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Introduction

Let k be an algebraically closed field of characteristic p # 0, g € k[x, y] be
such that g, and g, have no common factors in k[x, y], E = A; be the surface
defined by the equation z# = g(x, y) and 4 = k[x?, y?, g]. In previous
articles (see [1], [3] and [13]) E was called a Zariski surface and attempts were
made to find generic conditions on g that would force the coordinate ring
of E to be factorial. These papers used the fact that the coordinate ring of
E is isomorphic to 4 and some partial results were obtained.

In this article the divisor class group of these surfaces is investigated from
a slightly different angle. Let F be a non-algebraically closed field of charac-
teristic p # 0. Let F be an algebraic closure of F. Given g in F[x, y] let F,
be the field extension of F obtained by adjoining the coefficients of g to F.
This paper investigates the relationship between the singular points of the
surface z# = g(x, y) in k* and the divisor class group of the ring F,[x?, y”, g].

After some preliminary results in Section 1, Zariski rings are discussed in
Section 2. In this section singularity conditions affecting the order of the
divisor class group of a Zariski ring are presented.

Some general facts about Zariski rings appear in Section 3.

In Section 4, the main section of the article, the fact that for p > 3,
Zariski rings are factorial for a generic choice of g is proved by showing that
for a generic g, the class group of the surface z” = g is trivial.

Section 5 closes this article with a theorem about logarithmic derivatives
of the Jacobian derivation and some open problems.

0. Notation
(0.1) GF(p") — the finite field with p" elements.

(0.2) F - a field of characteristic p # 0.
(0.3) F - an algebraic closure of F.
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(0.4) For g € Flx, y] we denote by F, the field extension of F obtained by
adjoining to F the coefficients of g.
(0.5) For g € Fx, y] we denote by A4, the ring F,[x?, y”, g]. We call these
rings Zariski rings.
(0.6) If 4 is a Krull ring we denote by CI(A) the divisor class group of 4.
(0.7) Surface-irreducible, reduced, two dimensional quasiprojective var-
iety over an algebraically closed field.
(0.8) If E is a surface we denote by CI(E) the divisor class group of the
coordinate ring of E.
(0.9) k — an algebraically closed field of characteristic p # 0.
(0.10) Aj — affine n-space over k.
(0.11) k" — the set of all n-tuples of elements of k.

(0.12) For g € k[x, y] we let S, = {(a, B) € K*: g.(«, B) = g,(a, B) = 0}.

1. Preliminaries

The following results, (1.1) to (1.4), can be found in P. Samuel’s 1964 Tata
notes [17]. For the definition of a Krull ring the reader is referred to either
Samuel’s notes or R. Fossum’s book, “The Divisor Class Group of a Krull
Domain” [5]. All of the rings considered in this paper are noetherian
integrally closed domains and are therefore Krull rings.

THEOREM 1.1. Let A = B be Krull rings. If each height one prime of B
contracts to a prime of height less than or equal to one of A then there is
a well defined group homomorphism ¢: Cl(A) - CI(B). If B is integral
over A or if B is A-flat then this condition is satisfied. (See [17] pp. 19-20
for details.)

ReEMARK 1.2. Let B be a Krull ring of characteristic p # 0. Let A be a
derivation of the quotient field of B such that A(B) = B. Let K = kerA and
A = B n K. Then 4 is a Krull ring with B integral over 4. Thus by (1.1)
there is a well-defined map ¢ : CI(A) — CI(B). Set ¥ = {t~'At:t belongs to
the quotient field of Band 1 'At € B} and ¥’ = {u~'Au:uis a unit in B}.
Then ¥’ is a subgroup of &.

THEOREM 1.3.

(a) There exists a canonical homomorphism ¢: ker ¢ — L|¥’.

(b) If L is the quotient field of B and [L: K] = p and A(B) is not contained
in any height one prime of B, then ¢ is an isomorphism ([17] pp. 63—64).
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THEOREM 1.4. If [L: K] = p, then

(a) there exists an o € A such that N’ = aA and

(b) an element t e K is equal to Dv/v for some v e K if and only if
AV — ot = —¢ ([17] pp. 63-64.).

REMARK 1.5. These results, (1.6) and (1.8) are to be found in [11] pages
394-395. These theorems assume that F is a field of characteristic p # 0,
g(x, y) € F(x, y] is such that g, and g, have no common factors in Flx, ).

THEOREM 1.6. (Ganong’s Formula) Let D : F(x, y) — F(x, y) be the F deri-
vation defined by D = g,(0/0x) — g,(0/0y). Then for each o € F(x, y),

p—1
Doy —c = — ) g/V(gr7'a)
j=0

where D? = ¢D and V = 3%7*[oxP~'dyr~".

REMARK 1.7. In [11] the writer proved this result for the case deg (g,) =
deg (g) — 1. In [16] Stohr and Voloch proved this formula in general.

THEOREM 1.8. Let D = g,(0/0x) — g,(0/0y). Let £ be the additive group of
logarithmic derivatives of D in F[x, y] (See (1.2).) and A = F[x?, y*, g].
Then

(i) D7'(0) N Flx, y] = 4,

(i) Cl(4) = &,
(iii) ¢t € & implies that deg t < deg (g) — 2,
(iv) The coordinate ring of the surface defined by z¥@ = g(x, y) is isomorphic

to A F.

(See [11] pp. 393-394.)

2. Singularity conditions on Zariski rings

REMARK 2.1. A surface in affine 3-space defined by an equation of the form
z? = g(x, y) with only a finite number of isolated singularities is called a
Zariski surface, where the ground field is algebraically closed of characteris-
tic p # 0. The coordinate ring of such a surface is isomorphic to k[x*, y*, g]
where k is the ground field ([11] p. 393). Hereafter, in this paper all rings of
the form F[x”, y”, g] where F is a field, not necessarily algebraically closed,
of characteristic p # 0 will be referred to as Zariski rings. This section
studies Zariski rings defined over non-algebraically closed fields.
An important tool is the following lemma.
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LEMMA 2.2. Let D:k(x, y) = k(x, y) be the k-derivation defined by D =
8,.(0/0x) — g.(0/0y) and c be such that D* = cD. If (a, b) € k* is such that
g.(a, b) = g.(a, b) = 0, then c(a, b) = (JH(a, b))’"" where H(x, y) =
g%'y - g.\’.\'g_l‘)"

Proof. For each a € k(x, y),
p—1
Drloa —ca = — Y gV(g o) (2.2.1)
i=0

by (1.6).

Seta = 1, thenc = Zr_Jg'V(g'").

Let g = g(x +a,y + b) and ¢ = Z/-/g'V(g"""""). Then ¢&(0, 0) =
Xr=tg(a, b)V(g’ ' ") (a, b) = c(a, b). By Taylor’s formula,

(x —a)
gx,y) = ga b) + gu(a, b) ——+ g4(a,b) (x —a) (y — b)
_ 2
+ g,.(a, b) % + (higher degree terms).
Thus
x2
g(x’ J’) = g(a9 b) + g,\:\'(a’ b) 7 + g,\'y(a’ b)xy
y2
+ g,.(a, b) 5 + (higher degree terms).
Let g = g — gla, b) and ¢ = — EIjgV(E~'""'). Since (g), = (), and

(8, = (&), it follows that ¢(x, y) = ¢(x, y) and ¢(0, 0) = c(a, b). Since
2(0, 0) = 0 it follows that ¢(0, 0) = V(g”~')(0, 0). A simple calculation
yields that the lowest degree term in 37" is

(=02 (p — 1\ [2i d i
20 e () G e
1=0 l l

Thus the lowest degree term of V(g”~') is the constant term,

(r=hy2 (p—1)/2
("

1=0

) g (g wg,,) -

1
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In the previous step a combinatorial identity was used (see [6] page 90,
identity z.40). Thus the constant term in V(g”~") is (H(a, b))?~"2. Therefore

V(&"=)(0, 0) = (VH(a, b))"~".

REMARK 2.3. Let F be a non-algebraically closed field of characteristicp # 0

and F an algebraic closure of F. For g € F[x, y], let F, be the field extension

of F obtained by adjoining to F the coefficients of g. Throughout the

remainder of this article g will always satisfy two conditions

(1) g, and g, have no common factors in F[x, y] and that g, and g, intersect
in the maximum possible number of points in F2((n — 1) if n # 0
(mod p), n* — 3n + 3 otherwise, where n = deg (g).), and

) g..g,and H = g}, — g,.g,, are never simultaneously zero at any point
in F? (see [1] for the generic nature of these conditions). The effect of
these conditions and others on the divisor class group of 4, = F,
[x?, y?, g] will be explored in the rest of this paper. The assumption will
always be made that g has no monomials of the form x”?y%, since
F:g[xp’ gl = Fg[xpa ', g + xTy7].

THEOREM 2.4. If the ideal I = (g, g,)F,[x, y] 0 F,[x] in F,[x] is prime and
if no two points of S, = {(o, p) € F*: g.(a, B) = g,(a, ) = 0} have the
same x-coordinate then for each (a, b) € S,, the field degree [F,(a) : F,] equals

{(n - D3 if = deg(g) # 0 (mod p),

n’ —3n + 3; ifn = 0 (mod p).

Proof. Consider the case n # 0 (mod p). Let f(x) be the resultant with
respect to x of g, and g,. Then f(x) is of degree (» — 1)’ and belongs to
I([15] page 186). I is a principal ideal generated by a polynomial of degree
at least (n — 1)*. Therefore I = (f(x)). If (a, b) € S, then f(a) = 0 which
implies that [F,(a): F,] = (n — 1)*. The n = 0 (mod p) case is similar.

COROLLARY 2.5. If m = (g,, g,)F,[x, y] is a prime ideal in F,[x, y] and if no
two points of S, have the same x-coordinate or the same y-coordinate, then
F,(a, b) = F,(a) = F,(b), for all (a, b) € S,.

Proof. By (2.4) both a and b are separable over F, of degree equal to the
number of elements in S,. Then F,(a, b) is separable over F, of degree equal
to the number of F,-injections of F,(a, b) into F ([15], p. 65). Since each such

injection must take an element of S, into another element of S, it follows that
[F,(a, b): F,(@)] = [F,(a, b):F,(b)] = 1.
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COROLLARY 2.7. If no two points of S, have the same x or y coordinate and
both of the ideals (g, 8,)F,[x, y] 0 F,[x] and (g., &)F[x, y] N F,[y] are
prime then F,(a) = F,(b) = F,(a, b).

REMARK 2.8. Let k be an algebraically closed field of characteristic p # 0
and D:k[x, y] - k[x, y] be defined by D = g,(0/0x) — g,(0/0y). Let £ be
the group of logarithmic derivatives of D in k[x, y]. By (1.4) an element
t € k[x, y] is in & if and only if D’~'t — ¢t = — " where D’ = ¢D. It
follows that if (a, b) € S,, then c(a, b){(a, b) = t(a, b)’, which by (2.2)
implies that (¢(a, b))” = (/H(a, b))"~'(t(a, b)). Since H(a, b) # 0 by con-
dition (2), the set of solutions in k& to the polynomial equation z# —
(/H(a, b))’"'z = 0 is isomorphic to Z/pZ. Thus 0: ¥ — Z/pZ defined by
0(t) = t(a, b)/\/H(a, b) is a homomorphism of additive groups.

THEOREM 2.9. Let g satisfy conditions (1) and (2). If 0 # t€ £ then
Q) # 0 for at least

(n— D — 1 — deg(d)), if n # 0 (mod p)
(mn—1m —2 —deg®)) + 1, ifn =0 (mod p)
points Q € S,, where n = deg (g).

Proof. Let 0 # t € £. By condition (1), each irreducible factor of ¢ in k[x, y]
is relatively prime to either g, or g,. Therefore ¢ can be factored in k[x, y]
as t = uv where u is relatively prime to g, and v is relatively prime to g, (If
t is already prime to g, then let ¥ = ¢t and » = 1.). Then u meets g_in at
most (n — 1) deg(u) points and v meets g, in at most (» — 1) deg(v) points.
Thus u (resp. v) is 0 at most (n — 1) deg(u) (resp. (n — 1) deg(v)) points of
S, . This implies that ¢ is not 0 for at least

(n— 1% = ((n — 1) deg(u) + (n — 1) deg(v)), if n # 0 (mod p)
W —n+3—(n—1)degu) + (n — 1) deg(v)), if n = 0 (mod p)
points of S. Since deg(u) + deg(v) = deg(r) the desired result is obtained.
COROLLARY 2.10 Let g satisfy (1) and (2). If 0 # t € & then t(Q) # O for

at least (n — 1) points of S, if n # 0 ((mod p)) and for at least one point of
S, otherwise.
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Proof By (1.8) deg t < n — 2. The result is now an immediate consequence
of (2.9).

COROLLARY 2.11. Let g satisfy (1) and (2). Then the homomorphism
o7 > @Qeng/pZ « VH(Q) defined by ®(¢) = (t(Q))QeSg is an injection.

CorOLLARY 2.12. If (g, g,)F,[x, y] 0 F,[x] is prime in F,[x] and if no two
points of S, have the same x-coordinate then the restriction of 0: & — Z/pZ
to &, = &£ n F,[x, y] is an injection.

Proof. For t € %,, 0(t) = t(a, b) where (a, b) € S,. Suppose that 6(s) = 0.
Let(a’,b') € S,. Asin the proof of (2.5) there exists an F,-isomorphism from
F,(a, b) onto F,(a’, b’) such that a(a) = a"and o(b) = b’. Since #(a, b) = 0,
then o(t(a, b)) = t(a’, b’) = 0. Therefore @ as defined in (2.11) maps ¢ to
0in @y.5,Z/pZ - \JH(g). By (2.11), t = 0.

DEFINITION 2.13. The conditions on g that no two points of S, have the same
x-coordinate and that (g, g,)F,[x, y] N F,[x] is a prime ideal in F,[x] will
hereafter be referred to as conditions (3) and (4) respectively.

THEOREM 2.14. Let g satisfy conditions (1)—(4). Let A, = F,[x", )", g]. If
p = 2,then Cl(A,) = Z/2Z. If p > 2, then CI(A,) is trivial or is isomorphic
to Z/pZ.

Proor The p > 2 case is an immediate consequence of (2.12). Assume then
thatp = 2. Then D(g,)/g, = (8.8, — £.,8.)/8& = & 1S anonzero element
of Z, by condition (2). By (2.12), Cl(4,) = Z/2Z.

ExaMPLE 2.15. If p > 2, g = x> — y? and F = GF(p), then g satisfies
conditions (1)—(4). Since z/ = x* — »* is clearly not factorial, Ci(4,) =
Z/pZ.

EXAMPLE 2.16 Let k be an algebraically closed field of characteristic p # 0.
Letn > 4 be a positive integer. Let {7,,:0 < i + j < n} be a set of indeter-
minates over k. Let F = k(T;) and g = Zo, ;. T; X'y

Then g satisfies conditions (1)—(3). To see this let R(x) be the resultant
with respect to x of g, and g,. Then R(x) # 0. This can be demonstrated by
showing that for some specialization of the T;;, R(x) # 0. If nis not divisible
by p, then g = xy + (1/n)(x" — y") gives R(x) = x"~ " + x.

Furthermore, if D is the discriminant of R(x), then D is a nonzero
polynomial expression in the 7, . Again this can be shown by demonstrating
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that D # 0 for some specialization of the T,. For example, if n # 0, 2

(mod p),and g = xy + (1/n)(x" — y"),then D = n(n — 2). Similarly, it is

easy to show that if R(x) is the resultant of g, and H and if D is the resultant

of R(x) and R(x), then D is a nonzero polynomial in the T};. Again if we

specialize and let g = xy + (1/n)(x" — y") then D becomes n> — 2n + 2.

One concludes that

(@) R(x) is a nonzero polynomial in the T, and x of degree in x equal to
(n — 1)?ifn # 0 (mod p), of degree n* — 3n + 3 otherwise. Therefore
g. and g, are relatively prime,

(b) D is a non-zero polynomial in the T} which implies that g, and g,
intersect in the maximum possible number of points in F2.

(c) D is also a nonzero polynomial in the T;; which implies condition (2).

(b) above also implies condition (3). (See [18] pages 23 to 31 for further

discussion on the resultant.)

REMARK 2.17. Note that for any specialization of the T;; for which R(x), D,
and D become nonzero, then for that choice of g conditions (1), (2) and (3)
will be met. Thus conditions (1), (2) and (3) are generic conditions on g.

(2.16 continued . . .) Condition (4) is also met. First of all, g, = ¢,, +
2tox + tyy + .. .andg, = t, + 2ty + t;;x + . ... Then k[T;[[x, y]/
(g:> &) = kltos > tirs tas - - -][x, y]. Therefore g, and g, generate a prime
ideal in k{z;][x, y]. By condition (1), the ideal generated by g, and g, in
k{t;1[x, y] does not meet the multiplicatively closed set generated by the
nonzero elements of k[{7}]. Thus g, and g, generate a maximal ideal in
k(T}) [x, y], implying condition (4). Therefore Cl(4,) =~ Z/2Z if p = 2 and
Cl(4,) = 0 or Z/pZ if p > 2. (For p = 5 see (2.34)).

Question 2.18. Is condition (4) a generic condition on g?

THEOREM 2.19. Let g satisfy conditions (1)-(3). Let (f(x)) = (g., g&)F,
[x, y] N F,[x]. Suppose that f(x) factors into a product of r-irreducible factors
in F,[x). Then the order of CL(4,) < p'.

Proof. Let f(x) = fi(x) . .. f(x) be a factorization of f(x) in F,[x] into
prime factors. Foreachi = 1, . . ., r, let o, be a root of f;(x) in F. For each
i, there is a f§;, € F such that («;, §;) € S,. Let : %, > @]_Z/pZ be defined
by 8(1) = (o, B,)//H(«, B))-;. Let ¢ € ker 8 and let (a, B) € S,. Then
fi(@) = Oforsomei = 1, ..., r. Therefore ais conjugate to o, so that there
exists an F,-automorphism o : F — F such that o(x;) = . Then a(x;, ;) =
(a, B). Since #(«;, p;) = 0 this implies that #(«, f) = at(;, f;) = 0. By (2.11)
t is identically 0. Thus @ is an injection. By (1.8), the order of CI(4,) < p’.
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REMARK 2.20. The ideal generated by f(x) in (2.19) is identical to the ideal
generated by the resultant, R(x), of g, and g, with respect to x. This is
because in this case, R(x) is of degree equal to the number of elements in S .
Since R(x) € (f(x)) and f(«) = 0 for each (a, B) € S,, then (R(x)) = (f(x)).
(See [15] p. 185.).

EXAMPLE 2.21. Let F = GF(3) and g = —y + xy + x* + y*. Then g
satisfies conditions (1)—(3). Note that (g,, g,)F,[x, y] N F[x] = (*° — x +
1)F,[x]. It can be shown that the prime factorization of x* — x + 1
over F, =GF3)is X’ —x+ 1= —-x+ Dx* +x* + X + x* —
x — 1). Thus by (2.1) the class group of F,[x*, y*, g] is 0, Z/3Z or Z/3Z @
Z/3Z. Since D(g,)/g, = 1isin %, Cl(4,) is either Z/3Z or Z/3Z & Z/3Z.

This calculation can be verified as follows. (1.3)—(1.6) are used to cal-
culate &, the logarithmic derivatives of D in F[x, y]. Then %, = & n F,
[x, y]. Thus t € & if and only if t = ayp + 0x + Ay + 0yX* + Ay )?
where

3

Ogp + Oy + g = g,
—yy + 0y = o3

10 20 = X,
_ o3

—ay = o, (2.22)

_ 3

Aoy = o,
_ 3

Qo = Opp-

By eliminating variables we find that o}y — a3y + o3 + %3y — % = 0 and
that the rest of the a;; depend on ay,. Therefore the order of & is 3°. Also
if gy = oy then all other a; = 0. Thus %, is of order 3 generated by r = 1.

2.23. For more details on how to explicitly calculate .# the reader is referred
to [9], [10], [11] and [12].
This next result refines the upper bound in (2.19) slightly.

COROLLARY 2.24. Let g satisfy conditions (1)—(3). Let (f(x)) = (g., &,)
F,[x, y] 0 F[x]. Let f(x) = f,(x)£,(x) . .. f,(x) be a prime factorization of
f(x) in F,[x] such that for some s = 1,...,r,degf, + degf, + ... +
degf, > (n — 1)(n — 2) where n = deg (g). Then the order of Cl(Ag) < p°.

Proof. Uses the same type of argument used in (2.19) and the result of (2.9).
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ExaMPLE 2.25. Let F = GF(3), g = xy + x* + y*. Then g, = y + x°,
g, = x + y*and H = 1. Then g satisfies (1)-(3). f(x) = ¥’ — x = (x> —
x =D+ x— D+ D(x + 1)(x — Dx. By (2.24) the order of
Ci(4,) < 3*.

This can be verified by direct computation of %,. One finds that £ is of
order 3° generated by 1, x — y, ax — @y, x> + y*, ax* + a’y* where
a € GF(9) — GF(3). Thus, in fact, £, and therefore CI(4,) is of order 3°.

REMARK 2.26. If g satisfies conditions (1)—(4), then Cl(4,) = Z/2Z ifp = 2
and Cl(4,) = 0 or Z/pZ if p > 2. Example (2.15) shows that these con-
ditions are not enough to insure that Cl(4,) = 0if p > 2. The next theorem
adds one more condition, that appears to be not a generic one, that guaran-
tees that Cl(4,) = 0.

THEOREM 2.27. Let g satisfy conditions (1) and (2). If for each (a, B) € S,,
H(a, B) ¢ F (o, B). Then Cl(4,) = 0.

Proof. 1f Cl(4,) # 0 then by (2.11) there exists (a, f) € S,, t € %, such that
Ko, b) = nyH(x, ) for some n # 0 in Z/pZ. Since t € F[x, y], this is a
contradiction.

COROLLARY 2.28. Let g satisfy conditions (1)—(4). Suppose also that no two
elements of S, have the same y-coordinate. If for some («, B) € S,, \/H(a, f) ¢
F,(2) then Cl(4,) = 0.

Proof. Let (a, b) € S,. Then there is an F,-automorphism of F that maps
(o, b) to (o, B). If \/H(a, b) € F,(a) = F,(a,b) by (2.5), theno\/H(a, b) € F,(x).
But (64/H(a, b))* = oH(a, b) = H(a, ). This implies that o\/H(a, b) =
+/H(a, B) € F,(). A contradiction.

REMARK 2.29. There are two reasons why the hypothesis of (2.27) appears
to be not a generic one. The first is that in calculations I found that this
condition appears to hold about half the time. The second, and this might
explain the first, is that for any finite field, GF(p™), (p" + 1)/2 elements of
it have a square root in GF(p™).

ExampLE 2.30. Let p = 3 and g = x> + *. Then g, = 2x, g, = 2y
and H = 2. The conditions of (2.27) are easily seen to hold. Therefore
Cl(4,) = 0. This is verified by the fact that & is of order three generated

by 2 ¢ F, = GF(3).
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REMARK 2.31. The next two results were proved by Blass [3]. Although in the
introduction to his article Blass assumes that the degree of g is divisible by
p, the proofs of these results are independent of this assumption.

LEMMA 2.32. Let g be as in (2.16) and p = 5. Then the Galois group of
k(T;)/k(T;) acts as the full symmetric group on S, (see [3] page 10).

LeMMA 2.33. Let g be as in (2.16) and p < 5. Let Q, # Q,€ S,. Then
there exists an automorphism o € Gal(k(T,)/k(T})) such that o(\JH(Q,)) =

—\H(Q)), o(H(Q,)) = —+/H(Q,), oyH(Q) = VH(Q) for all Q € S, with
Q # Q,, Q, and such that ¢ act as the identity of S, (see [3] page 10).

EXAMPLE 2.34. Let g = XT;x'y’ be as in (2.16). Then the ring 4, =
k(T;)[x", y?, g] is factorial where p > 5. This result follows immediately
from (2.27) and (2.33).

3. Properties of Cl(A,)

REMARK 3.1. Before moving on to the main section of this article, some
general facts about Ci(4,) should be mentioned. First of all, we have that
if A = F[x?, y?, g], then Cl(4,) injects into CI(4). The simplest way to see
this, is to observe that Ci(4) = %, Cl(4,) = %, and that &, — %. Then
any general statements that can be made about C/(4) concerning order,
type, etc., can also be made about CI(4,). In [11] the following results were
proved for CI(A4) which therefore also apply for CI(4,).

THEOREM 3.2. Let g satisfy conditions (1) and (2). Then CIF,) is a p-group

of type (p, . . ., p) of order p™, where m < deg(g)(deg(g) — 1)/2 (see [11]
page 397).

THEOREM 3.3. Let g satisfy conditions (1) and (2). For each positive integer
n, let AY = F,[x”, y”, gl. Then,

(a) for each n, CI(AY) injects into CI(AT*V),

(b) for each n, CI(A?) is a p-group of type (p", . . ., p") where each i; < n,
(c) the order of CI(AY) = p/, where [ < n(deg(g))(deg(g — 1)/2 ([11]
page 406).

4. The main theorem

This section begins by presenting a new algorithm (see [12] page 247) for
computing the divisor class group of a Zariski ring 4 = k[x*, y*, g] defined
over an algebraically closed field £ of characteristic p # 0.
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Then Theorem (4.14) proves that the ring k(T,)[x”, y*, g], where g =
IT,x'y'is as in example (2.16), is factorial. P. Blass proved this result for the
case deg(g) = 0 (mod p) in [3].

The algorithm and Theorem (4.14) are then combined to prove that for
a generic g, the ring A is factorial.

4.1. Let k be an algebraically closed field of characteristic p # 0. Let
g € k[x, y] satisfy condition (1). Then by (1.8), Cl(k[x*, y*, g]) is isomorphic
to %, the additive group of logarithmic derivatives of D = g (0/0x) —
g.(0/0y) in k[x, y]. If t € k[x, y] is in & then by (1.8), deg(?) < n — 2 where
n = deg(g). Furthermore, ¢ is in % if and only if D?~'t — ¢t = —t” where
D? = ¢D. By (1.6) it follows that ¢ is in % if and only if
“42)(@a) V(G't) =0forr=0,1,...,p — 2,and
(b) V(G"~'t) = t?, where V = 0%72/ox?~'0yr~".

Thus the elements of .# can be determined in the following way.

Lett = X, <,»0;X'y’ be a polynomial in x and y with undetermined
coefficients. Substitute ¢ into (4.2a) and (4.2b) and compare coefficients.

When ¢ is substituted into (4.2a) one obtains linear expressions in the
with coefficients in k, say [, = 0,0 < s < m with m a nonnegative integer.
When ¢ is substituted into (4.2b) one obtains p-linear equations of the form
L) = of,0 < i+ j < n— 2, where [;() is a linear expression in the o;
with coefficients in k.

Thus it is readily seen that .# is isomorphic to the additive group of
solutions to the p-linear system of equations
I = 0,0<s<n and [j(a) = of

A P,0<i+j<n—2 4.3)
In [12] an algorithm for computing the number of solutions to a system such
as (4.3) was described.

What follows is a description of another algorithm which better suits the
purposes of this article.

Let N = n(n — 1)/2. let C be the coefficient matrix of the linear expres-
sions [;, 0 < i +j < n — 2. Then Cis an N by N square matrix.

Assume first of all that det C # 0. Then each linear expression /, with
0 < s < m can be expressed as a linear combination of the /; with coef-
ficients in k. Thus beginning with /, there exists a;;, 0 < i + j < N such that
Xa,l; = 1. Since [, (x) = 0, this leads to Za;af = 0, which results in the
linear equation /; : Za{{”a; = 0. Thus for eachs,0 < s < m, another linear
equation I/, 0 < s < m, is produced. From these 2m linear equations,
choose a basis /[, Iy, . . ., I/ where 0 < u < 2m. Now repeat the first step

of generating linear equations by writing each [, 0 < s < u, as a linear

5
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combination of the /. From these 2u linear equations, choose a basis and
continue this process. One of two possibilities will take place. One, is that
at some point N independent linear equations will be produced in N
unknowns. If this is the case then each «; = 0 which implies that & = 0.

The alternative to this situation is that at some point R linearly indepen-
dent equations will be produced and no more than that, with R < N. Any
new equations produced will be a linear combination of these R independent
equations. If this is the case then the number of solutions to the system (4.3)
is p¥=%. To see this, choose N — R p-linear expressions from the equations
l; = of so that the linear part of these equations together with the R linear
equations form a k-basis for the space of all linear expressions in the o; with
coefficients in k. This can be done since the /; are a basis for this space. It
then follows that the system of equations consisting of these R linear and
N — R p-linear equations is equivalent to the original system (4.3). For if
1, = of, is one of the p-linear equations in (4.3) then /, is a linear combi-
nation of the linear expressions in the N — R p-linear equations and the R
constructed linear equations. It then follows that o, is a linear combination
of the of; that appear in the N — R p-linear equations. This of course leads
to another linear equation after taking p-th roots which must by assumption
be dependent on the P linear expressions. It then follows from Bezout’s
theorem that there are p"~* solutions (see 4.4) below).

If it turns out that det C = 0, where C is the coefficient matrix of the linear
expressions /; in (4.3), than the rank of C = N — M for some M > 0.
Therefore from the equations [; = of, 0 < i+ j < n — 2, one can
immediately generate M linear equations. These M linear equations are then
combined with the m linear equations /, = 0, 0 < s < m, and a basis for
the linear equations is chosen. At this point there are N — M p-linear
equations whose linear parts are linearly independent and some linearly
independent linear equations. If these linear expressions (from the N — M
p-linear equations and the linear equations) are dependent then some non-
trivial linear combinations of these expressions are 0. As above, these
combinations will produce nontrivial homogeneous linear equations. A
basis for the linear equations is then chosen and combined with the p-linear
equations to form a system that is equivalent to the original system (4.3).
This process is repeated until one of two possibilities occurs. Either N
independent linear equations will be produced in which case & = 0 or R
linearly independent linear equations will be produced where R < N and
where the linear expressions from the p-linear equations and the R linear
equations cannot be used to produce any new linear equations that are
independent from the existing linear homogeneous equations. If this is the
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case then % is of order p" ~®. To see this consider the k-vector space spanned
by the linear expressions in these p-linear equations and in the R linearly
independent homogeneous linear equations. Then a basis for this space can
be constructed that includes the R linearly independent linear equations.
Then arguing as above one sees that the system of equations consisting of
the R linear equations and those p-linear equations used to construct the
basis is equivalent to the system (4.3). This equivalent system must consist
of a total of N equations otherwise there would be more unknowns than
equations and hence an infinite number of solutions, which would imply that
&£ is infinite. This contradicts (3.1). Therefore an equivalent system of
N — R p-linear and R linear equations in N unknowns has been constructed
with these properties that are easy to verify:
(4.4) (a) There are no intersections at infinity, and
(b) The multiplicity of each point of intersection is one.

Then by Bezout’s theorem the total number of intersection points is p¥ =X,

This then is the algorithm for determining the order of #.

REMARK 4.5. Although this algorithm is much more clumsy than the
algorithm in [12] for computing the divisor class group of 4 = k[x”, y”, g],
it proves very useful in determining C/(A4) for a generic g.

ExXAMPLE 4.6. Let k be an algebraically closed field of characteristic 3 and
g=x+y+ x+ ). Applying this algorithm one finds that C/(4) is
isomorphic to the additive group of solutions to the system

—ty + ayy — Ay = — 0, 4.7)
% = —
%, = —ap
%y = —a
—a, = —o3
Ay = —u
%y = —0
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Lo, + 0, = 0
lz:aoz = 0
Liog, = 0.

This system is easily seen to be equivalent to the system

a, = Ay . %y = A

% = —Ojp, Oy = —03

Ay = —0, Oy = — g (4.8)
Loy, + 0y = 0

In the first step of the algorithm (with det C # 0) one obtains the linear
equations

ll:alz + 0!21 = 0 al’ld -lz:a:;o + a03 = 0 (4.9)

In the next step no new independent equations are produced. Thus the order
of Cl(4) is p*~% = 3.
The most important application of this algorithm is the next result.

THEOREM 4.10. Let k be an algebraically closed field of characteristic p # 0,
n = 4 be a positive integer, {T;:0 < i + j < n} be a set of indeterminates
over k, F = k(T,) and g = Zoq;,, <, T;x'y". If Clk(T,)[x", y*, h]) = 0
then Cl(k[x?, y, g]) = 0 for a generic choice of coefficients a,; € k of § =
Zo<i+j<naxjxiyj-

Proof. Assume that CI(k(T})[x", y”, g]) is 0. When the algorithm in (4.1) is
applied to g, we arrive at the system of equations (4.3) consisting of p-linear
and linear equations with coefficients in the polynomial ring GF(p)[7}]. In
the next step of the algorithm additional linear equations are generated, this
time with coefficients in [GF(p)(T,)]"” where for a field L of characteristic
p # 0, L7 is the field of all elements a € I such that a*" € L. In the m-th
step, more linear homogeneous equations are generated with coefficients in
the field [GF(p)(T;))]"”™ . The class group of k(T};) [x, y”, g] is trivial if and
only if eventually N linearly independent homogeneous linear equations in
N unknowns are generated by this algorithm, N = (n — 1)n/2. That is, if
and only if N homogeneous linear equations in N unknowns are generated
with coefficient matrix B such that det(B) # 0. Note that det(B) e [GF(p)
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(T, for some positive integer s. Therefore (det(B))” € GF(p)(T};) and
det B # 0 if and only if (det(B))” # 0.

Thus if the class group of k(T}) [x, y*, g is 0 and a;; € k is any specializ-
ation of g such that (det(B))” is defined and nonzero then the same sequence
of steps that led to the construction of N linearly independent homogeneous
linear equations in N unknowns will also do the same for § = Za;x'y’,
which proves the theorem.

REMARK 4.11. Another proof of (4.10) was given by Blass and Lang
in [4], but an error was discovered by the authors in that proof (see [4],
pages 36-39).

REMARK 4.12. Although the next result may have application only to the
p = 2 or 3 case by virtue of (4.14), the proof of it easily follows the same
line of argument used in (4.10).

THEOREM 4.13. Let k, g and g be as in (4.10). If the order of CIk(T};)
[x?, y*, g]) is p’ for some r, then the order of Cl(k[x", y*, &)) is p" for a generic
g € klx, yl.

THE MAIN THEOREM 4.14. Let k be an algebraically closed field of characteristic
p = 5, n = 4 a positive integer, {T,;:0 < i + j < n} be a set of indeter-
minates over k, F = k(T;), g = £T;x'y’ and A = F[x?, y", g]. Then
Cl(4) = 0.

Proof. By (2.11) and (2.16) the map ®@: ¥ — @g.s,Z/pZ * \JH(Q) defined
by ®(2) = (1(Q))o s, is an injection. From (2.33) it follows that the elements
VH(Q), Q € §,, are independent over the prime subfield of k. Therefore
each element of 7 can be uniquely identified with a sum X, s,"o~/H(Q) where
0 < ny, < p for each Q.

Suppose that ¢ € &£ and let ¢t = Zn,/H(Q). Consider two cases.

Case 1. n = deg(g) # 0((mod p)).

Let 0', Q" € S,. By (2.3) there exists o € Gal (F/F) such that o./H(Q') =
—VH(Q), o JH(Q) = —JH(Q"),oJH(Q) = JH(Q)if Q # 0, 0" and
o acts as the identity on the elements of S,.

Since t € & it follows that o(¢) € &, which implies that ¢ — o(¢) =
2nyJH(Q') + ny~/H(Q")) € &. Thus (1 + a(1))(Q) = 0 foral 0 # Q,
Q". By (2.10) this implies that ¢t — () = 0. Thus n, = ny, = 0. Since Q’
and Q” are arbitrary it follows that t = 0.
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Case 2. n = deg(g) = 0 (mod p).

Let ¢, Q', Q”, be as in case 1. Then ¢ = nyJH(Q) + nypH(Q") € £.
Let O # Q’, Q" belong to S,. By (2.33) there exists ¢ € Gal (F/F) such that
6JHQ) = —JHQ), 5/HQ) = —JHQ), 5JHQ) = JAQ) and
is the identity on S,. Then ¢ — 6t = 2ny/H(Q) € &£.1f ny # 0, then by
(2.32) there exists for each Q € S, a t, € &£ such that ¢,(Q) # 0 and ¢, is 0
at every other element of S,. The ¢,’s would necessarily be independent over
Z/pZ, contradicting (3.2). Therefore n, = 0. Since Q’ is arbitrary, ¢ = 0.

Thus £ = 0.

The main result of this article now follows as a corollary to (4.10) and
4.14).

THE MAIN RESULT (4.15). Let k be a field of characteristicp = 5, g € k[x, y]
be of degree at least 4 and A = k[x*, y?, g]. Then for a generic g the ring A
is factorial.

REMARK 4.16. For an alternate proof of case 2 of Theorem (4.14) see [3].

5. On finding &

5.1.In[1] an algorithm and computer program was given for calculating the
order and type of £, the group of logarithmic derivatives of D = g,
(0/0x) — g.(8/dy) in k[x, y], where the coefficients of g are in GF(p™) for
some m. An algorithm for calculating the actual elements of ¥ was not
given, partly because it could not be found in what finite field are the
coefficients of the elements of .#. The next result answers this question.

THEOREM 5.2. Let g € GF(p™) for some m and k be an algebraic closure of
GF(p™). If te Z, then t € F,({a, B, \/H(a, p):(a, B) € S,}), the field exten-
sion of F, obtained by adjoining all «, B, \/H(a, B) for (a, B) € S, to F,.

Proof.Let K = F,({a, B,/H(a, p): (a, B) € S,}). Let E be the field extension
of K obtained by adjoining the coefficients of the elements of % to K. Then
K and E are finite fields with E algebraic over K, hence separable over K (see
[14] pages 63 and 64). Let ¢ be a K-injection of E into k. Then ¢ can be
extended to form a K[x, yl-injection of E[x, y] into k[x, y] by letting
o(Zayx'y’) = Za(a;)x'y’.

If t € & then by (1.4), D't — ¢t = —¢*. It follows that D?~'(ot) —
co(tf) = —(o(2))’. Thus o(t) € . By (2.8), for all («, f) € S, and t € &,
there exists r € Z/pZ such that «(«, ) = r/H(a, B). Therefore for all such
(@, B) € S,, a()(a, B) = a(t(x, B)) = a(ryH(a, B)) = ry/H(a, B) = «a, p).

COMP 2612-17
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Then a(t) — te £ and (a(t) — )(a, f) = 0 for all («, p) € S,. By (2.10)
a(t) — t = 0. Hence there is but one K-injection of E into k£ which implies
that [E: K] = 1 ([14] page 65).

The reader is left with some open problems. Among them are:

(5.3) What is Cl(k[x*, y*, g]) for a generic choice of g if p = 2 or 3?

(5.4) Is condition (4) of (2.13) a generic condition?

(5.5) How does the order of CI(k[x”, y”, g]) stratify the coefficient space of
g? For example, for p > 3, we saw that on a subset of the coefficient
space of g of codimension 0 this order is p°. What then is the relation-
ship between p* for s = 0, 1, 2, . . . and the codimension of the subset
of the coefficient space of g consisting of those g € k[x, y] such that the
order of Cl(k[x”, y?, g]) is p°?

(5.6) Is k[x”", y”", g] factorial for a generic g?

(5.7) The author gratefully acknowledges the many insightful conversations
with Professors Piotr Blass, Michael Fried and William Heinzer.
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