B3(2) ( ... , )= 0 for all but a
finite number of s. The same arguments work for the orbits X3 and X4.

Finally we are left with the orbit Xl. Here Lyl is an Euler subgroup
of GL2(K)0. We recall the construction of the Kirillov model K(03A0) of an
irreducible admissible representation of 11 of GL2(K). Then we note that

HomL03B3(1) (...,) ~ 0 is equivalent to having a nonzero form on the space
K(03A01) Q K(II2 ) Q K(03A03) which transforms according to the character

03BB03C9,03C9’,s(03B31) on LYI . But L03B31 ~ M (defined in §2) and 03BB03C9,03C9’,s(03B31) is trivial on M.
Thus we first look for M invariant forms on K(03A01) Q K(112) ~ K(113).
We note that each K(I1¡) has a finite composition series relative to the

group {(03B10 x03B2)|03B1, 03B2 e KX , je e K}. The series has two terms. The unique sub-
module consists of the space S(Kx); the quotient K(03A0i)/S(Kx) transforms
according to at most a two-dimensional representation of {(03B10 x03B2)|03B1, 13 e KX,
je e K} given by (i) a direct sum of two characters (if two-dimensional) or
a character (if one-dimensional) or (ii) a two-dimensional indecomposable
representation. Thus ((10 f)lx e K} acts trivially in such two-dimensional
spaces.
Then the space K(03A01) Q K(112) Q K(03A03) admits a composition series

of the following form: S(Kx) Q S(Kx) Q S(Kx) ~ K(111) ~ S(Kx) Q
S(Kx) ~ K(111) Q K(112) Q S(Kx) ~ K(03A01) 0 K(112) ~ K(03A03). Hence

each successive quotient (except the first submodule) is, at most, a

two-dimensional module of {[03B110 x103B21] x [03B120 x203B22] x [03B130 x303B23]|03B1i, 03B2i ~ Kx, xi ~ K}.
(Moreover, it is trivial on two of these factors and a two-dimensional
module for the third).
Then any M invariant distribution on S(Kx) Q S(Kx) Q S(Kx) is sup-

ported on the set {(x, x, x)| x e Kx}. A simple argument shows that there
is at most one distribution that is supported on this set and transforms
relative to L03B31/M = {((03B10 003B2), (03B10 ), according to the
character |03B1/03B2|(s+2)/21 (03B1)2(03B2) with Xl , X2 fixed characters ( for all but a finite
number of values of s).
On the other hand M acts trivially on the other composition factors

above. And again it is easy to see that for all but a finite number of values
of s, there are no functionals on these composition factors which transform
according to the character on Lyl /M given in the preceding paragraph. The
point here is that each such composition factor transforms according to a
finite number of fixed characters on Lyl /M.
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Again we emphasize here that Lyl is an Euler subgroup of GL2(K)0. This
makes the proof of the uniqueness proceed in a more direct fashion.
We note that the proof in cases (i) and (ii) is similar to case (iii) and is

omitted!
We note also that the proof of the Archimedean cases works in a similar

fashion. We remark here that the uniqueness statement for the Archimedean
case is valid in the differentiable category of representations. Q.E.D.

Thus from Proposition 3.1 we can deduce a local functional equation for the
zeta integrals (3-1).

Indeed we asume that the integrals (3-1) are rational functions in q-S if
v  oc (meromorphic functions in SEC if v = oc). In the case v = + 00 we
must assume in addition that the integrals (3-1) define separately continuous
maps in the space BilGL2(K)0(I03C9,03C9’,s, II) (relative to the COO topology on the
spaces I03C9,03C9’,s and il). We call this hypothesis (*). We note that in Appendix
1 (see Remark 2) and Appendix 3 to §3, we prove the validity of (*).

CORROLARY 1 TO PROPOSITION 3.1. Assume (*) is valid. Let Mwn be the
canonically GSP3 intertwining operator defined in §4 mapping the space I03C9,03C9’,s
to I03C9-1,03C93(03C9’)-1,-s.

Then there exists r(I1, 03C9, 03C9’, s) a meromorphic function in s so that

where F E II (if v  oo , then r(II, cv, 03C9’, s) is a rational function in q-s).

Proof The proof follows directly from the uniqueness principle of Propo-
sition (3-1) and the meromorphic properties of the continuation of (3-1 ).

Q.E.D.

At this point we must compute the local zeta integral (3-1 ) in a more explicit
way. The first case of interest is when II is an unramified principal series.

In particular we assume that in (3-1 ) F is a spherical vector of II, i.e., the
unique fixed vector under the maximal compact. We assume in the ensuing
calculation that the residual characteristic of K ~ 3.

However, first we note that the explicit determination of the term 03A603C9,03C9’,s
restricted to the Borel subgroup of GL2(K)’ is of interest by itself (see
[P-R-(II)]).
We first consider the case when K = K ~ K ~ K.
From Lemma 1.1, the GL2(K)0 principal orbit in PBGSp3 has a represen-

tative of the form Z = K(eo, eo, eo) EB {(03B1e1, f3el, 03B3e1)|03B1 + fi + 03B3 = 0}.
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Let T be an element in GSp3 such that {K(e1, 0, 0) 0 K(0, el , 0) (D
K(0, 0, e1)}T = Z. Then we consider the elements of GSp3 given by

We decompose such elements via the Iwasawa decomposition in GSp3

with K E GSp3(Ov).
Then we note that 1J.11 = |03B1103B21|I = |03B1203B22| = |03B1303B23|, and

We note that x varies in K and al E KX and 03B2i E Kx so that III f31 = a2f32 =

(X3 fl3 -
Next we consider the case when K is a cubic extension of K. In such a case

there are two possibilities for K. Namely either K is the unique unramified
extension of K or K is an extension of K where n3 = 03C0K.
We note that the GL2(K)’ principal orbit in PBGSp3 has a representative

of the form Z = K(1, 0) ~ {(0, 03BE)|trK/K(03BE) = 01. Let T be the element in
GSp3 such that {(0, z)lz E K}T = Z. Then we consider the element of GSp3
given by

When we decompose such an element in GSp3 via the Iwasawa decom-
position (as above) we have (K unramified extension of K)

and
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when we assume oc and 03B2 belong to Kx and x E K (recall that Kx = Kx · W
where W is a compact subgroup of Kx in the case where K is an unramified
extension of K).

Finally we consider the case where K = K1 Et) K with KI a quadratic
extension of K.
We note that the GL2(K)’ principal orbit in PBGSp3 has a representative

of the form Z = K{((1, 0), (1, 0))} ~ {((0, T), (0, t))|trK1/K(T) + t = 0}.
Let T be an element in GSp3 such that

Then we consider the element in GSp3 given by

and consider its Iwasawa decomposition (as above). Again we deduce (if Kl
is an unramified extension of K)

and

Here we assume t E K and 03B11, fil, a2 and 03B22 belong to KX .
Then we consider the space X = ZMBGL2(K)’ and observe that we can

choose a coordinate system on X such that

(ii) if K = a cubic extension which is unramified over K, then
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(iii) if K = K1 ~ K where K1 is unramified over K, then

2022 {a compact subgroup of GL2(K)0}.

At this point we recall the formula for the special values of Whittaker
functions.

Indeed let 03C3(s1,s2) = ind GL2(L) ~ |03B1|s1L|03B2|s2L|03B1 03B2|1/2L (here L is some local
field). Let F(s1,s2) be the spherical vector of the representation and W(s1,s2) the
corresponding Whittaker vector. We know that

and

where (~,m) is the finite dimensional irreducible representation of GL2(C)
with highest weight parameterized by the pair (e, m) with ~  m.
Then if K = K ~ K ~ K we have that (3-1) equals

In order to insure the compatibility conditions on centers (see §2) we
assume that 03C9(x) = |x|03BC and 03C9’(x) = |x|-03BC where 03BC = (s1 + s2 + s1 +
s2 + s"1 + s"2). Then we use the fact W(1,2)(03BB03C40 0t-1) = 03C9(1,2)(t-1)W(1,2)(03BBt20 0 ) 1
where 03C9(1,2) is the central character of 03C3(1,2) and 03C91,2 ( t) = 1 t 1 Also
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in the integral above we make the change of variables 03B1’ = Àa2 and 13’ = Àf32
to deduce that (3-3) equals

Here ... represents the same integrand as in the first integral above. More-
over, (I) = {(03B1, 03B2, 03BB)|03B1, 03B2 and 03BB have even order} and (II) = {(03B1, 13, À)la, 13
and Â have odd order.

In addition

However, to evaluate (3-5) we use the easily established identity (with
^  0):

Then using the values of Whittaker functions given above we can express
(3-4) as a series of the form
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where

X = q-S and A(e, m, t) = min {, m, t}.
We note at this point that the function A ~~~ tr ((0)(A))(det A)-t/2

depends only on the ,SL2 part of A; that is, if A = A1·(03BE0 003BE) with 03BE E Cx and
A1 E SL2, then the above function is independent of 03BE.
We now consider in the case of K, a unramified cubic extension of K, the

evaluation of (3-1) for spherical data. In such an instance (3-1) equals

(we note here the integration is over Kx). Again we choose 03C9(x) = |x|03BC
and 03C9’(x) = |x|-03BC where 03BC = - 3(s1 + s2) (see §2). Then we see that (3-8)
equals

with

Then when we evaluate f, (as above) we obtain that (3-8) equals the series

where

Next we consider the case when K = K, ED K with K, , quadratic unramified
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over K. Then when we evaluate (3-1) we get

Again we choose 03C9(x) = |x|03BC and 03C9’(x) = |x|-03BC where J.1 =

- (2(Sl + s2) + (Si +s’2))(see §2).
Then following the above examples we make the changes of variable

03B1’ = 03BB03B12 and deduce that (3-11) equals

where (I) = {(03BB, a)IÀ and a have even order} and (II) = {(03BB, 03B1)|03BB, and a have
odd order}. In addition

Then when we evaluate f, we deduce that (3-12) equals the series

with

Also (~, m) = min (~, m).
Thus we are at the point of explicitly evaluating (3-1) for spherical data.
We assume in Theorem 3.1 that residual characteristic of K ~ 3.
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THEOREM 3.1. Let 03A6003C9,03C9’,s E I03C9,03C9’,s be the unique vector which is GSp3 (Ov) fixed
and normalized so that 03A6003C9,03C9’,s(e) = 1. Moreover assume that 03C9(x) = Ixl/l
and w’(x) = |x|-03BC where (i) 03BC - - (sl + S2 + s’1 + s’2 + s"1 + s"2) (K =
K (f) K (f) K), (ii) 03BC = -(2(s1 + s2) + si + s2 ) (K = K1 (f) K, Ki quad
ratic unramified), and (iii) 03BC - - 3(sl + S2) (K, cubic unramified). Then
(1) for K = K (f) K (f) K and F = Fi ~ F2 (x) F3 with F a spherical vector

in 03A0i ~ 03C3(s11,s12), we have

with

(2) For K = K, (D K (Ki, an unramified quadratic extension) and

F = F1 Q F2 with F a spherical vector in 03A0i ~ 03C3(sl1,sl2), we have

with

and 03B4(A, B, t) is the operator (/2 Q a(A) 0 03C3(B))03BF t’ where

t’(v1~v2 ~ V3) = V2 (D VI ~ v3.
(3) For K, a cubic unramified extension and F a spherical vector in

03A0 ~ 03C3(s1,s2), we have
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with

where t(vl Qx V2 Qx V3)= V2 ~ V3 ~ v1.

Proof. We start with (3-6) and compare that calculation to Lemma i in

Appendix 2. In particular we write A = A’( ô 003BE) with A’ E SL2 ; we do thesame for B and C. Thus we have that tr ((~,0)(A))(det A)-~/2 = tr ((~,0)(A’)).
And we consider (3-6) with A’, B’ and C’ replacing A, B and C. Then we can
apply Lemma i in Appendix 2. In particular we deduce that the coefficient
of the term (~1, 0) Q (t 2’ 0) Q ( j, 0) (in the SL2 x SL2 x SL2 decom-
position of S*(C2 Q C2 Q 2)) is given by

where A(/j , t2, j) = min (tl, t2, j).
Thus if we replace q-(1+03BC)X = Y2 in (3-6), we then deduce that (3-6)

equals

But we know that if A’[03B6A0 0 03B6A] = A, then a(A) = a(A’). ÇA. Then u(A) (D
03C3(B) @ 03C3(C) = 03C3(A’) 0 03C3(B’) ~ a(C/) . (ÇA. ÇB . 03BEC). But it is possible to
choose ÇA’ 03BEB, and 03BEC up to sign so that 03BEA·03BEB·03BEC = q+p/2. Hence
det (,8 - 03C3(A’) Q 6(B’) Q 03C3(C’)Y) ~ det (/8 - 6(A) 0 u (B) Q
a( C)q-li- 1/2 A-1/2).
Thus we have that (3-6) equals

Next we consider the séries (3-10). Again we let A - A’[03BEA0 003BEA] and
B = B’[03BEB0 003BEB] with A’ and B’ belonging to SL2. Thus (3-10) has the form
(with Y2 = q-(1+03BC)X)
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But we compare this series to (ii) in Appendix 2. Thus we have that (3-10)
equals

Again we note that 03C3(A) Q 03C3(B) = 03BEA03BEB03C3(A’) 0 03C3(B’). Then it is poss-
ible to choose 03BEA and 03BEB up to sign so that 03BEA03BEB = q+03BC/2. Hence

Thus (3-10) equals

[det(I8 - 03B4(A, B, t’)q-03BC-1/2 X1/2)]-1.

Finally we consider the series (3-13). Again we let A = A’[03BEA0 003BEA] with
A’ e SL2 . Then such a series has the form (with Y2 = q-(1+03BC)X)

But then a direct calculation with A’ = (ô 0-1) shows the above series equals
(see Appendix 2).

But we note that the above denominator equals

where 03B4(A’, cr) is the operator given by the composition a(/2) 0
a(/2) ~ a(A’) 0 t with t(v1 ~ v2 ~ V3)=V2 ~ V3 0 v1.
Then we note that 03B4(A, t) = 03BEA03B4(A’, t). But again we can choose

ÇA up to sign so that 03BEA = q+03BC/2. Thus det (/8 - 03B4(A’, t) Y) = det (/8 -

£5(A, t)q-03BC-1/2X1/2).
Thus (3-13) equals

[det (1, - ô(A, t)q-03BC-1/2X1/2)]-1.
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At this point we must determine when the integrals Z(03A603C9,03C9’,s, F) defined by
(3-1) are absolutely convergent (with no assumption on residual characteristic).
We note first that if we vary 03A603C9,03C9’,s0 e I03C9,03C9’,s0 (for a fixed s0), then any

element of I03C9,03C9’,s has the form 03A603C9,03C9’s0·03A60s-s0, (where 03A60s-s0 = 03A601,1,s-s0 is the

unique GSp3(Ov) invariant vector in I1,1,s-s0 normalized so that 03A60s-s0(e) = 1).
We know that 03A603C9,03C9’,s0 is a bounded function on Z’MBGL2(K)0 (since
Z’MBGL2(K)0 embeds into a compact space PB GSp3 and 03A603C9,03C9’,s0 is a smooth
section in I03C9,03C9’,s0). Thus an arbitrary function in I03C9,03C9’,s is majorized by
|03A603C9,03C9’,s0|·|03A6s-s0|  |03A6s-s0|·K (with K = sup |03A603C9,03C9’,s0(*)|). Thus Z(03A603C9,03C9’,s, F)
is majorized by an integral of the form

Then we use the coordinates on Z’MB GL2 (K)0 given above. In particular
from the above calculations we deduce that (3-14) is majorized by integrals
of the form (in the case K = K Et) K ~ K and v  ~)

Here we have used the fact that any W E W(II, 03C8) has the form W(a0 01) = a
linear combination 0(a)X(a) with 0 E S(K) and X some character on KX.
Moreover, we assume in the above integral that the Oi &#x3E; 0 and that the

characters ôi &#x3E; 0.

First we note that the inner integral above is bounded by (provided Re (s)
is large enough)

But by explicitly determining this integral we deduce that it is bounded by
a rational function in q-s times
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Thus the above integral is bounded by

x max {|03BB|, |03B1’|, |03B2’|}-{Re(s-s0)+1} dx(Â) dX(a/) dX(f3’).

Thus an easy exercise shows that the above integral is absolutely conver-
gent for Re (s) large!
We note a similar argument works for proving the absolute convergence

of (3-1) in the cases K cubic, and K = KI Et) K with KI quadratic.

PROPOSITION 3.2. If K has one of the following forms (K cubic, K = KI Et) K
and K = K Et) K Et) K), then the family of zeta integrals (3-1) is absolutely
convergent for Re (s) large.

Indeed we first consider the GSP3 homogeneous quotient space P"BGSp3
where

Then there exists a linear map of S(p"B GSP3) onto I03C9,03C9’,s given by

We know that GL2(K)0 has a unique open orbit in P"BGSp3. This open
orbit determines the following induced representation of GL2 (K)O, i.e.

where D = {((03B10 003B2), (03B10 003B2), (03B10 003B2))~03B1|K = |03B2|K = 1} if K = K rae K C K,
{((03B10 003B2), (03B10 003B2))|03B1, 03B2 ~ K*, lai = |03B2| = 1} if K = K1 0 KwithK1quadratic,
and {(03B10 p)la, 13 E KX, |03B1|K = |03B2|K = 1} with K a cubic extension.
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Then the image of S(MDBGL2(K)0) under the above intertwining map
becomes the following compactly induced representation of GL2(K)0, i.e.

where z E M and r E R.

We recall here that if K = K ~ K ~ K, 03BB03C9,03C9’,s(((03B10 003B2), (03B10 003B2), (03B10 003B2))) =
|03B1/03B2|(s/2)+ 03C9(03B12 03B2)03C9’(03B103B2) with similar formulae in the remaining cases.
Our problem here is to study the zeta integral (3-1) when the input

information 03A603C9,03C9’,s ~ H03C9,03C9’,s.

PROPOSITION 3.3. Let v  00. Then there exist a function in H03C9,03C9’,s and
F E II so that Zv(h03C9,03C9’,s, F) = 1.

I,f’v = oo and so E C, then there exist a function h03C9,03C9’,s (which is dependent
on so and finite under the maximal compact subgroup ofGL2(K)0) and F E 1-1
so that Z(hw,w’,s, F) is analytic at s = So and is nonvanishing at so! 

Proof. We assume first that K = K ~ K ~ K.
We note that GL2(K)0 = po . K° where Po {((10 x1), 0 y1), (10 z1)

|x, y, z ~ K} · {((03B10 003B1’), (03B20 003B2’), (03B30 003B3’))|03B103B1’ = 03B203B2’ = 03B303B3’} and K0 = SL2((!)v) X
SL2((!)v) x SL2((!)v) if v  00 or K0 = 0(2, R) x 0(2, R) x 0(2, R) or
U(2) x U(2) x U(2) if v = oo (depending on whether oo is real or complex).
Then we define an element in H.@,,,@s as follows. Indeed we let ~03C9,03C9’,s belong

to indP0MR (z · r ~~~ 03BB03C9,03C9’,s(03B31)(r)) and satisfy the condition of transforming
on the right according to a fixed character on K° n pO which is trivial on the
subgroup {((10 x1), (10 y1), (10 z1))|x, y, z E KI. Let  be a function on K° which
transforms on the left by K° n Po by the same character. Then let

Such a function is clearly well defined and determines an element in H03C9,03C9’,s.
We now determine that actually such ~03C9,03C9’,s exist. At this point we

note that P° equals the direct product of MR and {((10 x1), I, 1)lx e K}·

{(I, (03B10 003B1-1), (03B20 003B2-1))|03B1, 03B2 ~ Kx}. Then we let ~03C9,03C9’,s(m·r·((10 x1), (03B10 0a-1),
(03B20 ô 003B2-1))) ~ 03BB03C9,03C9’,s(03B31)(r)~(x)03C9O03A02(03B1)03C9O03A03(03B2) (if v  (~) where X(9 is the
characteristic function of U, and wg2 and wg3 represent the charac-
ters wn2 and Wil3 supported on (!)X. On the other hand if v = +00,
then ~03C9,03C9’s(...) ~ 03BB03C9,03C9’,s(03B31)(r)h1(x)h2)(03B1)h3(03B2) where h1 ~ C~c(R), h2 ,
h3 E C~c(Rx).

It is straightforward to verify that if v  ~ then ~03C9,03C9’s(((10 1’), (03B10 003B1-1),
(03B20 003B2-1))((10 z1))((10 w1), (10 t1)) ((10 0), ( 1 0 ~ 03C94(03C9’)203C903A01(1) 
03C903A02(2)03C903A03(3)~03C9,03C9’,s(((10 x1), ( ô 003B1-1), ( ô 003B2-1))). (Here ol E Ox and z, w, t E O).
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Then we consider the zeta integral (3-1) for such h03C9,03C9’,s. Here we use as
coordinates on Z·MBGL2(K)0 the group {((10 x1)(03BB0 01), (03BB03B10 003B1-1), (03BB03B20 003B2-1))|
x e K, 03BB, 03B1, 03B2 e Kx}. Then (3-1) is equal to

We observe that the inner integral

Then we asume that  = 1 ~ 2 ~ 3 where 1 is defined by

We similarly define (i = 2, 3)

Hère SL(m)2 = {03B3 e SL2(O)v|03B3 ~ 1 mod 03C0m} (m chosen so that (0)2 . W’)2 Wnl ’
wn2’ and wn3 are trivial on the subgroup {03B1 e Ox|03B1 ~ 1 mod 03C0m}.
Then we consider an integral of the form
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We also choose m so that WF1 is invariant by SL(m)2. Then the above integral
is a nonzero multiple of

But since x(!) (03BB) appears in the integral above then the first term is nonzero
and independent of 03BB E O.
We repeat the same calculation for wt i.e.

Again, a E Ox and 03BB E O; thus the first integral is nonvanishing and
independent of a and 03BB. Finally by change of variables £5 ---+ aô in the second
integral we obtain

Thus the integral (3-15) equals
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Finally we note that WFl(v0 ’) 1 represents any 03BEi E S(Kx) (by suitable choice
of Fi). We let support (03BEi) c Ox. Then we deduce that (3-16) equals

Finally we let 03BE = (03C9203C9’)-1, 03BE2 = 03BE3 = 1. Thus the above integral is
nonvanishing. Hence (3-15) is nonvanishing and independent of s!
We let v = + ~. We know that  =  1 ~ 2 ~ 3 can be chosen so

that

(the wt are finite functions relative to the maximal compact subgroup of
SL2 (Kv) and the Oi can be chosen to be suitable matrix coefficients of such
a subgroup.)
Thus we have that (3-15) equals

Then following the same idea as above

Thus our integral reduces to one of the form



66

where Fs(03BB a, 03B2) is a Co function on compact sets {s| |s - s0|  el x
{03BB| |03BB - 03BB0|  03B5} x lal la - aol  03B5} x {03B2| |03B2 - flol 1  El with 03BB0 ~ 0,
03B10 ~ 0, and Po ~ 0. In such an instance we can choose the Xl , X2, and
X3 with compact support in {03BB| |03BB - 03BB0|  el, {03B1| la - 03B10|  el and
{03B2| |03B2 - 03B20|  el respectively, so that the above integral is analytic and
nonvanishing at s = so . We note here that the choice of hW,wl,s is also

necessarily Koo finite (by the choice of the ~i given above)!
We note similar proofs work for the remaining cases! Q.E.D.

Appendix 1 to §3

The proofs of §3 are given for the case when the local field K is non
Archimedean. However some statements remain valid for the Archimedean
case also. We point out which of the statements in §3 are true in such an
instance.

Indeed we consider the cases when K = R or K = C. Then when we
calculate (3-3) we find that

where

and

Thus we see using the above formulae combined with (3-3) that Propositions
3.2 and 3.3 remain valid for K = R or C.

REMARK. The calculation of (3-3) for unramified data (for K = R or C)
cannot be done at the present moment but probably with some care it is a
reasonable classical calculation involving Whittaker type functions (see
Appendix 3 to §3).
We consider the problem of showing the analyticity of the zeta integral

(3-1) for the case when K is an Archimedean field.
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We use the following coordinates in the space Z · MBGL2(K)0: {((03BB0 01),
(03BB0 01) (03BB0 01))|03BB ~ Kx} · {((10 01) (03B10 003B1-1), (g 003B2-1))|03B1,03B2 ~ Kx} · {((10 x1) ( 1 x1),
(6 x1))|x e K}. Then the integral (3-1) equals a finite linear combination of
terms of the form

Here W E W03C8(03A0i), Wi is K~ finite, and fs is also K~ finite (Koo = the
maximal compact subgroup of GL2(1K)0).
The problem here is to analyze the analytic properties of the above

integral. In the very procedure of this analysis, we show that the analytic
continuation of (3-17) depends in a continuous way on the parameter f .
We study first

Then we assume that since 1-li is generic and unitary,

is a finite sum, mi  0, Xi is a unitary character, wi E R and Oi E S(R).
Thus the first integral above equals terms of the type

where Ai is some specified complex number depending on the III.
The first reduction is to employ integration by parts in the above integral.
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We deduce that (3-18) equals

Here Qi is a rational function in s.
We find that the term (d/d03BB)m[...] = a sum of terms of the form

where P is a polynomial in a, 03B2, and x (which has degree bounded by m).
We note in these calculations we are using the fact that for fixed a, 03B2, and

x, the function

is a Schwartz function!

Thus the next integral we analyze is

(where X and m are given numbers) in terms of a, f3 and x. We must consider
the behavior of such an integral when 03B1 ~ {0+~, 03B2 ~ {0+~ and x - oo.
We consider a = r cos 0, fi = r sin 0 with r  0 and 0  03B8  03C0/2.

Then the above integral equals

The first analysis required is the determination of the function
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as (r, 0, x) approach the various boundary data, i.e., r 0 , 03B8 ~ {003C0/2, and
x ~ + oo.

We are required to studyf, in a more geometric way. Indeed we recall that
Z MB Gl2 (K)° is an open set in P3 B GSp3. The differentiable variety P3 B GSP3
can be realized as a closed submanifold of the projective space P(A3 R6)
(^3 = the third exterior power of R6). Indeed P3BGSp3 is the set of all
"subspaces" in P(A3 R6) which are "isotropic" relative to a fixed alternating
form on R6. Moreover P3 B GSP3 is the closed orbit in P(^3R6) of the unitary
group U3 acting on P(^3R6) (i.e., P3BGSp3 ~ U3 n P3BU3 ~ O(3)BU(3) by
means of the standard identifications). Thus the differentiable structure on
P3BGSp3 is inherited from the projective space P(^3R6). For instance, a
typical coordinate patch in P(A3 R6) has the following structure. If we have
fixed a global system of coordinates {zijk} on A3 R6, then a typical coordinate
patch Mi0j0k0 = {Z E P(^3R6)|zi0j0k0(Z) ~ 01 has as coordinate {zijk/zi0j0k0}. In
practical terms we identify the global coordinates on the space A3 R 6as the
linear space spanned by all 3 x 3 minors {zijk} of a 3 x 6 matrix (i, j, k
denote the columns of the given matrix in M36). Then if we have a given map
~: M ~ P3 B GSp3 (where M is a given COO manifold), then 0 is differentiable
at p E M if ~: M ~ P(A3 R6) is differentiable at p.
We consider the subspace Z in P3BGSp3 given by K(eo, eo, eo) +

{(03B1e1, f3e1, ye1)la + fi + y = 0}. Then we choose {(e0, eo, eo), (el, - e,, 0),
(0, e1 , - e1)} as a basis of Z. Relative to the standard basis {(e0, 0, 0),
(0, eo, 0), (0, 0, eo), (el, 0, 0), (0, e, , 0), (0, 0, e1)} of R6, the above basis in
matrix form is

L

When we apply

to the above matrix, we get
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Then, for instance, if r, x are large and 0 is away from 0 and 03C0/2, the above
matrix equals

Hence

where K(r, x, 0) E U(3) and has the property that Z. K(r, x, 0) is the sub-
space spanned by the rows of the matrix (given as the second term in the
product above).
On the other hand, it is possible to verify that the mapping (w, t, 0) ~~~

O(3)K(1/w, 1/t, 0) is a Coo mapping from {w| |w|  03B5}  {t| Itl  el x

{03B8| |03B8 - 03B80|  el into O(3)BU(3) = P3BGSp3. Indeed we show that the
mapping (w, t, 0) ~ Z. K(1/w, 1/t, 0) is a Coo mapping into P(^3R6) (here
use the fact that the image of the above mapping for E small enough lies in
a fixed coordinate patch in P(^3R6) given above).
From these comments we deduce the mapping (s, w, t, 0) ~~~

fs(K(1/w, 1/t, 0» is a C°° mapping and in fact is analytic in the first variable.
The goal here is to determine the analyticity of the integral
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Here A’ = {w| |w|  el x {x| |x|  el x {03B8| |03B8 - 801  el. Here r, r’,
r°, and r"’ are nonnegative integers bounded by m.
The first point to observe is that the inner integral as a function of (s, w, 0)

is COO in the region {s E CI Re (s) &#x3E; -2(1 + m + A)j x {w| lwl  el x
{03B8| |03B8 - 00 |  03B5}. The main point is to analyze the behavior in x at 0 of

Here we let

Then the integral becomes

However the function (d/d03BB)kA(03BB, w, 0) vanishes for 03BB large (i.e., cP1’ ~2, and
cP3 are Schwartz functions). Thus we can apply integration by parts several
times to get that

Here ck (s) is a meromorphic function in s. The function

By a contour argument we also know that



72

We note here that Re (1 2s + m + A) &#x3E; - 1 is required for the convergence
of the above integral. This is also the region in s where the asymptotic
expansion of (*) is valid as stated above!

Finally we note by change of variables that

Moreover we note that (d/d03BB)kA(03BB, w, 0) has the form of a linear com-
bination of terms

with e, e,, r, ~’’’  0 and i e S(R).
Then we use the asymptotic expansion of (*) to analyze the analyticity of

(3-17). The first term is of the form

Here   0, ’  0, "  - m and "’  0. In any case we can verify that
the above integral has a meromorphic continuation to all of C (in s) and has
the required continuity properties inh. We recall here the differentiable and
analytic properties of the map (s, w, x, 0) ~~~ fs(K(1/w, 1/x, 03B8))!
On the other hand, the second term (the Remainder term) has the form



73

Here o, o’, (2", and ’" are as above. In any case we have that for m and N
large enough the above integral is absolutely convergent and the required
continuity properties of the integral follow automatically!
We note here that if in the inner integral in (3-17) we have a term of the

form (log |03BB|)m, then a calculation similar to the above works to prove
meromorphicity and continuity (in terms of fs) of (3-17).

Also the same arguments as above will work in the cases of other sin-

gularities (i.e., r large, x large, and 0 near 0 or x/2 etc.).
Thus we have established the required analyticity of the integral (3-1) and

the continuity properties (dependence on fs).

REMARK 1. We note that from Proposition 3.3 and the above proof we can
find a function Fs E Il,1,s which is U(3) finite and F E II so that the zeta
integral Z~(Fs, F) has a meromorphic continuation to C and Z~(Fs, F) is
nonvanishing (with a possible pole) at the point s = so . Here FS and F
depend on so . Indeed there exists (by Proposition 3.3) a function hS E Il,l,s so
that Z(hs, F) is nonvanishing at s = so. However there exists a sequence
(hn)s of U(3) finite functions such that (hn)s0 converges to hso in the COO
topology on IS . But this implies that there exists an no such that Z((hno)s’ F)
is nonvanishing at s = so ! We use here the fact that Z(fs, F) depends
continuously on fs. This means in particular that each coefficient of the
Laurent expansion of Z( fs, F) at s = so defines a continuous linear func-
tional on Il,1,so (in the COO topology).

REMARK 2. If we assume only that the function fs is COO and the Whittaker
functions W are COO (not K finite), then it is possible to extend the above
arguments to show that the zeta integral (3-1) has a meromorphic continu-
ation to C (for such COO data). Moreover, a given term in the Taylor
expansion of (3-1) at a value s = so has the property that it defines a

continuous linear functional on ind pGSp3P3(...) Q II1 Q Il2 Q 113 (taken rela-
tive to the COO topologies in these spaces). The key step in proving such a
point is to analyze the dependence of W((03BB0 01)k) as k varies in SO(2, R).
Indeed we know it is possible to choose 0 E S(R2) so that

Then the Mellin transform
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with F a certain partial Fourier transform on S(R2). Thus we choose
Schwartz functions {~i} and {03C8i} so that the function

has a Mellin transform whose poles at the values s = -(1 2 - 03B30) - r,
s = - (t + yo) - r (r  0) agree with the poles of 1 W((03BB0 01)k)|03BB|s dx(03BB).
We let N be very large here. Then W((03BB0 °)k) - AN(03BB, k) has all its der-
ivatives at 03BB = 0 (for each k E SO(2)) vanishing up to a large order.
Then we can apply the above proof to AN and W - AN separately. We note
that a similar proof works in the case where we replace |03BB|203B30 by |03BB|203B30 sgn (03BB)
in the above.

Appendix 2 to §3

At this point we consider any representation (2 of G(C) (with G, a reductive
group) on a finite dimensional space V. We consider the corresponding
representation of G(C), on S(V) = the symmetric algebra of V. We know
that the Poincaré polynomial

where Sm = the representation of G(C) on Sm(V).
We consider the case where G = GL2 x GL2 x GL2 and Q the rep-

resentation given by 03C3(g1) Q 03C3(g2) ~ 03C3(g3) ((g1, g2 , g3) E G) with a, the
unique irreducible two dimensional representation of GL2().
We must determine (2sm in this case. For this we require the low dimen-

sional isogeny between GL2 x GL2 and 0(2, 2).
Explicitly we consider the space M2,2 , 2 x 2 matrices, provided with the

form X ~ det X. This defines a (2, 2) form. Then we consider the

map 03BB(g1, g2): X ~ g-11 Xg2 with (g1, g2) ~ GL2  GL2 and X E M2,2 .
Then det (g-11 Xg2) = (det g2 /det gl ) det X implies that Â(GL2 x GL2 ) ç
GO(2, 2) (GO = similitude group). By dimension and connectedness argu-
ments we have that 03BB(GL2() x GL2()) = GO(2, 2)(C). Thus we note
that the standard 4 dimensional representation V4 of GO(2, 2)(C) is equi-
valent (via 03BB) to the tensor product u 0 a (we note that Kernel(03BB) =
(03BB · 21 À/2)).
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Thus we apply the above considerations to the group G = GO(2, 2) x
GLz and the representation Q = V4 Qx 03C3.

However in this case we note that such a task can be accomplished by use
of the oscillator representation.
Namely we consider the dual reductive pair 0(4) x SP2 over R, the reals.

We assume 0(4) is a compact group. In such a case 0(4) x Sp2 embeds into
SP8 and we consider the corresponding oscillator representation n acting
on L2(M42(R)) (Maz = 4 x 2 matrices). To decompose 03C0 restricted to
0(4) x Sp2 we use the trick of the Fock model e, i.e., a unitarily equivalent
representation to 03C0. In such an instance we take the K-finite vectors eK
in J’f and note that the corresponding infinitesimal representation of
LA(O(4) x SP2) on eK is equivalent to a certain algebra of polynomial
coefficient differential operators acting on the space Y of polynomials on
M42().

In particular we note 0(4) x GL2() acts linearly on M42() via (gl, g2):
Z ~ g11 Zgz with Z E M42 (C) . When we differentiate this action on the
space we deduce that this action is equivalent to the action of the

LA(O(4) x U(2))(C) acting through the oscillator representation on 9 (note
that U(2) is the maximal compact subgroup of Sp2 and LA(U(2) Qx C) =
LA(GL2(C))).
Thus the problem becomes one of decomposing g explicitly under

LA(O(4) x U(2)). This has been done in [K-V]. In particular we decompose
LA(Sp2) (D C = LA(U(2)) Qx (C) ~ p, ~ p- (as complex spaces) where
p+ and p- span the holomorphic and antiholomorphic tangent spaces to the
symmetric space U2BSp2 (at the point U2 {e}). Then we consider U(p+) and
U(p-), the associated enveloping algebras of p+ and p-. We let

H = Pp+ = space of functions in Q annihilated by p+ ("pluriharmonics").
Then H is 0(4) x U(2) stable (via the action defined above). Let 03B4 be an

irreducible module of 0(4). Then if P(03B4) ~ 0 we have that H(03B4) ~ 0.

Moreover H(03B4) is GLz irreducible and the space P(03B4) is a free U(p_) module.
That is, P(03B4) ~ U(p_) OQ H(03B4) (as GL2() modules). Also since U(p_ )
acts as multiplication by polynomials on Y then the equivalence
P(03B4) ~ U(p_) OQ H(03B4) is preserved relative to degrees ("degree" defined
in P).
We can make the above statements more explicit by recalling the results

of [K-V]. In particular an irreducible representation 8 of 0(4) occurring
in Q is parametrized by a pair of integers (m1, m2) with m1  m2  0.
We know that this representation occurs in H’"’ +m2 and the correspond-
ing infinitesimal representation of GLz x GL2 has highest weight
(0, -(m, + M2» 0 (MI, m2). We note that the highest weight of

H(m1, m2 ) as a GL2() module is (-m2, -m1).
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Thus we note that P(m1, m2 ) (the isotypic component of GL2 x GL2
of the form (o, - (ml + m2)) ~ (ml , m2)) must be decomposed under
GL2. This is equivalent to decomposing the GL2(C) tensor product
U(p_) Q H(m1, m2). First we must determine the GL2 representation on
the space U(p_ ). This again is a separation of variables problem. The action
of GL2 on p_ is the unique ihree dimensional representation (adjoint rep-
resentation) of GL2 . Then the representation of GL2 on St(p_) is equivalent
to

Then we deduce that as a GL2 module U(p_) Q H(ml , m2 ) has the form

Thus the next problem is to decompose the tensor product (2t - 2À, 203BB) 0
(-m2, -ml).
However we note that any representation of GL2() of the form (t1, t2)

is equivalent to (el - t2, 0) (8) |det*|~2. Thus (2t - 203BB, 203BB) Q ( - m2, - ml )
is equivalent to (2t - 4À, 0) 0 (ml - m2, 0) 0 |det*|203BB-m1.
We can analyze (2t - 403BB, 0) 0 (ml - m2, 0) via the Clebsch Gordan

formalism. Namely we have that

At this point we are interested in restricting the representation on the
space P(m1, m2) to SL2(C), Moreover we want to compute the "modified"
Poincaré polynomial of the SL2(C) action on (m1, m2), i.e.,

(with x e SL2(C).
The calculation of (*) is given in the following lemma.
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LEMMA (i). (*) equals the series

where v = ml - m2.

Proof. The proof proceeds by induction on v. We let v(Y) = Vv(Y)/Ym1 +m2
and (* *) = (*)1 yml +m2 .

Indeed let v = 0. Then we see easily that (**) equals

Then let v = 1. Again it is direct to verify that (**) equals

Thus to prove the general case we assume that the validity of the identity
in the above Lemma for v = 2e. We then consider the case v = 2~ + 2.

Indeed we consider the tensor product U(p_) OO (2e, 0) (x) (2, 0) in two
different ways. On one hand by induction hypothesis U(p_) OO (2e, 0) Qx
(2, 0) = 2~(X) Qx (2, 0). On the other hand U(p_) Ox (2e, 0) Qx (2, 0) =
U(p+_) OO ((2~ + 2, 0) C (2e, 0) ~ (2e - 2,0)) = (U(p - ) 0 (2e + 2, 0)) (B
2~(X) ~ 2~-2(X). Thus we must prove the identity:

This can be checked directly!
The proof when v is odd is similar and is omitted! Q.E.D

COROLLARY TO LEMMA (i). The SL2 x SL2 X SL2 module gp(m1, m2)
decomposes via the Poincaré polynomial
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At this point we consider certain other Poincaré polynomials. In par-
ticular let t and t’ be the permutations given by t(v, Q v2 Q v3) = v2 Q
V3 Q vl and t’(v1, Q v2 ~ v3) = V2 ~ VI ~ v3. We are interested in deter-
mining the Poincaré polynomials

and

where (g1 , g2, g3) ~ SL2 * SL2 x SL2 (embedded in GL2 x GL2 x GL2).
We observe that the only possible SL2 x SL2 x SL2 irreducible

components that give nonzero contributions to (i) have the form

(e, 0) 0 (e, 0) ~ (e, 0). Hence, using Lemma (i ) and Corollary to Lemma
(i ), (1) equals

Similarly we note that the only SL2 x SL2 x SL2 irreducible com-
ponents that give nonzero contributions to (2) have the form (e, 0) Q
(e, 0) Q (v, 0) where v is arbitrary. Thus (2) equals

Appendix 3 to §3

At this point we prove the rationality of the local zeta integrals in the case
of the Rankin triple product (i.e., K = K ~ K (9 K). Here we make
the assumption that cv = w’ = 1 and 03A61,1,s = fs . Moreover we have that
03C903A0103C903A0203C903A03 = 1.
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We express the zeta integrals (3-1) in such a case as follows:

But we know that (KX )2BKX is a finite set. Thus the zeta integral becomes
a finite sum of terms of the form

But then we can express the above integral as an iterated integral of the
form

Thus our first problem is to compute the integral

We consider the decomposition of the space K2 x K2 x K2 (see
Lemma 1.1) relative to the form A ~ A’2 ~ A’3. In this context we then
consider Sp(A’1) x Sp(A2 ~ A’3) ~ Sp1 x Sp2 ~ SL2 x Sp2 embedded in
Sp(A’1 ~ A’2 ~ A’3) ~ Sp3.
The problem then becomes one of determining

as a function of G E Sp2.
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We recall that fs E IndGSp3p(...) where P is the parabolic subgroup of GSp3
stabilizing the 3 dimensional isotropic subspace M spanned by {(e0, eo, eo ),
(e1, - e, , 0), (0, el , - e1)}. Then we let Q = StabSp2{03BB(0, el, - e1)}. Then Q
has the form GL1 x Sp, x U3. In such an instance we consider the

basis {X1, X2, X3, X4} of {0} x K2 x K2 where XI = (0, e0, - e0), X2 =
(0, eo, eo), X3 = (0, e1, - e1), X4 = (0, el, el ). Then relative to this basis

and

We can show that

Then we consider an element q of Q having the form q - U3 - t - z with

u3 E U3, t E GL1 and z E Sp1. From the invariance property of f, we have
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that

On the other hand, we proved in [P-R-(II)] and [P-R-(III)] that

where Hv(03A0v, s) is a fixed meromorphic function in s (with Hv of the form
1/P(q-sv) if v  ~) and Uv an entire function of s ( Uv ~ C[qsv, q-sv] if
v  ~). We note that if ITv is an unramified principal series of GL2, that
Hv(03A0v, s) coincides with the symmetric square Lv factor of rlv.
Thus we have for F E rlv

where Çs e C[qsv, q-sv] 0 W(03A0v, 03C8) if v  00 or Çs ~ Rs 0 W(03A0v, 03C8) with
Rs = space of entire functions in s if v = +00.
Thus we deduce that the integral

equals a finite linear combination of terms of the form

where (g2, g3)GL1 and (g2’ g3)SL2 denote the GL1 and SL2 part of the element
(g2’ g3) in SP2 relative to the decomposition Sp2 = U3. GL1 . SL2 · Sp2(Ov) =
Q · Sp2(Ov).

It suffices to make the calculation for g2 = (t10 0t1-1) and g3 = (t20 0t2-1). In
such an instance we compute that in terms of the basis {X1, X2, X3, X4} the
matrix (g2 , g3) is represented by
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Then we consider the Iwasawa decomposition of the element

Here a and f3 are uniquely determined elements in nL:; thus k(tl t2) is uniquely
determined mod ( ô u1), u E W and a E (YX.
We have that

and

We note that the function on Sp1 x GL2 given by (g, g’) 

has the property of being invariant under (g, g’)  (g(03B10 z1)g’) for all

z E K and a E (!)X. Thus it follows there exist matrix coefficients f, on the
maximal compact subgroup of GL2 so that f, (g, k) = 03A3 fls(g, 1)Ji(k) and
J1((03B10 u1)k) = J1(k) for all u E U, a E Ox, and all k E the maximal compact
subgroup of GL2 (this last condition holds if v  ~).
Thus it follows that (tl , t2 )  Ji(k(t1,t2)) is a well defined function and

moreover is locally constant on KX x KX . (v  oo here).
If v = +00 then (tl , t2 ) ~ J1(k(t1,t2)) has the form (|t1|2~ + |t2|2~)-r/2

P(tl , t2 ) with P a homogeneous polynomial of degree r.
On the other hand, if we assume that t1 and t2 are both close to zero (i.e.

|t1|  A, |t2|  A with A small) then Ji(k(t1,t2)) can be expressed as a linear
combination of the form

where ~K(03B5) is a unitary character on the group K(03B5)xK(03B5), the uniqut
unramified extension of K of degree 2).
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Thus we have that for (g2’ g3) = ((t10 0t1-1), (5 0 t2-)), the integral (for
v  ~ )

is given as a linear combination of terms of the form

More specifically if both t1 and t2 are small, then we may assume that

Ji(k(t1,t2)) = XK(E) ((t1 + t2) ± 0(t1 - t2)).
We recall that any Whittaker function W03C8Fl(x0 01) = a linear combination

of terms ~(x)~1(x) (~ e S(K) and ~1, a character on KX). Thus when we
compute the above data we have a sum of terms of the form Hv (03A03,v, s) times

We recall that 03BEs = X Pi(q-s)W03C8hl with wt E W(03A03, 03C8) and Pl E C[x].
Moreover, we recall that support (WFl(x0 01)) is compact in K. We observe
here that any integral of the form

with the same integrânds as in the above integral is a polynomial in q-S .
Then we analyze the first integral above and decompose the integration

as follows:
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We analyze both integrals above; the method of calculating the second is
similar to the first. Then the first integral becomes a sum of terms of the form

Hère 12 ti = (03C0’03C9)* = 03C0 in the integral above. Since A is small we have that

wtl (t210 01) = a sum of terms of the form 03B3(t21) with 03B31 a character on J(X. Thus
the inner intégral equals

However, we note that

We note that 1 ~ 03B5 is a unit in (9x, Then if 1 tl /t2l |  T (for T small) it
follows that

Hence the integral above equals the finite sum of terms
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Then when we substitute the above expression in the integral

we find a linear combination of terms of the form

Noting that ~K(03B5) is trivial in 03C0OXK(03B5) and that 03C903A0103C903A0203C903A03 = 1 we see easily
that the above intégral has the form of a polynomial in q-S times

(where 03B31 and y2 are characters appearing in the decomposition of WF and
wt restricted to (x0 01)).
On the other hand an integral of the form

with A 1 small can be analyzed in a similar but easier fashion.
We note that in the remaining cases a similar proof for rationality of

(3-1) can be given.
Thus we have the following consequence of the above calculations.

THEOREM. Let v  00. Then in the zeta integrals (3-1) Zv( fs, F) is rational
in q-S and admits a common denominator.

REMARK. If 03A0i = indGL2B2 ((03B10 x03B2)  03B31i(03B1)03B32i(03B2)|03B1/03B2|1/2) we assume that a
Whittaker function Uh, has an asymptotic expansion of the form

CI ~1/203B31i + c2~1/203B32i near the origin. Then under the assumption that 03C903A0l = 1

we can deduce from the proof above that Zv(fs, F) can be expressed as a
rational function with a denominator which divides

The key point here is to note that Hv(03A0i,v, s) ~ 03B6v((03B31i)2, s + 1)03B6v
((03B32i)2, s + 1)03B6v(s + 1). We observe that the Rankin triple product for
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TII Q TI2 Q TI3 is contained in the second term above. That is, if all the data
is unramified (i.e. y;’ is unramified), then 03B6v((03B303B51103B303B52203B303B533)2 , s + 1) = [(1 -

03B303B51103B303B52203B303B533(03C0)q-((1+s)/2))(1 + 03B303B51103B303B52203B303B533(03C0)q-((1+s)/2))]-1.
The next case we consider is when v = + ~ and Kv = R.
In such a case the basic zeta integral equals a finite sum of the terms of

the form

We expect by using the asymptotics of the wt that the above integral is
a meromorphic function in s. Moreover, we expect that the poles occur in
arithmetic progressions: that is, there exist values 03BB1, ... À, so that s is a
pole of the above integral if and only s = Âi + k with k an integer  0.

§4. Intertwining operators

The basic object of study is the analytic properties of the Eisentein series
E(03A603C9.03C9’.s) on GSp3(A) constructed in §2. Indeed we analyze the constant term
of E(03A603C9,03C9’,s) relative to the unipotent radical of the Borel subgroup of GSP3.

First we consider the more general case of GSpn(A). In such a case we
consider the induced representation

Then we let f03C9,s E I03C9,s be an entire section. Then we form the associated
Eisenstein series

We recall (6) in the Notation Section for the hypotheses placed on f03C9,s.
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The constant term of E along the unipotent radical of the Borel subgroup
of GSpn is constructed in [P-R-(II)]. We have the formula

where Mw is a certain intertwining operator defined in Iw,s (see [P-R-(II)] and
below).
We analyze the analytic properties of each Mw separately. Basically we

know that Mw can be factorized into a product of local intertwining operators

where Mw)v is given by the corresponding local integral.
Following the methods given in [P-R-(II)] we recall the construction of

such Mw.
We let U0 be the unipotent radical of a Borel subgroup Bø of GSpn . Then

we have a Bruhat decomposition in the form

where WH runs thru a certain set of representatives of Weyl group éléments
in H. Then we have that

where Uw is a subgroup which satisfies

S E Symj(A) and X has the form
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We note that Mw is an intertwining operator from I03C9,s to the space

where Xw,s is the character on the Borel group Bø given by

At this point we restrict to the case where 03C9 = 1. In such an instance

Il,s = Is,fl,s = fn etc. Let 03A6s be a factorizable function of the form ~v~S
03A6Kv,s @ (~v~Sfv,s) where 03A6Kv,s is the unique GSpn(Ov) fixed vector in Iv(s) (so
that 03A6Kv,s(e) = 1) and fv,s is an arbitrary "entire" element in Iv(s).
We let

Then there exists a factor cwv(s) (a ratio of factors of the form

(03B6v(kis + a;) ...)/(03B6v(mis + 03B2i) ...) so that Mw(03A6Kv,s) = cwv(s)03A6Kv,s. Again
we note that cwv (s) coincides with the calculation for the Spn case in [L].
Then we have that

We know from [P-R-(II)] that dH(s)cw(s) has a finite number of poles.
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Our goal is to show that the term

is entire. This will then show that the set of poles of Mw = Qx (Mw)v is of a
global nature. Explicitly this means that the poles of Mw are determined by
the poles of dH(s)cw(s)!
Thus starting with an arbitrary function fs in ( we must determine the

poles of Mw(fs) (a local problem). We observe that such a calculation can
be facilitated by use of the following Lemma.

LEMMA 4.1. Let S = {~ E Is| support (Ç) c PwnP} (recall Pw,,P = open
cell in PB GSPn). Then the analytic properties of the family

coincide with the analytic properties of the family

{Mw(fs)|fs varies as analytic "sections" in Isl

Proof. We consider the Laurent expansion of Mw(fs) at s = so, i.e.

We know that there is a smallest integer A so that the map fs0 ~A(fs0)
defines a nonzero intertwining operator from Iso to indGSpnBØ(w-1 ~s0) (see
above).
We must show that there exists a function ç E S so that £ (~)[wn] ~ 0.
Thus we assume that eA (~)[wn] = 0 for all cP E S.
In particular this implies that the function ~A(~) vanishes on the open cell

in BøBGSpn. Indeed the open cell is given by BøwnBø which is included in
the set BøwnPn. Thus since the open cell BøwnBø is dense in B0BGSPn this
implies that ~A(~) = 0 in the space indGspnBø(w-1~s0)!
Hence we have that Kernel(~A) ~ S.
But this implies that Kernel(tA) = Is0. Otherwise we can find a proper

GSpn invariant subspace X in ISo which contains S (if K is Archimedean, then
we assume X is a closed subspace). By using the duality between I, and I-s
we see that this implies there exists a nonzero space X~ in I_So so that if
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, then

for all 9 E C~c(Symn(Kv)).
But this says that 03BE = 0. Q.E.D.

Thus the basic problem will be to analyze the analytic properties of the
functional 9  Mw(~)[wn] for 9 belonging to the space S. To analyze the
calculation of Mw(~)[wn] we first observe that by the support properties it
simply suffices to compute (wnw-1 )(wwn) in terms of the Bruhat decom-
position of the open cell PwnP (here n ~ U-w). But we know that

{wnw-1|n E N-w} has the form

Thus we arrive at the following integrals to analyze for the different
w E Q. We compute Mw(~)[wn] for 9 having the explicit form

with (p E C~c(Symn(Kv)).
We first choose special w. Namely we let w = Wj be the element in WGsp,,

having the form

In such an instance Zwj = {[00 0s]|s e Symj(K)}. Thus we have that for
~ ~ s,

where (p is defined above.
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Then we consider the functions

and

In particular we note that Cw j (s) = (awj(s))/(bwj(s)). Moreover we deduce
from the Appendix to §4 that the function 

is entire. Indeed we need only note the relationship

(here we use the notation at to refer to which Spt is being used).
Now we consider a general element w in WcSpn. Using the element wj

above, it is possible to express Mw as

Here S and X run over the sets described above.
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But in simple terms MW has the form

where Mwj is the intertwining operator associated to the element Wj in WH .
First we note that Mwj maps the space Is to

Here A E GLn-j, B E G§ and U’ - the appropriate unipotent radical of a
parabolic P’ of GSpn with GLn-j x GLj as Levi factor.
The next point is that the integration in the X variable also represents an inter-

twining operator on Spn. This requires some care to explain in a precise manner.
Before we consider such a point we make certain preliminary remarks con-

ceming the operator Mw . We recall that our goal is to prove that

is an entire function in s. We consider certain special w and apply an induction
assumption to prove the validity of the above statement.

Indeed let w satisfy the assumption that X has the form where the first row
consists entirely of zeroes. Then in such an instance the functional

9 -- Mw(~)[wn] (~ E S) can be viewed as a functional on the group Spn-1. By
restricting ~ E S to Spn-1 (embedded in S’pn via the map
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we obtain an element of the corresponding S space for the group Spn_ 1
(relative to the corresponding induced representation of Spn-1).
Moreover we note that the elements {u- wwn|u- E U,,,- 1 are of the type

where [] has the form {u- wwn-1|u- e Uw n Spn-1} (here we can view
w as an element of Spn-1 since it has the form

Thus we can conclude that for w satisfying the above assumption, the
functional cp Mw(~)[wn] coincides with the functional ~’ ~ Mw(cp’)
[wn-1] on Spn-1 (here ~’ belongs to the corresponding S space for the group
Spn-1).
Thus we are in a position to apply an induction assumption. Indeed we

note that cn-1w(s + 1 2) = cnw(s) and that

Thus in any case we deduce by induction that s - (1/dHn(s)cw(s)) Mw(/s) is
entire in s. In fact if n is even then the above function has a zero where

1/(’v(2s + 1)) has a zero!
Now we analyze in (4-1) the integration in the X variable. Indeed we first

consider how to construct an arbitrary element in the space
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For this we let 9 E S [Mn-j,n(K)] and consider the zeta integral (G E GLn)

Then an easy calculation shows that Z(~, G, s) defines an element in the
above induced representation of GLn . In order to assume that Z(g, s)
determines an "entire" section we must have that

Thus by such a construction Z(g, s) is an arbitrary "entire" section in

REMARK 4.1. We can construct in another fashion an arbitrary "entire"
section in IndGLnGLn-J  ... (...) by taking

with support (cp) c {Z| rank (Z) = j}.
Then we must compute the integral

The main problem that we must consider is to determine the poles of the
above integral.

For this calculation we decompose GLn-j as the maximal compact of
GLn-j times the lower triangular matrices. In such an instance (4-2) equals
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a sum of integrals of the form

Since the set {Z ~ Mn-j,n(k)|rank (Z ) = n - j} is stable under the

GLn-j x GLn action (given by T (g1,g2) g-11 Tg2), then we may assume thaï
the cp above satisfy supporte cp) ç {Z| rank (Z) = n - j}. On the other
hand when we write

(where A; are the rows of X), then
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In particular when we make the appropriate change of variables in dX =

dAl dA2 ... dAn-J we deduce that (4-3) equals

Here ni represents the number of nonzero entries in the i th row, At , of X
given above (recall n1  n2  ···  nn-j).
Thus we deduce easily that (4-2) has the form

times an entire function in s (if v  oo, then we get a polynomial in q-S).
Now we note that if nI = 0 and v  oc, we can omit the term

03B6v(2s + 1 - n1)(i = 1, n 1 = 0) above because of the support properties of
the function 9. If v + oo prime, then we must replace 03B6~ (2s + 1 - n1)
by 03B6~(2s + 2 - n1).
Now we are at the point of determining the analyticity properties of a

general intertwining operator Mw . Moreover we can assume that X (given
above) has the form where n1 &#x3E; 0 (otherwise we use the inductive step given
above). We use the decomposition of Mw given above to get a first estimate
on the possible poles of Mw . Indeed we see that

is entire in s. Finally when we normalize Mw by dHn(s)cw(s) we note that
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Thus we have that (for fs E Is)

equals

times an entire function in s.

But the above product equals

where Xn,j is the set

and

(note that Xn,n-1 = 0 when n is even and Xn,n = 0 in general).

REMARK 4.2. We let v be a finite prime. Then we observe that at those values
of s where 2s E Xn,j (when Xn,J =1= 0) the representation Is is irreducible (see
[Gu]). However we note that for any w

(03BE E H(Spn), Hecke algebra of SPn). Thus for those values of s where 2s E
Xn,j, the normalized intertwining map ~K,s * 03BE  [1/dHn(s)cw(s)] Mw (CPK,s * ç)
is entire in the s variable. However if fs  [1/dHn(s)cw(s)] Mw(fs) admits a
pole (for s satisfying 2s E Xn,j), then we get a contradiction to the irreduc-
ibility of Is (i.e. on the subspace {~K,s * çlç E H(G)} the normalized interwin-
ing operator given above is entire).
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Thus the basic problem is to show that for those s such that 2s E X:Z,j the
map s  [1/dHn (s)cw(s)]Mw(fs) is entire. (We note if Kv = R or C we must
show that the statement is true for all 2s E Xn,j + _ with _ the non-
positive integers.)
At this point we consider specific values of n. Namely we consider the

cases n = 1, 2 and 3.
The cases n = 1 and 2 follow from what has already been proved. We

thus consider the case n = 3. Using the above data we see that the relevant
w fall into three cases. Namely (i) j = 2, n, = 2, (ii)j = 2, n, = 1, and (iii)
j = 1, n1 = 1, n2 = 1.

We observe first that case (iii) can be treated directly by using Z instead
of Z in Rcmark 4.1 above and then following similar ideas as above.
Then we consider (i) and (ii) above. Indeed we know that Mw2 has a pole

at s = - 2 + 03B5q(03C0- 1)/[log (q)] if v  ~ and at s = - 1 2 - k/2 (with k
a nonnegative integer) if v = +00. Now if v  ce then the pole is simple
and in fact we have (see Appendix) with Eq = 0 or 1

residue

where cp E S and c, a nonzero constant independent of 9. On the other hand
we note that the Sp3 module

contains the space ( where
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Indeed this is true since the GL3 module

contains the one dimensional space {|det GI2+sIG E GL3} when

But from above, ress-SoMw2 carries the space S isomorphically to S. And
since Is*0 is the SP3 span of S (this follows from Lemma 4.1), then ress-So Mw2
carries Lú Sp2-equivariantly into Lô! Thus a given h belonging to Image
ress=s*0Mw2(...) has the property that h restricted to GL3 has the form

|det x|-3/2+03B5q(03C0-1)/[log(q)], x ~ GL3.
Then we consider the unique GL3(Ov) invariant vector in

given by (Ps normalized so that (ps(e) = 1. For such a vector we have that

where s, is the corresponding GL3(Ov) invariant in M-1(IndGL3GL1  GL2  U"(...))
and w is the Weyl group element in GL3 which maps the positive,roots into
negative roots (Mw-l is the corresponding intertwining operator associated
to the integral given above).
On the other hand we also have that

where s" and w’ are similar objects as in the previous case.
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The upshot of the above calculations is that the two intertwining oper-
ators M., and M’ map s to zero when s = s*0(moreover these operators are
holomorphic at such a point also).

Finally we note that

Thus we deduce that for cases (i) j = 2, n, = 2 and (ii)j = 2, n, = 1, the
operator Mw(fs) is entire at s = sô (Mw is the composition of M,,2 and either
M", or M). From this we see that (for v  )

is analytic at s = s*0(for cases (i) and (ii) above).
The reason for this is as follows. For fs E Is = indGSp3P3(...) which is K

finite, we note that (1/(s - s*0))Mw2(fs) = E a^l(s)hi where hi is a finite family
of linearly independent K finite functions belonging to IndSp3GL1  GL2  U"(...)
(h, are independent of s), and the a^l are analytic functions in s. Moreover
we note that for s = st, the a^l, will be nonzero according to whether h,
belongs to Isô (when embedded in IndSp3GL1  GL2  U"(...)). But then we note by
the comments above, the intertwining operators Mw and Mw. when evaluated
at s = s*0annihilate 4)sô (recall that both operators are analytic at that value
of s). This implies that M and M,7,, annihilate hi when h, E Is*. On the other
hand a^l() vanishes at s = s*0 if hi ~ Is*0. Thus the composite operators
M 03BF MI"2 and M 03BF MW2 are analytic at s = s*0!
We now assume that v is an Archimedean prime. Indeed we note that

from the Appendix to §4

where D2 represents the differential operator on the space Sym3 (R) =

{(xij)|x = tx} given by det [~2/(~x23 ) - ~/(~x22)~/(~x33)]. In any case this
shows that there exists an element Wk of the enveloping algebra U(Sym3)
(here we identify Sym3 as the Lie algebra of the group {()|W = tW} so
that
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We note here Wk is acting on the left side of the function (that is, a degree
one element 03BE in U(Sym3) acts via

From the above calculation we deduce that for all g E Sp3

(for cp e 5’).
We note here that we can show that residues=-1/2-k/2(...) vanishes away

from the open Bruhat cell PwnP.
Then by restricting W  f-1/2-k/2 to GL3 we have

But as x varies in GL3 we know that Ad(x) · Wk lies in U(Sym3) and in fact
generates a finite dimensional representation of GL3.
The upshot of the above statements is that

generates a finite dimensional subspace (GL3 stable) of

Hence it follows that residues=-1/2-k/2Mw2(fs) generates an SP3 submodule
equivalent to indSp3GL3 ~ U(V x 1 ) where V is the unique, finite-dimensional
GL3 submodule (given above) of ind GL3 GL2  u,,(...).
The last point that we must verify is that the operators Mw and Mw-

(defined above) annihilate the finite dimensional spaces given above. In fact
we show that the GL3 modules
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and

do not contain any finite dimensional GL3 submodules. These latter GL3
module representations are the ones which contain the image of M(...)
and Mw, (...) respectively. Indeed we restrict each of the above GL3 spaces
to

We note that any GL3 stable finite dimensional subspace of these GL3
modules-must restrict to either one of the above subgroups in a nonzero
fashion. We then obtain the GL2 induced modules

and

Then it is an easy exercise to see that such GL2 modules cannot contain any
finite dimensional GL2 subrepresentations.
Then we deduce that (for v = + ~)

is analytic at those values of s = - 1/2 - k/2 (k a nonnegative integer).
Thus we use the same type of argument as in the p adic case to conclude the
proof in the Archimedean case.
Thus we have established the following theorem.
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THEOREM 4.2. The function

is entire in s in the following cases:
(a) if v  oo and arbitrary n.
(b) if v = oo and n = 1, 2 and 3 (here Kv = R).

The arguments above thus imply that the poles of the global intertwining
operator fs ~ [1/dHn(s)cw(s)]Mw(fs) are of a global nature if n  3. We

expect that this also is the case if n &#x3E; 3. Indeed from Remark 4.3, it suffices

basically to prove the validity of Theorem 4.2 in the Archimedean cases
when n &#x3E; 3. The essential problem is apparently of a technical nature.
Namely we must determine the exact nature of the operator Mw at the points
s = - m/2, m a positive integer.
We now consider the case n = 3. By simple calculation (using [P-R-(II)]

we deduce that dB3 (s)cw(s) has possible poles in the set of s belonging to
{-2, -1, -!, 0, !, 1, 2}.
Thus the possible poles of the function

occur at the values of s given above.
We note that some of the above values of s can be ruled out (as poles) for

other reasons.
For instance let s = 0. Then we know that the map s  EUø(fs,)

is holomorphic for all s such that Re (s) = 0. Moreover we know
that dSH3(s) = 03B6s(s + 2)’s(2s + 2) is nonvanishing at s = O! Thus

dSH3(s)EUø(fs) is entire at s = 0.
On the other hand we consider the point s = - 2. In such an instance the

only term dSH3(s)Mw(fs) which has a possible pole at s = - 2 is when
w = identity. Then we note that dSH3(s)fs = 03B6s(s + 2)03B6s(2s + 2)fs has no
pole at s = - 2.
Thus we can summarize our results so far in the following statement.

THEOREM 4.3 . The possible poles of the Eisenstein series dSH3(s)E(fs,) occur at
those values of s = + 1 2 , ± 1 and s = 2.

REMARK 4.4. We know that E(. fs, ) admits a nonzero pole at s = 2. Indeed
if we choose fs = ~v03A6Kv,s (with 03A6Kv,s, the unique spherical vector in (Iv)s), then
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from [J]

On the other hand it also follows from [Ca] that if we take a function of the
form

where (fv)2 lies in a GSp3 proper submodule of (Iv )2 (for all v E S ), then

Appendix 1

We let K be a local field.

We consider the space Symn(K) of n x n symmetric matrices and the
action of Gtn(K) on this space via Z ~ gZtg with Z E Symn and g E Gtn.
Moreover we know that such an action has a finite number of orbits. Let

f?JJl, ... , Ps be representatives of the open GLn orbits.
Let S(Symn(K)) be the Schwartz space.
We define a zeta integral associated to the orbit Pi. Namely let

This is defined for s such that Re (s) is large.
Moreover let

Then the following facts can be easily established.

(1) The distribution ç - ZPl(~, s) satisfies the homogeneity property:

(A similar formula holds for Z(cp, s).
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(2) The function s ~ ZPl(~, s) has a meromorphic continuation to C and
there exists a functional equation of the form

where (p is the Fourier transform of ~ taken relative to the character
T  03A8(tr (T)) (with 03A8 some additive character on K). Moreover

cP1(03A8, s) is a rational function in q-sv if v  00 (a ratio of factors of the
form (0393(03B1is + f3i) ...)/(F(03B3iS + £5i) ...) if v = (0).

(3) If we take the Laurent expansion of Z(~, s) at s = s0, we get

Here ç - ek(9) defines a distribution on S(Sym). Moreover if A is the
smallest integer so that ~A(~) ~ 0 and A  0, then the distribution
ç - tA(cp) is supported on the set {X E Symnldet (X) = 01. Locally
such a distribution has the following form. Let J.1k be the distribution on
the orbit {gAtkg|g E G~n} (where Ak has rank = k  n) which trans-
forms according to the character g - Idet g|-k. This distribution is

unique up to scalar multiple. Then ~A(~) ~ P[~/(~03BE)] Qx 03BCk(~) where P
is some polynomial in the variables ol(oç) (with ~/(~03BE) the transvérsal
coordinates at a point Xo on the orbit given above).

The problem is to determine the exact nature of the poles of Z(cp, s). We
will determine the poles by using an inductive technique and the points
mentioned above.
We recall that if w = w" (the big Weyl group element), then (see §4)

where

and dHn(s) is given in §4 (here aHn = aWn).
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Then we prove the following Theorem giving the exact analytic behaviour
of Z(cp, s).

THEOREM. The function

is an entire function. Moreover for any given s = so we can find a ~0 so that

[1/awn(s)]Z(~0, s) is nonzero at s = so !

PROOF. The proof is by induction on n. The case n = 1 is just Tate’s thesis.
That is, s ~ [1/03B6v(s)]Z(~, s) is entire (for n = 1) and nonvanishing for
suitable choice of 9.
Then we assume that the Theorem is true for ~  n.

We look at the subspace in C~c(Symn) given by

Then we consider the family of zeta integrals Z(~, s) as cp varies in

St({[XtY YZ]|X, Y arbitrary and W ~ GLt} is an open set in Symn).
We note that the pole behaviour of (awn(s))-1 Z(~, s) at s = So (as 0 varies

in St ) is "less than" the pole behaviour of (awn(s))-1 1 Z(o, s) at s = So (as 0
varies in C~’c(Symn)). That is, from (3) above, the smallest k, so that
~kr(~) ~ 0 (cp E St) satisfies kr  A.
The main problem is to determine when is it possible that kr &#x3E; A. In such

an instance this means that the distribution ~ ~ tA (cp) vanishes in St. In
other words

We aiso note that by (3) above

The set {X|det X = 01 is the union of a finite number of GLn orbits of the
form

where A is some t x e symmetric matrix with e  n.
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We also know that since the distribution ~ ~ ~A(~) is GLn homogeneous
we have that supp (cp -+- ~A(~)) is the union of a finite number of GLn orbits
of the above type.
We observe that the only possible GL,, orbits of the above type that are

contained in {[UtV VW]|rank (W)  t) have the form

with B a nondegenerate symmetric matrix of rank  t.

We apply the inductive situation to the case when t = n - 1. Then the

only possible GLn orbit in {[UtV ]|U E Symn-1(K), V arbitrary} is {0} itself.
Thus ~ ~ ~A(~) is a homogeneous distribution supported at {0}.
If v is a finite prime, we deduce that eA (9) = cp(0); hence the distri-

bution ç - Z(cp, s) has a possible pole at the values of s where 2s *
0 mod (203C0-1)/[log (qv)] (i.e. when s = 0 or s = (03C0-1/[log (qv)]
mod (203C0-1/[log (qv)].

If v = + 00, then ~A(~) = [det (~/(~xij))]m(~)(0) where m is some non-
negative integer. We observe that tA(cp) transforms according to ~A(g-1 ~) =
(det g)2m~A(~). In particular the distribution ~ ~ (awn(s))-1Z(~, s) has a
possible pole at those values of s where 2s = - 2m (for all m  0).
Thus we have located the values of s where the order of pole of Z(cp, s)

on the set Sn-1 is "less than" on the set C~c(Symn).
To analyze these values of s we use the functional equation given in (2)

above. In particular we observe that if Z(cp, s) has a pole at s = so (of the
above type), then ZPl(, (n + 1)/2 - s) has no such pole at s = so (recall
here Re ((n+ 1)/2 - s0)  (n + 1)/2; this implies that for some’F and 9i,
cP1 (IF, s) has a pole at such so.

Let X&#x26;’l( ) = disc (P1)|&#x3E; with 1&#x3E;, the Hilbert symbol of K and
disc (P1) = discriminant of P1.
However we can now use the explicit form of cP1(03A8, s). Namely by direct

calculation we have that 

where 03B5Pl(03A8, s) is an entire function in s without poles or zeroes.
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Thus in any case we deduce that s ~ [1/aH(s)]cPl(03A8, s) has no pole at the
values of s = so with so = - m, m a nonnegative integer! This implies that
the function s ~ (awn(s))-1Z(~, s) cannot have poles at the values of

s = - m, m a nonnegative integer!
To finish the proof we must analyze the set {Z(~, s)lcp E Sn-1} (this is the

inductive step).
Again we work with {Z(~, s)lg ~ St} for general t.

We observe that the set

is isomorphic to the product

via the map

(here U e Mn-t,t(K), A e Symn-l’ B e Symt n GLt ) .
Then for ~ E 8t we can find functions ~1 ~ S[Mn-t,t(K)], ~2 ~ S[Symn-t]

and CP3 e S(Symt n GLt) so that ~ = CP1 Q CP2 Q CP3. Hence we have that

Then we note the zeta integral with CP3 is entire since SUPP(~3) c GLt. On
the other hand the zeta integral with CP2 is precisely a zeta integral of the type
we are analyzing (on the space Symn-t). Then by induction we can assume
that for t = 1 and ç E Sn-1 1

is an entire function in s.
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Finally we note that

Thus we have established that for all cp ~ S

is an entire function in s!
It is straightforward to verify that such a function is nonvanishing (for a

particular choice of cp).

§5. Properties of Rankin triple L functions

At this point we collect together the results of §2, §3 and §4.
We let 03C8 be a nontrivial additive character on AKIK.
Let K be a totally real field, i.e., Koo = R for all Archimedean primes in K.
We let II be an automorphic cuspidal representation of GL2(K) (defined

in §2). We assume that if (i) K = cubic extension of K then 03C903A0 = 1, (ii)
K = KI ~ K (K1 quadratic extension of K) then 03C903A0 = 03C903A01 · 03C903A02 = 1, and
(iii) K = K ~ K ~ K then 03C903A0 = 03C903A01 

· 

wn2 . 03C903A03 - 1.
We consider the decomposition II = ~v IIv , when II is a representation

of GL2(AK). We let S03A0 = {v e Klv archimedean and IIv not an unramified
principal series representation of GL2(Kv)}. If II is a similar such represen-
tation of either GL2(AK1) or GL2(AK), then we can define the corresponding
Sn set (recall here that the GL2(aK1) or GL2(AK) are defined by restriction
of scalars.)
Then we define the restricted Rankin triple Ls function of II as given in

(0-1) and (0-2). Indeed we let the S be as follows: (i) K = cubic extension
then S = S03A0 ~ S1, (ii) K = Ki E9 K then S = 5’n, u Sn2 U S1 and (iii)
K = K E9 K E9 K then S = S03A01 ~ Sn2 U Sn3. Here S1 = {v ~ K| either
residual char(Kv) ~ 3 or 03C8v(trKw/Kv( )) is not of order zero when w|v}.

THEOREM 5.1. Let II satisfy the hypotheses given above (Theorem 2.1.). The L
function Ls(03A0, 03C3’, s) admits a meromorphic continuation to all of  with a finite
number of poles. Moreover the possible poles are located at s = 0, 1 4, 3 4 or 1.

Proof The idea is to use here Theorem 2.1, Theorem 3.1, and Proposition
3.3. Indeed we let cv = cv’ = 1 and choose Ci i, = fs = ~v fv,s in such a
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way that Z((fs)v, F) = 1 (see Proposition 3.3) for all v E Sfin. Moreover,
using Proposition 3.3 (and Remark 2 at the end of Appendix 1 of §3), we can
choosefv@, and F both K finite relative to GSp3 and GL2 (K)’, respectively so
that Z~(f~,s, F) is nonvanishing at s = s. (with a possible pole). This
implies that (2-2) equals a function ~~(s) (nonvanishing at s = s0) times

But then we note that dSH3(s) = (s(s + 2)(s(2s + 2) and we apply the
results of §4 to deduce that 03BB ~ LS(03A0, (7’, 03BB) has a meromorphic continu-
ation to C with a finite number of poles. However, from Theorem 4.2,
s  dSH3(s)E(fs) has its possible poles at s = 1: t, + 1 and 2. But we
note from Remark 4.4 that ress=2 dSH3(s)E(fs) is a multiple of the iden-
tity representation of GSp3 (and hence of GL3(K)0); this implies
res),=3/2 Ls(03A0, 03C3’,03BB) - 0. Q.E.D.

It is possible now to extend the definition of the Ls function above to
include the ramified primes (v E Sfin ).

For this we need to modify some of the above results.
The first step is to choose a correct family of sections f as input data in

the family of zeta integrals (3-1). Our original choice of f just requires
"holomorphic" data. For this we recall the space Is given in §4 for general
n. We assume v  oo. Then we consider a certain faimly of "mero-
morphic" sections. That is, we say f is a "good" section if it belongs to one
of the following three families:

(a) dHn(S){~K,s*03BE|03BE E H(SPn(Kv)) OO [qsv, q-sv]}
(b) fs |spn(Ov) is independent of s.
(c) f - M* (g-s) where g-s belongs to (b).
Here Mw is the normalized intertwining operator

Moreover H(SPn(Kv)) is the usual Hecke algebra on SPn. We observe that

Thus M*wn satisfies M*wn 03BF M*wn = I, the identity operator.
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With this data it is easy to verify that if fs is "good", then M*wn(f-s) is also
a "good" section. Moreover any "good" section gs = M*wn(f-s) when fs is
a "good" section.
Then we consider the family of zeta integrals {Z(fs, F)11s "good" and

F ~ Ill (see §3). We let Inv be the fractional ideal of the ring [qsv, q-sv] (in the
field qsv, q-sv&#x3E;) generated by the above family.
We know that any entire section fs in £ can be written as a finite linear

combination of the form E Pi(qsv)hi where Pi ~ [qsv, qv S and hi ~ Is has the
property that hi|spn(Ov) is independent of s.

Thus Ijlv has a generator of the form 1/P(q-s) with P E [X] and
P(O) = 1. (Here we use Proposition 3.3, where by construction the function
h1,1,s |sp3(Ov) is independent of s).
We let Lv(03A0v, u’, (1 + s)/2) be the local factor associated to 1-1v given by

(1/P(q-sv)).
Then from Corollary 1 to Proposition 3.1 we have the identity:

which holds for all F ~ Il and fs "good". Here 03B5v(03A0v, 03C3’ s) is a rational
function of qv which has no zeroes or poles.
With the local Lv(03A0v, cr’, s) defined above we now can define Lfin as

Then we can prove the analogue to Theorem 5.1 for Lfin-

THEOREM 5.2. Let TI satisfy the hypothesis given in Theorem 5.1. Then

Lfin(03A0, a’, s) admits a meromorphic continuation to C with possible poles at
s = 0, 1 4, 3 4 and 1.

Proof. Following the idea of the proof of Theorem 5.1 we must show that
the Eisenstein series

(withf, = (~v~S (D4,,) (~v~Sfv,s) with fv,s a "good" section for v ~ Sfin and
Iv,s "entire" if v = ~) has possible poles at s = + 1/2 and + 1. Again
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following §4 it suffices to show that

(for the w defined in §4) is entire when fv,s is a "good" section.
If fs (= fv,s satisfies (a) or (b) above then the statement above follows from

§4. Thus we can assume that fs = M:n (g-s) with g-s belonging to family (b).
We consider

However, we know that f, Mw(Mwn(fs)) defines an GSp,, intertwining
operator from 1. to indGSpnBø(w-1(X-s) ~ 03B41/2Bø) . But we know that the element
w’ - yn wn w (where yn is the unique element of WGLn, the Weyl group of GLn ,
that sends 0394+GLn to 0394-GLn ) has the property that (w’)-1(0394+GLn) ~ 0394+ and the
associated intertwining operator Mw, maps Is to indGSpnB~(w-1(~-s) ~ 03B41/2B~).
Thus by the general uniqueness principle of intertwining operators there
exists a rational function ê(s) so that

But if we apply both sides of this identity to ~K,s we see that

Thus we have that

Hence we have the identity:
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But using the results of §4 we know that the function

is entire in s. Hence

is entire in s.

Then we note that if fs is a "good" section, that either fs or [dHn(s)]-1fs is
entire in s. This is clearly the case if fs belongs to family (a) or (b) above. If
fs = M*wn(g-s), then we know that [dHn(s)]-1fs = [1/aHn(-s)]Mwn(g-s) is

entire in s (from §4).
Thus in any case we have that

where f/ is an entire section and S’ = {v E Sfin Ih,s is entire} ~ Soo.
With this fact it is now possible to apply the comments preceding Theo-

rem 4.3 to obtain the above Theorem. Q.E.D.

REMARK 5.1. We note that the assumption n = 3 is not used in an essential
way in the above proof. What we have in fact shown is that for all n the
"good" sections fs satisfy the property that the function (for each w)

is entire (for v  ~).
With the definition of Lfin given above it is also possible to give a func-

tional equation for Lfm.

THEOREM 5.3. Let II satisfy the hypothesis of Theorem 5.1. Then Lfin (Il, a’, s)
satisfies the functional equation:
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where

Proof. We leth = (~v~S03A6Kv,s) 0 (~v~Sfv,s) where fv,s is a "good" section
for v ~ Sfin. Then from the général theory of Eisenstein series we have that
E(fs,) = E(Mwn(fs), ). This implies that

From this we then deduce

Then we establish the Theorem by using the functional equation of the
local zeta integral Zv(...) given in Proposition 3.1 and in the above com-
ments (also aH3 (s) = dH3(- s) globally). Q.E.D.

REMARK 5.2. We expect that the techniques used above will apply to the
study of the L functions defined in [P-R-(II)] and [P-R-(III)]. In particular
the method of defining local factors (using "good" sections) probably
coincides with the method given in [P-R-(III)].
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REMARK 5.3. The assumption in this section that K be toally real may not
be necessary. We need it only to apply Theorem 4.2(b). Theorem 4.2(b)
should be valid for ICz, = C.
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