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Introduction

Recall that a partially ordered set F has the countable chain condition (ccc)
if every collection of pairwise incompatible elements of Y is at most

countable. Martin’s Axiom (MA) is the following familiar statement:

For every ccc poset Y and every D, a family of fewer than 2"’ dense subsets
of Y there exists a filter G in Y such that G n D ~ QS for every D in D.

For an infinite cardinal K, MAK is the version of MA in which the cardinality
of D is taken to be at most K. MA was introduced and proved relatively
consistent with ZFC + m CH by Solovay and Tennenbaum in [ST]. It was
then studied by Martin and Solovay in [MS]. The original motivation for the
introduction of MANI was that it implied Suslin’s hypothesis, i.e.

Every ccc linearly ordered space is separable.

It was then realized by Hajnal and Juhàsz [HJ], and Kunen (unpublished),
that the only property of linearly ordered spaces used was that ccc linearly
ordered spaces have n-weight at most N1. Thus, MAK implies the following
statement Ex :

Every ccc compact space with a n-basis of size at most K is separable.

Thus, Ex can be considered as a strong form of Suslin’s hypothesis. The
equivalent partial order version is that:

Every ccc poset of size at most K is 6-centered.

It is proved here that EK is, in fact, equivalent to MAx . For K = N1, a
stronger result is obtained: MANI is equivalent to the following statement e:
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Every uncountable ccc poset has an uncountable centered subset.

Note that Jf is equivalent to the following familiar topological statement
(see [Sh], [KT]):

Every compact ccc space has caliber N1,

i.e. every uncountable collection of open sets has an uncountable subcollec-
tion with the non-empty intersection.
Our approach is to associate ccc destructible partitions to certain com-

binatorial objects. It can be considered as the beginning of a general program
of formulating forcing axioms in terms of the Ramsey properties of the
uncountable. To explain this point, let us say that a partition of the form

is ccc destructible if there is a ccc poset Y and a Y-name X for a 0-homo-
geneous set (i.e. [j ]n (-- Ko or [X ]03C9 ~ Ko respectively) such that any
element of S is forced by some condition to be in X. It is easily seen that .Yf
is equivalent to the following Ramsey-type property of the uncountable:

If S is an uncountable set then every ccc destructible partition of the form
(2) has an uncountable 0-homogeneous set.

So, this paper shows that MAN1 is nothing more nor less than this Ramsey-
type statement. As to the full MA, the above mentioned equivalence of MA,,
and LK yields the following reformulation of MA:

If S has size  2N0 , then for every ccc destructible partition of the form (2),
S can be covered by countably many 0-homogeneous sets.

Thus, it seems reasonable to consider the following Ramsey-type forcing
axioms, for integers n  2, RFAn :

If S is an uncountable set and if

[S ]n = Ko ~ KI

is a given partition for which there exists a poset forcing an uncountable
0-homogeneous, then such a homogeneous set in fact exists.
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Axioms of this form (in particular, RFA2 ) were first considered by the first
named author in connection with a partition relation on W1 which is now
known to be false [Tol]. In §2 we show that RFAn is false for all n  3, but
the status of RFA2 remains open. The quantification over arbitrary posets
in RFAn thus appears to be too liberal. By requiring the poset to preserve
stationary subsets of 03C91, we arrive at the axiom SRFAn, which is consistent
being a consequence of the familiar Semi Proper Forcing Axiom (SPFA). It
is open whether SRFAn or even SRFA03C9 (in the obvious notation) is

equivalent to SPFA. However it can be shown that SRFAn for n  4 has
roughly the same consistency strength as SPFA.

In Section 1, starting from a tower {a03BE : 03BE  t} we define a ccc destructible
partition:

without 0-homogeneous sets of size t. This is then used to define a ccc

nonseparable, compact, Hausdorff space of size 2N0, thus answering ques-
tion 9 of Arhangel’skii [Ar].

In Section 2, starting from a non-03C3-linked poset Y of size N1, we define
a ccc destructible partition:

without uncountable 0-homogeneous sets. Partitons with similar properties
are also constructed under assumptions such as: 2N0  2N1; there is a non-
special Aronszajn tree, etc.

Section 3 contains the aforementioned reformulations of Martin’s Axiom.

The main result of this paper was proved in August 1985 and a version of
the whole paper was first presented as Chapter 3 in [Ve].

§1. Centered subsets of ccc posets

Recall the definition of the following three uncountable cardinals associated
with the continuum (see [vD]): p is the least cardinal K such that there exists
a family {a03BE : 03BE  K) z [03C9]03C9 with the finite intersection property (fip) such
that there is no a E [03C9]03C9 such that Vj  k a ~ * aç. t is defined similarly but
the family {a03BE : 03BE  KI in addition has to be a tower, i.e., 03BE  ~ ~ a~ c *
aç. Clearly, p  t. Whether in fact p = t is an open problem. b is the
least cardinality of an unbounded family in wû) ordered under eventual
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dominance. We shall later need the following well-known result which says
that b is bigger than or equal to t.

LEMMA 1.1 Let 3?7 9 coo be of size less than t. Then there exists g E roW such
that ~f ~ f * g.

Proof Enumerate 5’ = {f03BE: 03BE  k} for x  t. For a E [ro]W let ga be the
increasing enumeration of a. Choose resursively infinite sets aj : j  k such

that:

At a limit stage a é x use the fact that card(a)  t to pick a03B1 E [03C9]03C9 such
that VÎ  a a03B1 ~ * aç. Finally, set g = gaK. Then g works.

A subset X of a partially ordered set éP is centred (k-linked) if

Let linked denote 2-linked. A poset Y is u-centered (a-k-linked) if it is the
union of countably many centered (k-linked) subsets. A poset Y has

precaliber K if

In this section we continue the work of Todorcevic [To2] where among other
things the following is proved:

THEOREM 1.2

a) There is a productively ccc poset of size b without linked subsets of size b.
b) For each n there is a O"-n-linked poset of size b without n + 1-linked subsets

of size b.
c) There is a poset of size b which is O"-n-linked for each n but which has no

centered subsets of size b.

The following results, which say that similar posets exist for cardinals t and
p, are of additional interest since they are used in §3 to establish the above
equivalent formulations of MA.

THEOREM 1.3. There is a u-linkedposet Y of size t without centered subsets of
size t.
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Proof. Let us fix a tower (aj : j  t}. For x, y c 03C9 such that x ~ y, define

i.e., A(x, y) is the least point of the symmetric difference of x and y. For
F E [t]03C9 define

Define the poset Y by F c- Y iff F E [t] "" and

The order is reverse inclusion.

Claim 1. Y is a-linked.

Proof: For F ~ [t]03C9 define

and

Let us show that Fi is linked b’i e I. Suppose F, F’ e Fi. Then nF = nF, = n,
and 0394F = 0394F’ = 0394F~F’ ~ n. Also, aF n n = aF- n n. Therefore
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where m = mF = mF, and 1 = 1F = lF, . This shows that Y is a-linked.

Indeed it can be shown that Y is a-k-linked for every k E w.

Claim 2. F does not have centered subsets of size t.

Proof Let X E [tr be such that [X]03C9 ~ F. Let

and

Then we have:

Since A is infinite, so is a. Then ~03BE  t a 9 * aÇ’ a contradiction.

THEOREM 1.4 There is a ccc non-separable, compact Hausdorff space of size
continuum.

Proof. Extend the notation to define aF and AF for all subsets of t. Identifying
.9(t) and 2t , let

Then by Claim 2 above X z 2t and hence card (X) = 2N0. Note that X is
a closed subset of 2’, hence is compact. That X is ccc follows by Claim 1 in
Theorem 1.3.

THEOREM 1.5. There is a poset F of size p which is a-linked but not a-centered.

Proof Assume by way of contradiction that such Y does not exist. By
Theorem 1.3 we have that p  t. Let % = {u03B1 : 03B1  p) z [03C9]03C9 be closed
under finite intersections such that m 3a E [03C9]03C9 ~03B1  p a ~ * u03B1.
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Following Rothberger [Ro], recursively construct a decreasing (mod fin)
1-1 sequence a03BE : 03BE  p such that

i) Vj  p a03BE+1 ~ u03BE
(ii) Va, j  p ua m aj is infinite.

Step 03BE = ~ + 1 for some il  p is trivial. Step cof (03BE) = ce is the same

as in [Ro]. That is, fix an increasing sequence of ordinals ~03BEn : n  ce)
converging to 03BE and let bn = aÇo n a03BE1 n ... n a03BEn , for n  03C9. For a  p
let frx : 03C9 ~ 03C9 be defined recursively by

By Lemma 1.1 and the fact that p  t, there exists a g : cv ~ 03C9 such that
~03B1  P f03B1  * g. Alternatively we can use Theorem 8 of [To2]. Let then

Assume now 03BE  p and cof (03BE) &#x3E; ce. We want to construct aç. Define the

poset 9 by: ~F, G~ c- 9 iff F E [03BE]03C9, G E [p]03C9 and

The order is coordinatewise reverse inclusion.

Claim 1. a is Q-k-linked for every k.

Proof. Similar to Claim 1 in Theorem 1.3.

By our assumption Y is 03C3-centered. Let F = ~{Fn:n  03C9} be the required
decomposition. Since cof (03BE) &#x3E; a) we may assume that for every n

Note that bn  cvbn  03BE bn ~ * a17.

Claim 2. If oc e G, n E 03C9 and for some F, (F, G) e Fn, then Uri. n bn is
infinité.

Proof Same as Claim 2 in Theorem 1.3.
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By [Ro] or an argument similar to Step cof (03BE) = a) above, pick a03BE ~ (O

such that

Then a03BE works.
Thus, we have produced a decreasing (mod fin) sequence {a03BE : 03BE  p}

with no infinite a such that ~03BE  p a ~ * aç. This contradicts the fact that
p  t.

Question 1.6. Does there exist a 6-linked poset without precaliber p?

§2. CCC destructible partitions

Recall that a poset Y has property Kn iff

Let Kn denote the statement that every ccc poset has property Kn . Recall that
a coloring [03C91]n - K0 ~ K, is ccc destructible iff there is a ccc poset which
adds an uncountable 0-homogeneous set. Observe that Kn is equivalent to:

Every ccc destructible partition of [03C91]n has an uncountable 0-homogeneous
set.

Our goal is to produce, under various weak assumptions, ccc destructible
partitions without uncountable 0-homogeneous sets. We use the work of
Todorcevic [Tol] on negative partition relations on col. Let us start by
describing the definitions and results from [Tol] that we need. We refer the
reader to [Tol] for the motivation behind.

Fix, for each countable a, a 1-1 function e,,: a - m such that a  03B2 ~

(03C3(03B1, 03B2) = a, if this set is empty). Consider the partition c : [03C91]2 ~ col,
defined by

if this set is nonempty, otherwise c(a, fi) = 13. Note that oc  13 - et 
c(03B1, fi)  fi.



399

The following is proved in [To 1; §4.2]; we reproduce the argument for
completeness.

THEOREM 2.1. Let X ~ roI be uncountable, and M a countable elementary
submodel of H’K2 such that X, ~e03B1 : et  03C91~ E M. Let ô = M n roI. Then,for
every 13 E X with 13 &#x3E; b, there is an a E X n ô such that c(a, fi) = band
03B1  ’Y  03B4 ~ e03B2(03B3) = e03B4(03B3).

Proof. Let X, M, and ô be as stated, and fix a fi E X such that fi &#x3E; b.

Consider the tree

Let n = e03B2(03B4), and fix 03BE  £5 such that 03BE  y  £5 ~ e03B2(03B3) = e03B4(03B3)  n.

Since T is an Aronszajn tree, there must be a t E Tf £5 such that

and

is uncountable. Let

Then for all a in C n M, 03C3(03B1, 13) = 8. Let m = ep(8) (n). If et is any
member of C n M above e¡l[m], it follows that

as required.

We shall need the following two lemmas about the partition c (see [To 1; §6]).

LEMMA 2.2. Let X and Y be uncountable subsets of w1. Then there exist
uncountable X’ ~ X, uncountable Y’ ~ Y, and ordinals 03C303B2, for fi E Y’, such
that

Proof. First find X E [X]N1, Y E [Y]N1, and 6  col, such that da E XBlf3 E Y
6(a, 13) = Q. Then let D = {03B4  w1: sup (X n 03B4) = 03B4}. For each £5 E D,
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pick 13 é5 E YB03B4. Define

(03C303B203B4 = 03B203B4 if this set is empty), and

Then g : D ~ mi is régressive and

By the Pressing Down Lemma, find an uncountable E z D and y  w1,
such that Vô E E g(03B4) = y. Finally, find an uncountable F ~ E and uncount-
able X’ z XBy such that Vô E F X’ n [03B4, 03B203B4) = 0. Set Y’ = {03B203B4 : 03B4 E F}.
Then X’ and Y’ work.

Fix a function s : 03C91 ~ m such that s-1(n) is stationary for all n. Define
p: [03C91]2 ~ W by

if this makes sense, otherwise set p(a, 13) = 0.

LEMMA 2.3 For all X E [03C91]N1 there exists ô  W1 such that for any 03BE  W1
there exist et E X ~ 03B4 and 03B2 ~ X such that p (03B1, fi) = ç.

Proof. For each n  w, fix a countable elementary submodel Mn of HN2
containing everything relevant such that and s(bn ) = n, where Ôn =
Mn n oei . Define then ô = sup {03B4n : n E col. We claim that this ô works. So,
let 03BE  oei . Fix fi E X such that fi &#x3E; 03BE, 03B4 . Let n = e03B2(03BE) . By Theorem 2.1
there is a E X n Mn such that c(a, 03B2) - bn. Thus, s(c(a, 03B2)) = n, and
therefore p(ot, 03B2) = e03B2- 1 (n) - 03BE.

THEOREM 2.4 Assume 2"’  2N1. Then there exists a ccc destructible partition
of [03C91]3 without uncountable 0-homogeneous sets.

Proof. The following weak diamond principle was shown to be equivalent
to 2N0  2N1 by Devlin and Shelah in [DS]:

To each h : W1 ~ 2 we associate a ccc destructible partiton of [03C91 ]3, and then
use weak diamond to choose h such that the associated partition has no
uncountable 0-homogeneous sets.
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For each countable limit ordinal a, fix a strictly increasing cofinal

sequence s03B1 : cv ~ a, and for a successor ordinal a = 13 + 1 define s03B1 : 0) - a
to be constantly equal to 03B2. Define the partition [03C91]3 = lll w Ki by
{03B1,03B2,03B3} EKoif

Let Y be the poset of 0-homogeneous finite sets, i.e. F ~ F iff F E [03C91]03C9
and [F]3 ~ Ko . The order is reverse inclusion.

Claim. Y satisfies the ccc.

Proof Let ~F03B1 : a  03C91~ be a A-system of elements of Y each of size n, and
let F be the root. We have to find a, 13  W1 such that 03B1 ~ 03B2 and F03B1 ~ Fp
is in Y. We first get rid of the root.

For each 03BE E F, a  cvl and i E {0, 1} let

Then, by the homogeneity of F03B1, S03BE0(03B1) n Si (et) = 0. Using the fact that
the usual poset for uniformizing ladder systems has property K2 (see [DS])
we can find an uncountable X z W1 such that

This implies that if £ w Ff3 is not 0-homogeneous, then neither is (F03B1 ~
F03B2)BF. We can thus assume, by subtracting F, that the Fa for a E X are
pairwise disjoint. For simplicity assume also that X = w1. Let the increas-
ing enumeration of F,, be {a03B10, ..., 1 an-1 1. Using Lemma 2.2 repeatedly n2
times find uncountable X, Y g W1 and ordinals J) for 13 E Y and (i, j ) E n2
such that

For a E X let Za - {s03B4(n) : 03BE, ~ ~ F03B1 c(03BE; q) = ô &#x26; e~(03BE) = n}. We may
assume that the Za for a E X form a A-system with root Z, and that u  (03B2 ~
sup (Z03B1BZ )  inf (Z03B2BZ) . Choose ô  W1 such that Vet  03B4 sup (Z03B1)  03B4,
and pick 03B2 e Y such that min (F03B2)  03B4. Let E = {03C3ij03B2: (i, j ) e n2}. From the
definition of c it follows that min (E) a ô. Let U = ~ {s"03BE[03C9] : 03BE ~ 03A3}. Let
k E ce be large enough such that Vj e E Vm a k s03BE(m) ~ Z. Finally choose
y  ô such that
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Since U has order type  03C9n2 and ot(X n ô) = ô &#x3E; wn2, there exists

a E X n (5 such that (Z03B1BZ) n U = 0 and inf (Z03B1BZ) &#x3E; y. This implies
F, u F03B2 is in F.

Let us now assume that weak diamond holds and define F: 203C91 x 203C91 ~ 2
as follows.

Fix a limit ordinal à, a subset X of b, and a function f : 03B4 ~ 2. We describe
how to define F(x, . f), for ~ : 03B4 ~ 2 the characteristic function of X.

For 03BE  03B4 and e ~ T03BE(X) let:

and

In any other case let F(~, f) to be equal to 0.
Let now h : 03C91 1 ~ 2 be such that

Claim. The partition [03C91]3 = K0 ~ K1 associated to h has no uncountable
0-homogeneous sets.

Proof. Let v be the characteristic function of X, an uncountable 0-homo-
geneous subset of 03C91. Since E = {03B1  (Dj F(~03B1, h ret) = h(03B1)} is station-

ary, we can find a countable elementary submodel N of HN2 containing
X, h, and c such that c5 = N n cvl E E.

Case 0. h(03B4) =: 0. Let e E R(X n 03B4) be arbitrary. Then (X n 03B4)e is unbounded
in Ô, and hence by elementary of N, Xe is uncountable. Fix 13 E Xe Bc5. Then
as in the proof of Theorem 2.1 we can find a E X n c5 such that c(a, 13) = c5
and efi(et) = e03B4(03B1) = n for some n E 03C9. Let s03B4(n). Let ~(03BE, et, fi) be the
following formula:
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Then, by what we have just said, H,, P cp (03BE, a, fi). By elementarity choose
13’  ô such that N k ~(03BE, a, 13’). Then we have

Since e E R(X n 03B4) was arbitrary this shows that F(çÍ£5, hÍ£5) = 1. Now,
1 = F(x 03B4, h 03B4) = h(03B4) = 0. Contradiction.

Case 1. h( £5) = 1. Fix y E XB£5. As in the proof of Theorem 2.1 we can find
e E R(X n 03B4) such that

Fixing such an e and applying the fact that F(~ 03B4, h 03B4) = 1 find et, fi E
(X n 03B4)e such that

It then follows that {03B1, 03B2, 03B3} E Kl , contradicting the fact that X is 0-

homogeneous.

Using partitions similar to the one in the previous argument K4 can be
shown to imply that every ladder system on W1 can be uniformized, every set
of reals of size X, is a Q-set, etc.

Let F be a poset of size Ni and let {q03B1 : 03B1  03C91} be an enumeration of Y.
Fix an 03C91-sequence ~r03B1 : 03B1  03C91~ of distinct reals. For F ~ [03C91]03C9 and
s E 203C9 let

Define the poset ,

Vs E 203C9 FsF is centered.

The order is reverse inclusion.

The idea is that uncountable centered subsets of f2 should yield decom-
positions of Y into countably many centered sets. Thus, it is natural to
consider a function
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such that for every uncountable X g w1,

Then A can be the set of F ~ [03C91]03C9 which in some canonical way code a
decomposition of f "[F] into centered subsets. The reals r03B1 are used to make
2 ccc. The partition p is employed since it gives a rather economical
decomposition of Y into k-linked sets from uncountable k + 1-linked
subsets of 2.

THEOREM 2.5

a) If Y is powerfully ccc, then 2 = 2(F) is ccc.
b) For every uncountable X g -9 there is a partition f = ~{Fk: k E 03C9} such

that if X is n + 1-linked in fl, then dk E W f!lJ k is n-linked in 9.

Proof a) Let ~F03B1: a  03C91~ be an uncountable A-system of elements of 2.
Let the root be F. For a  W1 let:

and

We may assume that all the na’s are equal to, say, n, and ait the ma’s are equal
to, say, m. Note that FsF03B1 is nonempty only for s e 2n.

Since the F03B1’s form a A-system and since Pk is ccc for k = 2n+1, we can
find a  03B2  03C91 such that:

(1) sup (F03B1BF)  inf (F03B2BF),
(2) ~03BE e F03B1BF ~~ E F03B2BF e~ (03BE) &#x3E; max (m, n), and
(3) Vs e 2n PF03B1s ~ FsF03B2 is centered.
Let us show that F03B1 ~ F03B2 E 2. Let s e 203C9. If lh(s)  n, then

and thus is centered. If lh(s) &#x3E; n, then PsF03B1 ~ F03B2 is at most a singleton and thus
is, trivially, centered.



405

By Lemma 2.3

We claim that this is the required partition. For, assuming [X]n+1 ~ 2 it
follows from the definition of .2 that Vs E 203C9 Vrx E X n ô Ps03B1 is n-linked.

COROLLARY 2.6 Let n E cv. Then %"+1 1 implies that every ccc poset of size N1
is 03C3-n-linked.

The following was first proved by Fremlin (see [Fr; Notes 41L]) by a
completely different argument.

COROLLARY 2.7. If every ccc poset has precailber N1, then every ccc poset of
size Ni 1 is u-centered.

COROLLARY 2.8. Assume there exists a nonspecial Aronszajn tree. Then there
exists a ccc destructible partition [03C91]3 = Ko u K, without uncountable

0-homogeneous sets.

CONJECTURE 2.9. K2 does not imply Y3.

THEOREM 2.10. RFA3 is false.

Proof. Fix a stationary costationary subset S of w1. Let c : [Col ]2 ~ w1 be as
usual and fix, for each limit ordinal a  w1, a cofinal sequence sa : 03C9 - et.

For a successor et = 03B2 + 1, let Sri. be constantly equal to fi. Define the
partition

It follows by a pressing down argument and some facts about c that there
are no uncountable 0-homogeneous sets. Define the poset Y by: p c- Y if
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To prove Y preserves Ni , let/be a name for a function 03C9 ~ col and p E P.
Fix a countable M - Ho such that p, P, i E M and such that

By a standard argument, it follows that

Define the name H for a subset of W1 by

Then H is forced to be 0-homogeneous. To ensure that 77 be uncountable
fix a countable M - Ho containing everything relevant and such that
ô = M n W1 E W1 BS. Then force below ~Ø, {03B4}~.

§3. Martin’s axiom

We shall need the following result of Bell [Be]. For completeness again, we
sketch the argument from [Be].

THEOREM 3.1. MA,, (6-centered) is equivalent to K  p.

LEMMA 3.2. Suppose A«,S E [03C9]03C9 for oc  K, S E 03C903C9, and ~s E 03C903C9 {A03B1.s :
a  KI has the fip. Then 3f E cco such that ~03B1  K 3n ~m  n f (m) E A03B1,fm .

Proof Using K  p, choose As E [03C9]03C9 for s E 03C903C9 such that Va  x AS ~ *
A03B1,s . Define

Since k  p x t by Lemma 1.1 find g:03C903C9 - oi such that Va  Kh  * g.
Moreover make sure that Vs E 03C903C9g(s) E As . Finally, define recursively
f : 03C9 ~ W by f(n) = g(fn).

Proof of Theorem 3.1. ~) is easy and well-known. We prove ~). Let Y be
a 03C3-centered poset (which we may assume is of size  x) and {D03B1 : a  KI a
family of dense subsets of P. By a standard argument it is enough to
produce a linked subset of Y which intersects each Da . Fix a partition
P = ~{Pn:n E ccy into centered sets. For a fixed a  K pick recursively
pa,s : s E 03C903C9 and define sets Aa such that:
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i) lh(s) = n + 1 implies p03B1,s E Ps(n),
ii) A03B1,s = n  03C9 : 3 q E Yn ~ D03B1q  p03B1,s},
iii) if n E Acx.s, then P03B1,sn E &#x26;n n Da and p03B1,s n  Pa’s

It then follows that for s E 03C903C9, {A03B1,s : et  KI has the fip. As in Lemma 3.2
find f : 03C9 ~ w such that

da  K n03B1 ~m  na f(m) E A03B1,fm .

Let then

’lot = p03B1,f(n03B1 + 1)

for et  K. Then {q03B1 : et  KI is a linked subset of Y meeting all the Dcx.

THEOREM 3.3 MA Kholds iff’ every ccc poset of size K is a-centered.

Proof. Follows directly from Theorems 1.4 and 3.1.

THEOREM 3.4. MA,, holds iff every uncountable ccc poset has an uncountable
centered subset.

Proof. Follows directly from Corollary 2.7 and Theorem 3.3.

Question 3.5. Is MA Kequivalent to every ccc poset of size K is 03C3-linked ?
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