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Résumé. Une partie A de X, espace compact métrisable, est dite à restes bornés pour une suite
donnée x : :N ~ X s’il existe a, 0  a  1, tel que la suite n - card{ m  n; xm ~ A} - na soit
bornée. L’étude de ces ensembles est étroitement liée aux propriétés spectrales du flot associé à x.
Les cas particuliers des suites ( n a) dans Td, des suites de Weyl et des suites multiplicatives en
base g sont examinés plus en détail.

Abstract. A subset A of a compact metrizable space X is said to be a bounded remainder set for a
given sequence x : N ~ X, if there exists a, 0  a  1, such that the sequence n - card{ m  n; xm
E A} - na is bounded. The study of such sets is closely related to spectral properties of the flow
associated with x. We particularly investigate sequences (n a) in Td, Weyl sequences and
multiplicative sequences to base g.

1. Introduction

I.1.

The aim of this paper is to study regularities of distribution for sequences
X = (Xn)n0 with values in a compact metrizable space X. One way to deal
with regularities or as well irregularities of distribution is to describe bounded
remainder sets, abbreviated B.R.S., in X for x. These are subsets A for which
there exists a in [0, 1] ] such that the sequence of remainders N ~ rN(A; a)
defined by

is bounded. In this case a is called an admissible frequency of x in A.
The first result is about the familiar sequence (n03B1) on the torus T, with a

irrational. It was proved by [Hecke, 1922] that for all arcs I in T of length
1 | &#x3E; 0 in 03B1Z + Z, one has
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where h is the unique integer such that |- h03B1 ~ Z. The proof derives from
the relation

where Il denotes the characteristic function of I in [0, 1[ [ and ~y~ denotes the
fractional part of the real number y ; here 0  x  1 and 0  u  v  1. The

converse, conjectured by [Erdôs, 1964] was first proved by [Kesten, 1973].
Proofs and generalisations of this theorem in the framework of both topologi-
cal dynamics and ergodic theory were given by [Furstenberg, Keynes and
Shapiro, 1973; Petersen, 1973; Oren, 1982]. The method of Oren is purely
topological. The proof of Petersen is ergodic and shows that the condition
/3 E 03B1Z + Z is equivalent to

In some cases the sequence (xn) is derived from iteration of a map T: X ~ X.
The initial point xo is given and

The fact that A( c X) is a B.R.S. depends on xo, but in many examples this
initial value is irrelevant. The subset A will be called T-admissible if A is a

B.R.S. with the same admissible frequency for all sequences satisfying (2).
In the general case we look at a sequence as a dynamical system. Let S be

the one-sided shift on the compact metrizable product space XN, given by

An X-valued sequence x is viewed as a point of XlB! and we denote by Kx the
orbit closure of x with respect to the shift. We have S(Kx) c Kx, so that the
restriction T of S on Kx gives the flow K(x) = ( T; Kx ). Now let I(x) be the
set of Borel probability measures on XlB! which are accumulation points of the
sequence

with respect to the weak topology. To each À in I(x) we associate the
measured flow K(x; 03BB) = (T; Kx, 03BB). We shall be concemed with spectral
properties of such a flow.
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I. 3.

In part II we give the ergodic method following the work of [Petersen, 1973]
and we derive some general results on B.R.S. called regular (Theorem 2). In

d

part III we find all blocks A FI Ik with bounded remainders rn(A; a ) for
k=1

sequences n ~ (n03B11,..., n03B1d) in 03C0d (Theorem 3). We also give examples of
cylinders which are B.R.S. for these sequences (Theorem 4), generalizing
earlier examples of [Szüsz, 1954] and [Rauzy, 1983-1984]. In part IV it is

proved in particular that any arc A of T which is B.R.S. for a Weyl sequence of
degree d  2 is in fact trivial, namely is of length 0 or 1. The next part deals
with q-multiplicative sequences such as n ~ e2i03C003B1sg(n), were a is an irrational
number and sg( n ) the sum of digits of n to the base g. Spectral properties of
these sequences obtained in [Coquet et al., 1977; Queffelec, 1979] are used to
describe the related measured flows. In the case of strongly q-multiplicative
sequences z with additional properties, Theorem 6 says that arcs which are
B.R.S. are trivial. This extends a first result of [Queffelec, 1984] about
sequences (03B1sg(n)).

Il. Coboundaries

II. l.

Let E be a locally convex linear space (L.C.S.) over R or C. The Schauder-
Tychonoff theorem [Dunford and Schwartz, 1967] says that if K is a compact
convex subset of E and if F is a continuous map from into K, then F has
a fixed point. Following the method of [Petersen, 1973] we give a coboundary
theorem in a general form using the notion of quasi-complete L.C.R. [Bourbaki,
1964].

COBOUNDARY THEOREM. Let E be a quasi-complete L.C. R. and let U: E - E
be a linear map, continuous for the weak topology on E. Assume the E-valued
sequence n - an, n  0, given by a0 = 0 and

is weakly relatively compact. Then there exists b in E such that

a is called a U-coboundary and moreover for every continuous linear functional L,

holds.
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Proof. Define F: E - E by F(x) = a + U( x ).
This map is weakly continuous. Let K be the convex (weak)-closure in E of

the points an, n  0. Since E is quasi-complete we derive from a theorem of
Krein [Bourbaki, 1964] that K is weakly compact. Now we note that for all
n-tuples (03BB0,..., 03BBn-1) of real numbers 03BBi  0 with 1 À 1 = L 03BBi= 1, one has

in

F(03A3 03BBlai) = 03A303BBiai+1 Hence F(K) c K follows from the continuity of F
in in

and consequently there exists a fixed point b of F in K. Moreover for any
continuous linear functional L,

II. 2.

The above theorem will be used particularly for E = L2 and U a linear
isometry arising from a measure-preserving transformation but we shall need
an improvement of it. Let H be a Hilbert space endowed with the scalar

product (.|. ), the norm Il . Il ~ and let U be a linear isometry of H. We do not
require U to be unitary. Let x be an element of H. The map

defined on N x N has a constant value 03B3x(a) on the half-line m - n = a, a
given in Z, and so a ~ 03B3x(a) is defined on Z. The map Yx is the well known
correlation function of x with respect to U; it is a positive-definite function.
From the Bochner-Herglotz theorem, it follows that yx is the Fourier trans-
form of a Borel measure 03BBx on the torus T, called the spectral measure of x
with respect to U and moreover, if h denotes the Haar measure on T :

where the limit is taken in the space M*(T) of complex measures on T, dual
of W(T), endowed with the weak topology. We recall that if M(T) denotes the
dual Banach space of %(T), then the map x ~ 03BBx from H to M(T) is

continuous. By means of the above weak limit one gets 03BBcx = |c| 203BBx for any
complex number c and 03BBx+y  2Àx + 2XY for any x and y in H.

THEOREM 1. Let U be a linear isometry on the Hilbert space H and let x be in H,
Xx its spectral measure with respect to U. Then the following are equivalent:
i) The sequence n - x + U(x) + ... + Un-1(x) is bounded in H.
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ii) x is a U-coboundary; there exist y in H such that x = y - U(y).
iii ) The map

from T into R (with the value + oc at t = 0) is 03BBx-integrable.

Proof. The unit ball of H is weakly compact according to the theorem of
Alaoglu, therefore i ) and ii) are equivalent by the coboundary theorem.

ii) ~ iii): Assume x = y - Uy, then a straightforward computation gives
03B3x(n) = 203B3y(n) - 03B3y(n-1) - 03B3y(n+1) (n (E Z) and using spectral measures
we obtain

in other words

Therefore 03BBx({0}) = 0 since 03BBx is bounded and we get iii) with the following
value:

iü P 1): Assume that . 2 1 is À x-integrable. A straightforward compu-
tation gives

where XN:= L Un(x), N E N. In particular,
nN

This proves i). ~

Note that the above proof gives

COROLLARY. With the assumptions of Theorem 1, the equality x = y - U(y)
implies:
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II. 3.

Now we quote a simple but typical fact about bounded remainder sets for
sequences arising from regular processes. By a process e we shall mean in
this paper a triplet (T; X, tt) where X is a compact metrizable space, T a
Borel transformation from X to X and it a Borel measure which is preserved
by T. We recall that a map defined on X into a topological space is said to be
it-continuous if it is continuous at it-almost every point of X. A subset Y of X
is then said to be 03BC-continuous if its characteristic function lY is 03BC-continuous.
The process  is called regular if T is JL-continuous. Let J be an infinite
subset of N. A point x in X is called (e, J)-generic if for all continuous
complex maps f: Xi C, one has

When the map f: X - C is only 03BC-Riemann-integrable, that is to say bounded
and p,-continuous, then (3) is still true whenever e is regular.

THEOREM 2. Let e= ( T; X, p) be a regular process and x a (e, J)-generic
point. If A is a ju-continuous B. R. S. for the sequence e = ( T nx ) n of admissible
frequency a then there exists F in L~(X; p ) such that

Moreover t ~ 1 sin2(03C0t) is integrable for the spectral measure À f o ff = lA - a
with respect to the linear isometry given by T on L2(X; 03BC).

Proof. Assume A is p-continuous subset of X. Put f = lA - a, fo = 0 and
fm = f + f 0 T + ... + f 0 Tm-1 for m  1. The maps fm are 03BC-Riemann-inte-
grable and by assumption on x for all p in [1, + oo[ one has:

Let A be a B.R.S. and let a be the corresponding admissible frequency. There
exists c  0 such that

hence for all integers m, n  0,
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This implies

for all p, 1  p  + oo and consequently these inequalities also hold for

p = + oo. Now the sequence m ~ fm is strongly bounded in L~(X; 03BC), dual of
L1(X; g). From the theorem of Alaoglu ( fm ) is relatively compact for the
weak topology a(Loo, L1) and the coboundary theorem can be applied to
E = L~(X, 03BC) endowed with the weak topology. Therefore f is a UT-
coboundary where UT is the linear isometry derived from the map ~ ~ ~° T
defined for complex maps 99: X ~ C. 0

Remark 1. The equality lA - a = F° T - F 03BC.t.a.e. implies that for 03BC-almost
every point y in X, the set A is a B.R.S. for the sequence 11 = (TnY)n.
Conversely, if A is a Borel set and if there exist a Borel subset Y of X with
03BC(Y) &#x3E; 0 and A a B.R.S for all sequences (TnY)n with y e Y, then there exists
F in L~(X, p) satisfying (4) with a = 03BC(A). This derives directly from the
individual ergodic theorem. Note that in [Halàsz, 1976] Halàsz gets the same
result but the remainder rN(y) = 03A3 1A(Tny) - N03BC(A) is only assumed to be

nN

bounded below on Y.

Remark 2. Theorem 2 can be viewed as the metric version of the classical

theorem of [Gottschalk and Hedlund, 1955].

III. The séquences (n a)n in Td

III. l.

Let 03C403B1: Td ~ Td be the translation given by 03C403B1(x) = x + a. It is well known
that Ta preserves the Haar measure h on Td and so induces a unitary operator
Ua : L2(Td, h) ~ L2(Td, h) given by U03B1(f) = f 0 Ta.

THEOREM 3. Let a = (al’...’ ad) be in Td such that 03B11,..., ad are Z-indepen-
dent in T. Let P = Il X - - -  Id be a block with arcs Ii of length |IJ| 1 =A 0. Then
P is a bounded remainder set for ( n a) n if and only if there exists an index k such
that IIk 1 E 71.ak + ll and for all other indices j =1= k, one has |Ij| = 1.

Proof. Assume that the given block P satisfies |Ik| ~ Z03B1k + Z for an index k
and |1 Ii = 1 for the other indices j. Clearly we can as well assume Ij = T so
that P is a B.R.S. from Kesten’s theorem. Note that the case h ( P ) = 0 is
obvious.



274
d

Now suppose that P is a B.R. S. for ( n a) n with h(P) = Il ln 1 =1= 0 and

put f = 1 p - h(P). Since ( n a) n is uniformely distributed in T we derive as in
Theorem 2 that the sequence

is bounded in L2(Td; h) (and also in Z~). By Theorem 1, the map 1 sin203C0(·) is
integrable for the spectral measure hl of f with respect to Ua. Using the
Fourier expansion of f we easily verify that

where 8a is the Dirac measure at the point a (a ~ T), (m|03B1) = m103B11
. + .’ . + m d ad for m = ( m1,..., m d ) in Zd and em is the character on Td given
by em ( t ) = e2i03C0(m|t). The condition iü) in Theorem 1 is now equivalent to

For d = 1, (5) is the Petersen’s condition (1). For d  2 we get from (5)

hence

for all indices j. Assume that k is an index such that Ik |(~ 1. From (5) we
derive now:

for all indexes j, j ~ k. By a result of [Kronecker, 1884] there exists a constant
c &#x3E; 0 such that

lim infm:~| m sin 03C0(m03B1j + 03B1k) |  c.
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In other words, there is a sequence (mn)n of integers such that

on the torus T and

But now (6) implies

Since there exists p E Z with |1 Ij | - p03B1j ~ Z, it follows

in T and (7) gives

so that p = 0, hence |Ij| = 1. 0

III. 2.

We now give a construction of bounded remainder sets in d-dimensional

torus, d  2, which are not blocks. To do this we need some definitions. Let
v = (v1,..., vd) be in Rd with Vd =1= 0 and let p : Rd ~ Rd/lLd be the canonical
map. TU is the translation by u modulo Zd to which is associated the cross
translation BU modulo Zd given by

We consider T as Qd = Il [0, 1[. Now a subset 2 of Qd will be called a
i=i

section for v if for any point a in 1: one has
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Finally, a subset B in Rd will be called simple (with respect to Z d ) if it is

bounded and satisfies

The following theorem extends results of [Szüsz, 1954], its proof follows an
idea of [Larcher, 1985].

THEOREM 4. Let a = ( al, ... , 1 ad) be in Qd with 1, al’...’ ad Z-independent, let
v in N03B1 + Zd, v ~ Zd and let 03A3 be a section for v such that 03C1(03A30) is

03B8v-admissible. If the cylinder C = 03A3 + [0, 1[. v is simple then p(C) is Ta-admissi-
ble.

Proof. We first prove the theorem in a particular case. Assume 2 = 1. and
denote by (x) the point in Qd congruent to x (x E Rd) modulo 71.d. Let
p ~ N, P =1= 0, and v = ~p03B1~. For any x in Qd we denote by Xn(x) the point
x + n.v in Rd and we define the half-straight lines

Let dn(x) be the intersection point of Dx with the affine hyperplane P, = (y
~ Rd; yd = n}, n ~ N. For any point 03BE in Qd, we have to prove that the
sequence (03BEN)N given by

is bounded, where B = p ( C ) and À is the admissible frequency of 03A30(= 03A3) for
the cross translation BU. Let kN be the integer such that X[(Nlp)](0) belongs to
the segment [dkN-1(0), dkN(0)], then

and with

where Ck r is the number of points Xm (~03BE + r03B1~) on the segment [dk(~03BE + r03B1~),
dk+1(~03BE + r03B1~)] such that m  N and

p
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But for k  1, t E [0, 1[ and a + [0, 1[ one has

card{m ~ N; k  t + ma  k + a} = 1

hence

this proves the particular case.
Now let A be any Ta-admissible part of -rd and let B be a subset of A. Then

for any f3 in 71.a, the set (ABB) ~ (03C403B2B) is Ta-admissible. From this we derive
the theorem in its general f orm. D

IV. Weyl sequences

IV.1. Weyl flows

Let P(X) = a0Xd + a1Xd-1 + ... + ad be a polynomial of degree d  2 with
real coefficients ai. When a o is irrational P is said to be a Weyl polynomial.
Put a = d !ao. Following [Furstenberg, 1981] we define the flow W03B1 ; Td ~ Td
by

This flow is uniquely ergodic, preserving the Haar measure. Let à be the
transformation defined on the space of real polynomials by

The following formula will be useful:

for all m E Z.

IV2.

The next theorem derives from spectral properties of Wa.
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THEOREM 5. Let A be a h-continuous subset of T for the Haar measure h. Let P
be a Weyl polynomial of degree d  2. If A is a B. R . S. for the sequence (p(n)
mod 1)n then the Haar measure h ( A) of A is 0 or 1.

Proof. Define B : {(t1,..., td) ~ Td; tdc=Al and put f:= 1B - h(B). By
assumption and (8) there exists C &#x3E; 0 such that

But any point x in Td is (W03B1, N) - generic hence by Theorem 2 the map
t ~ 1 sin203C0t on T is integrable for the spectral measure h f of .Î with respect tosin77/ 
Wa. The Fourier expansion

holds in L2(-rd, h ) with em viewed as the character

on Td . By finite induction we easily obtain that for m in Z, and n in N there
exists a continuous map

which is constant if d = 2 (and in this case, we put T ° = {0}) such that

on Td. Hence

so that

It follows

Since ~ f 112 = h ( A )(1 - h ( A )), the integrability condition iii) of Theorem 1
implies h ( A ) = 0 or 1. 0
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V. q-Multiplicative sequences

V. 1.

Let q = (qn)n1 be a sequence of integers qn  2. We put q0 = 1 and pn =
qoql - - - qn . A complex valued sequence z : :N ~ C is said to be q-multiplicative
if for all integers b  0, n  0 and 0  a  pn, one has

The special case where z(bpn) = e2i03C0b/pn+1 for 0  b  qn+1 corresponds to a
generalisation of Halton sequences. The set of arcs of bounded remainder for
such sequences is almost completely determined by [Hellekalek, 1984]. Let g
be an integer  2 and assume that in place of (9) one has

where Pn = g". Then z is said to be a strongly multiplicative sequence to base
g. An example is provided by the sequence n - e2i03C003B1sg(n) given in the introduc-
tion and for .which the corresponding dynamical system is known to be a
uniquely ergodic flow [Kamae, 1977]. Another example is the Kakutani

sequence studied in part V.4. below.
From now on we assume that the q-multiplicative sequences take their

values in the group of complex numbers of modulus 1. This group will be
denoted by U.

THEOREM 6. Let z be a strongly multiplicative (U-valued) sequence to base g.
The following hold :
i) The associated flow K(z) is uniquely ergodic and z is well-distributed in the

closed subgroup U(z) generated by all the values of z.
ii) Assume moreover that z takes a value which is not a root of unity (hence

U(z) = U) and suppose there exists an integer m =1= 0 prime to g such that:

Then an arc I of U is a B.R.S. for z if and only if the length of I is 0 or 203C0.

Before we are going to prove Theorem 6 we will study q-multiplicative flows.

V.2. q-Multiplicative flows

Let z: N ~ U be a q-multiplicative sequence and let f( z; v) be the corres-
ponding measured flow with v E I(z). For any integer k  0 we define the
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séquences q (k) , p(k) and z(k) respectively by

and

Clearly z(k) is a q(ktmultiplicative sequence. Finally for each m = ( m o , ... , ms)
in Zs+1 we associate the character ~m on UN given by

and for short, we put

We prove the following extension of earlier results [Coquet et al., 1977;
Liardet, 1980; Queffelec, 1984].

THEOREM 7. Let z : N ~ U be a q-multiplicative sequence. For any m in Zs+1
the spectral measure 039Bz,m of X m with respect to K(z; v) does not depend on the
choice of v in I(z). Moreover, let Pm,N be the polynomial

then

i) Az,m is the weak limit of mm,N(dt) = Pm,N(t)h(dt).
ii) Let À be a Borel measure on 1r and let p be an integer &#x3E; 0.
We denote by XP the Borel measure given by

for all f in 2(T). Then Az,m is the limit in the sense of total variance (i.e. in

M(T)) of the sequence of measures
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Proof. Let k be a given integer and define ~(k)m:N ~ U by

where [x] is the integral part of x and ~*m(·) is the periodic sequence of period
Pk given by

for j = 0,1,..., pk - 1. By construction ~(k)m(j) = ~m(j) f or all integers j
which do not belong to

From now on we assume S  pk so that Ak has the density S/Pk in N.
Let J be an infinite part of N such that v is the weak limit of

N ~ 1 N 03A303B4SJz (N ~ J). Hence

Assume 1 m = 0, then

and ~*m has the mean

This proves that

and implies finally:

LEMMA 1. If 1 m | = 0, then for any v in I(z):
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Now let ym be the correlation function

On the other hand there exist s’ ~ N and m’ ~ Zs’+1 such that m’ | = 0 and
~m(j + n)~m(j) = ~m’(j) for all j, hence from the above Lemma 03B3m(n) does
not depend on v and the same is true for Az,m with Fourier coefficients given
by

For n fixed, a straightforward computation leads to

hence i) holds.
Set for short

where 039Bz(k),|m| is the spectral measure of the q(k)-multiplicative sequence

By a classical result [Coquet et al., 1977], 039Bz(k),|m| is the weak limit of the

sequence

We claim that, in the sense of total variance (i.e. for the norm · in the dual
of Wc (T)) the inequality
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holds. In fact, put so that ak is the weak

limit of

then from i):

The equality

with j = j’ + /Pk’ 0  j’  pk is true for all j in NBAk, therefore, using the
inequality

satisfied for all complex numbers a, 03B2 one gets:

Integration on the torus and Schwarz inequality lead to
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but !..Pm,N(t) d t = 1, hence we get in fact

Taking N Pk in place of N above we derive (12). 0

Remark 3. Assume 1 m | = 0, then 039Bz(k),0 = 80 (the Dirac measure at 0 on T)
and

hence: if 1 m | = 0 then:

039Bz,m is discrete, supported by the group modulo 1.

Remark 4. In the general case for any a in T:

and

by a classical result in [Coquet et al., 1977], therefore

and since ~(k)m = X m on NBAk we get

the last equality following from a result of J.P. Bertrandias [Bertrandias, 1964;
Coquet et al., 1977]. The next result supplies to a misstatement in ([Liardet,
1980], thm 4) and furnishes a proof.
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THEOREM 8. Let z: N ~ U be a q-multiplicative sequence. The flow :f(z) is

uniquely ergodic if and only if for all integers s  0 and m in Zs+1 one has:

Proof. Since the functions ~m, m ~Zs+1, s ~ N generate a dense subspace in
BC (UN), the unique ergodicity of K(z) is equivalent to the uniform conver-
gence in n of the following sequences of means:

Assume this condition holds. Let m = (m0,..., ms) be in Zs+1. For ~ &#x3E; 0

given there exists No such that

for all N  No and all n cz N. In particular, take n = pkl, 1 ~ N with pk  N +

1 m 1, then (15) gives

Suppose 039Bz,m({0}) = cm &#x3E; 0 and choose N = p, large enough such that by
(13):

then

therefore

for any k such that pk  ps + 1 m B. This proves (14).
Conversely, assume that (14) holds. Let ~(k)m(·) be defined as in Theorem 7.

By a straightforward computation one has
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for all integers n  0. Let n, pk and N be given and let a, b integers defined
by

Since

one has

and then

with

hence

Let E &#x3E; 0 and assume 039Bz,m({0}) &#x3E; 0. By (14) there exists t such that k  t
implies |~|m|(pkl)- 1|  e for all l, therefore

and (16) now gives
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Choose k  t such that s  ~, then for
Pk

we get for all integers n :

so that (1/N) 03A3 ~m(j + n) converges uniformly in n.
jN

Assume now that 039Bz,m({0}) = 0, then with the above notations one has

Let k be such that s  E and by (13)
Pk

Now with - we obtain

for all integers n. This finishes the proof. 0

V.3. Proof of Theorem 6

We continue the study of flows Jf(z) but now we assume that z: N ~ U is a
strong multiplicative sequence to base g.
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V.3.1. K(z) is uniquely ergodic. Let m be a rational integer. By (13) one has

hence 039Bz,m({0}) is 0 or 1 and the value 1 is taken if and only if z m is the
constant sequence n - 1 since z(0) = 1.
Now let m be in Zs+1. By assumption on z, the equality Z (k) = z holds for

any integer k, so that by Theorem 7:

If z|m| is a constant sequence then the implication (14) of theorem 8 is
obvious. If z|m| is not constant then 03C3m,k({0}) = 0 and by Theorem 7, part ii):

hence (14) holds again. This proves the unique ergodicity of K(z). Let À be
the corresponding unique invariant measure on K(z). The projection 03BB|1 of À
onto the first factor of 03A9(= UN) is carried by U (z) and from (17) we easily
derive that À Il is the Haar measure on U(z), as expected to complete the
proof of i), Theorem 6.

V.3.2. 039Bz,1 is g-invariant. For short we put 039Bz := 039Bz,1 and P := Pl,g (see
Theorem 7). The g-invariant property of 039Bz means that 039Bz is an invariant
measure for the transformation t - g. t on the torus. This result is contained in

[Queffelec, 1979], it derives from i) Theorem 7 and the identity

V.3.3. A spectral criterium. Define t - ~ t Il on T by

LEMMA 2
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Proof We follow an idea of [Queffelec, 1984]. Let = 1 1 [ with
k  2. The g-invariant property of 039Bz implies

But from i) Theorem 7 and (19) we get

hence

Assume that gP(0) &#x3E; 1, then for k large enough the inequality Jk  Jk+1 holds

and consequently the integral ~T 1 ~t~2 039Bz(dt) diverges.
V. 3.4. End of the proof Let 1 be an arc of U and suppose that 1 is a B.R.S. for z
satisfying the assumptions of ii). Define f: 03A9 ~ C by

and let the above invariant measure À on .Jf"(z) be viewed as a measure on 0.
By i) À |1 is equal to the Haar measure h on U, hence the Fourier expansion of
f in L2(03A9; 03BB) is given by
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where (1I |~m) is the ordinary Fourier coefficient ~tmh(dt)I. On the other
hand

with M = ( - m’, 0,...,0, m) in Zn+1. Therefore (~m· Sn|~m’) = 0 by (18) if
m ~ m’ and finally it follows

in M(T) where 03BBm is set for the spectral measure 039Bz,m. Theorem 2 implies
that 1/sin203C0(·), or equivalently 1/~·~2, is integrable for 03BBm if (1/1 ~m) ~ 0.
Assume 1 l ~ 0 and ~ 203C0. We are going to derive a contradiction proving

that 1/sin21’(.) is not integrable for À¡. The functional equation (4) in
Theorem 2 is satisfied with a = 1 l |/203C0 since z is uniformly distributed in U
and I is a B.R.S. Take the exponential of each member of (4), we obtain T in
L2(03A9; 03BB), ~ ~ 0, such that US(~) = ei|I| ~ and in terms of spectral measures
03BB~ = 03B4{a}. Now let 03C8 = 03A3 c~~ be a finite sum over the characters X on 03A9,

xEF
with complex coefficients cx, then by induction on the cardinal 1 F | of F one
has

Since the subspace generated by characters X is dense in L2(03A9, 03BB), the

continuity of x ~ 03BBx from L2(03A9,03BB) to M(T) and (20) imply that there exists
an integer s  0 and M in Zs+1, M ~ 0, such that

If |M| = 0, the Remark 3 §V.2. means that there exists k &#x3E; 0 and q E
{1,..., gk - 1} with a = q . If |M ~ 0, Theorem 7 implies that there exists

gk
k &#x3E; 0 such that
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and Remark 4, §V.2. gives 03BB|M|({gka}) &#x3E; 0. Put 03B1 = gka and use formula
(13), then the infinite product

It follows by convexity that

for j = 1,..., g - 1 (the case j = 0 being obvious), hence (gn03B1)n converges
modulo 1 to 03B2 such that g03B2 ~ 03B2 mod 1 and (z(j)) IMI = e2i’1TJP. This leads to a
contradiction, namely all the values of z are roots of unity. Finally we have
just proved that 1 l 1/21’ is the g-adic number qlgk. Now let m, m ~ 0, be an

integer prime to g such that | 03A3 (z(j))m| &#x3E; 1. Then m|I|/203C0 ~ Z. By

Lemma 2, 1/sin Tr(’) is not integrable for À,,, and consequently is also not
integrable for Xf. 0

For g = 2 there is an odd integer m satisfying ( * ). In the general case, it can
only be proved there exists an integer q  1 such that ( * ) holds for many
integers m = qm’ with m’ prime to g. From the above proof we derive:

COROLLARY. For any strongly multiplicative U -valued sequence to base g, the set
of admissible frequencies is finite (reduced to the set (0, 11 for g = 2).

V.4. Applications

Let g be again an integer  2.

COROLLARY 2. The only arcs I of T which are B. R.,S. for the sequence n -
asg( n ) mod 1, with a given irrational number a, are the trivial ones, that is to
say 111 =0 or 1.

Proof. One has
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and there exists a sequence (mk) of integers such that g is prime to each mk

and (mka)k converges to 0 modulo 1. In particular lim sin 03C0gmk03B1 sin 03C0mk03B1| = g so
k sin 1’mka

that the required inequality ( * ) in Theorem 6 holds and the corollary follows.
n

We apply the above method directly to the study of the Kakutani séquence
introduced in [Kakutani, 1967]. Let p be a prime number  3, set T
e2i’1T/(p -1) and let L be the logarithmic function which identifies the multiplica-
tive group (Z/pZ)*, with generator e, to the additive group Z/(p - 1)Z in
such a way that L ( e ) = 1. Finally let vp ( m ) be the p-adic valuation of m. The
sequence e is defined by

It is proved in [Coquet et al., 1977] that e is a strongly multiplicative sequence
to base p2 and that all sequences ei, for j = 1,..., p - 2, are pseudo-random.
This implies that the measure A03BE,m, for m in Zs+1, s  0, is:
- continuous if |m| ~ 0 mod( p - 1),
- discrete, carried by Gp2 if 1 m | ~ 0 mod( p - 1).
Since e is uniformly distributed in U(03BE) = (j ~,..., ~p-2}, an admissible
frequency for a B.R.S. has necessary the form -With a in (0, 1,..., p - 1}.
But measures 03B4{(a)/p-1} with a E {1,..., p - 2} are not spectral measures for
K(03BE), hence we have:

COROLLARY 3. The only subsets A in U which are B. R. S. for the Kakutani
sequence e are the trivial ones (i.e. either A contains all the p - 1-th roots of
unity or A contains none of these ).
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