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An affine subset of an elliptic curve has only finitely many integral points, a
famous result due to Siegel. Lang has conjectured that the same is true for
abelian varieties of arbitrary dimension. In this paper we show that if an affine
subset of an abelian surface were to have infinitely many integral points, then
the (logarithmic) height of those points would grow exponentially. Since it is
well known that the heights of the rational points on an abelian variety grow
polynomially, our theorem shows that integral points on an abelian surface are
relatively rare; or, as we shall say, that the integral points are widely spaced.
We note that [Mumford, 1965], has similarly shown that the rational points on
a curve of genus at least two are widely spaced, (a result not entirely
superceded by Faltings’ proof [Faltings, 1983] of the Mordell conjecture; see
the discussion in [Szpiro, 1985], XI §§1,2). Our method of proof, which
involves computations with local height functions, is rather different from that
of Mumford; although we do use (essentially) the same lemma on almost
orthogonal subsets of lattices in Euclidean space to finish our argument.

In order to state our main theorem more precisely, we set the following
notation, which will remain fixed throughout this paper.
KIQ
s

Rs
AIK
UcA

U(Rs)

h

c, c’, ...

a number field
a finite set of places of K containing the infinite places
the ring of S-integers of K
an abelian variety
a (non-empty) affine open subset of A, say with affine coordi-
nates xi 1... xN
the set of S-integral points of U. (I.e. the set of P e U( K ) such
that Xi(P) ERs for all 1  i  N. To indicate the dependence on
xl, ... , 1 XNI we use the notation Ux(Rs).)
a (logarithmic) canonical height on A corresponding to some
ample, symmetric divisor
positive constants which may depend on all of the above data,
and which may vary from line to line.

Our main result is the following estimate for the size of the set of S-integral
points in an open affine subset of an abelian surface.
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Theorem 1

Assume that A is an abelian surface. ( l. e. dim(A) = 2.) Then

Since h is a positive definite quadratic form on A(K)/(torsion), one easily
obtains an asymptotic estimate

where r = rank A(K) (see, e.g. [Lang, 1983], ch. 5, thm. 7.5). Thus Theorem 1
says that in the set of rational points on an abelian surface, the integral points
are quite rare. It may be compared with the result of [Brown, 1984-85], who
uses techniques from transcendence theory to prove that

(However, Brown’s result is valid for abelian varieties of all dimensions.)
We also note that Theorem 1 is equivalent to the fact that if the points in

U(RS) are arranged in order of increasing height, say Pl, P2,..., then

(This is the way Mumford phrases his result on the Mordell conjecture
[Mumford, 1965].)

§1. Reduction lemmas

Siegel’s theorem for elliptic curves actually shows that a certain set of what
might be called ’quasi-integral’ points is a finite set (see [Silverman, 1986],
IX.3.1 for a discussion.) We will prove that the ’quasi-integral’ points on an
abelian surface satisfy the conclusion of Theorem 1. Generally, let us say that
a set 2 ~ A(K) is widely spaced if

#{P~03A3:(P)H}c log(H).
We also set the further notation:

hD absolute logarithmic Weil height corresponding to the divisor D
(cf. [Lang, 1983], ch. 4, ch. 10).

03BBD(·, v ) local height function corresponding to a divisor D and place v (cf.
[Lang, 1983] ch. 10, where they are called Weil functions). More
generally, 03BBX(·, v) is the local height function corresponding to
the subscheme X and place v (see [Silverman, to appear] for the
definition and standard properties of 03BBX. Intuitively,

03BBX(P, v ) = - log("v-adic distance from P to X ") .
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Thus À X(P, v) is large if and only if P is v-adically close to X.)
~ &#x3E; 0 a constant (the c’s may also depend on ~).

We will prove the following theorem, from which Theorem 1 can be easily
deduced (see Lemma 3).

Theorem 2

Assume that A is an abelian surface, and let D E Div( A) be an ample, effective
divisor. Then the set

is widely spaced.

Remark

The set in Theorem 2 consists of the points with ’D-defect’ at least e, in the

sense of Vojta’s Nevanlinna-type conjectures (cf. [Vojta, 1986], §3). More
precisely, the defect 03B4(D) is defined to be the largest ~  0 for which the set in
Theorem 2 is Zariski dense in A. Then Vojta’s generalization of Lang’s
conjecture asserts that 03B4(D) = 0 ([Vojta, 1986], conj. 3.3), which is (essentially)
equivalent to the fact that for every &#x3E; 0, the set in Theorem 2 is finite. Thus
Theorem 2 provides some slight additional evidence for Vojta’s conjectures.

Most of our proof of Theorem 2 will be valid for abelian varieties of arbitrary
dimension. We will thus postpone the assumption that dim( A ) = 2 for as long
as possible. As will be seen, the problem becomes that of dealing with a
certain exceptional set, which we can presently only handle in dimension 2.
(And even there, we will have recourse to Faltings’ proof of the Mordell
conjecture!) We start with a number of reduction steps, for which we set the
following additional notation.

0(1) a bounded function (i.e. with the property that 1 0(l) c.)
0,(I) an Mk-bounded function (i.e. a collection of bounded functions with

the property that for all but finitely many v e MK, Ov(1) is identi-
cally 0; cf. [Lang, 1983], ch. 10).

Further, for each effective divisor D e Div(A), define subsets of A(K) as
follows.

We start by showing that Theorem 2 implies Theorem 1.
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Lemma 3

Suppose that 03A31(D, E ) is widely spaced for every ample, effective divisor
D E Div( A ) and every E &#x3E; 0. Then U(RS) is widely spaced.

Proof

First, suppose that y1,..., ym is another set of affine coordinates for U. Then
each YI E r( U, (9ul = K[x1,..., xN ]. Let S’ be a set of places of K containing
S, and such that yl ~ RS’[XI’..., XNI for all 1  y  M. Then it is clear that
Ux(RS) ~ Uy(RS’). Since the set S is arbitrary, this shows that it suffices to
prove Lemma 3 for any one choice of affine coordinates for U.

Next, let Dl = (xi). be the polar divisor of x,, and let D = sup ( Dl} (i.e.
D  Dl for all i; and if D’  Di for all i, then D’  D). Then the support of D
is clearly A - U (i.e., the complement of U in A). It follows from ([Mumford,
1974], p. 62) that D is ample.

Further, we note that for any n &#x3E; 1, a basis for the global sections to the
line bundle OA(nD) is a set of affine coordinates for U. Hence replacing D by
nD, it suffices to prove that Ux(RS) is widely spaced under the assumption
that there is a very ample effective divisor D such that f xo, xl, ... , lx,1 is a
basis for r( A, (9A(D». We may further assume that xo = 1.

Let

be the embedding of A corresponding to our choice of basis for 0393(A, OA(D));
and let H E Div(PN) be the hyperplane Xo = 0, so f *H = D. Further, for each
i, write

Since D is very ample, and the x,’s form a basis for r( A, (9A(D», it follows
that ~ Supp(El) = Ø. (I.e. The E,’s have disjoint support.) Hence from ([Lang,
1983], ch. 10, cor. 3.3), we conclude that

Further, Weil’s decomposition theorem ([Lang, 1983], ch. 10, thm. 3.7) says
that
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Now let

Hence if the 0(1) in this last time is bounded by c, then it follows that we have
an inclusion

Since D is (very) ample, the latter set is finite. Hence if ¿1(D, 1 2) is widely
spaced, then so is U(RS). D

From Lemma 3, we are reduced to studying sets of the form ¿1(D, f) for
ample, effective divisors D. For reasons which will become apparent later, it

turns out to be technically easier to deal only with irreducible divisors, so our
next reduction step is to show that this is sufficient. (However, note that in
order to do this, we must look at 03A32(D, E ). It is certainly possible for ¿l (D, E )
to be non-widely spaced for an irreducible divisor D.)

Lemma 4

if E 2 (D, E ) is widely spaced for every irreducible effective divisor D and every
~ &#x3E; 0, then 03A31(D, E) is widely spaced for every ample effective divisor D and
every E &#x3E; 0.

Proof

Let D be an ample effective divisor, and write D as a sum of (not necessarily
distinct) irreducible effective divisors
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Then for all

Thus

Next, since D is ample, ([Lang, 1983], ch. 4, prop. 5.4) implies that

Combining these last two inequalities, we see that

Since the latter set is finite, and by assumption all of the 03A32(D1, ~)’s are
widely spaced, it follows that 03A31(D, E ) is also widely spaced. D

For the next reduction step, we consider functions

For such a function, define

Lemma 5

03A32(D, E ) is widely spaced for every E &#x3E; 0 if and only if 03A33(D, E, 03C4) is widely
spaced for every E &#x3E; 0 and every function r as above.

Proof

One direction is trivial, and the other is the usual reduction to simultaneous
approximation (see, for example, [Lang, 1983], ch. 7, §2). One actually obtains
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an inclusion of the form

where the union is over a certain finite collection of T’s which depends only
on the number of elements in S. D

We will also have need of the following elementary counting lemma, which
says that almost orthogonal subsets of a lattice are widely spaced. This is
similar to the lemma used by [Mumford, 1965].

Lemma 6

Let 039B be a finite dimensional lattice, q a positive definite quadratic form on A, n
an integer, and a, b &#x3E; 0 constants. Suppose that 03A3 c 039B is a subset with the

property that for any n distinct points Pl’...’ Pn E L,

Then there is a constant c &#x3E; 0, depending on A, q, n, a, and b, such that

Proof

This is a standard counting argument. Intuitively, the condition on 2 says that
for any n points of 2 having approximately the same length, at least two of
them make a fairly wide angle. D

Finally, it turns out to be easier to deal only with divisors which do not equal
any of their translates. The following lemma often lets one reduce to this case.

Lemma 7

For each effective divisor D E Div(A), let

( Here DT is the translation of D by T. Note that 4) is the product of an abelian
subvariety and a finite subgroup of A.) Further, let ep : A - A 10 be the natural
projection. Then for every E &#x3E; 0 there exists an E’ &#x3E; 0 such that
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Proof

From the definition of 03A6, we have D = ~*(~D). Hence for all P ~ 03A32(D, ~),

Further, since h is defined using an ample divisor on A, h - T will dominate
any height on AIO. In other words, for any choice of A on A /4Y, there is an
inequality   ch - (p + 0(1). (Note the two h’s are different.) It follows that
for all P E ¿2(D, l),

and so

§2. An orthogonality result

We are now ready to prove our main orthogonality result, which says that the
points of 03A33(D, e, T ) are almost orthogonal (in the sense of Lemma 6),
provided that each n-tuple of points in 03A33(D, e, 03C4) satisfies a certain Zariski
open condition. The idea of the proof is as follows. Assume for simplicity that
S = {v} contains only one element. Then points of 03A32(D, E ) can be thought
of as points which are v-adically close to D. Given two such points P and Q,
we want to show that (P- Q ) is fairly large. Now P - Q need not be
v-adically close to D, but it is certainly close to the set of differences

(Of course, generally D - D equals all of A; but if we work instead on a

product An, then this difficulty disappears.) Using this idea, we get the desired
estimate for (P - Q ) provided that P - Q does not actually belong to the set
D - D. It is this last proviso which leads to an exceptional set of points which
must be treated separately.
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Theorem 8

Let D E Div(A) be an effective divisor. For each integer n  1, let

( I. e. Wn is the set of all translates of Supp( D ) n c A n by an element of the
diagonal of An.) Suppose that P1,..., Pn ~ 03A33(D, E, T ) have the property that
( Pl, ... , Pn) e Wn . Then

Remark

Note that

Thus if we choose n &#x3E; dim(A), then Wn will be a proper Zariski-closed subset
of An; so in general one would expect that a random set of n points would not
lie on Wn.

Proof

Define a differencing map

Notice that another description of »:z is then given by

Now let P1,...,Pn~A(k) be points with P=(P1,...,Pn)~Wn. We do a
formal calculation using local height functions.

First, note that D n (considered as a subscheme of An ) is the intersection of
’17i*(D) for 1  i  n , where 03C0i:An~A is the i th projection. Hence from
([Silverman, to appear], thm. 2.1b),
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Next, we clearly have an inclusion nn c 03C3*(03C3(Dn)), so ([Silverman, to appear],
thm. 2.1d,h) implies

Next,we choose a finite set of divisors E1,..., Er E Div(An2) such that n Ei =
a(Dn) ([Silverman, to appear], lemma 2.2). Then from ([Silverman, to appear],
thm. 2.1b)

In this last line, the functions hEl are height functions with respect to divisors.
In other words, they are Weil height functions, which are defined at all points
of An2. We emphasize that the validity of this last inequality depends on the
fact that 03C3P~Supp(~El) (i.e. P ~ Wn). In general, one has an inequality
hE  03BBE(·, v) + Ov(1) which is valid for all points not in the support of the
divisor E. (In essence, this inequality is nothing more than a fancy version of
the product formula.)
Now let 03C0ij: An2 ~ A be the various projections; and let à c- Div( A ) be the

ample divisor used to define h . Then £ 03C0*ij(0394) is ample on An2. Therefore
([Lang, 1983], ch. 4, prop. 5.4),

Finally, we note that

Combining the above inequalities, we have now proven that for every P =
( Pl, ... , Pn ) E An(K) with P ~ Wn, there is an inequality

If we now add the additional hypothesis that P1,...,Pn~03A33(D, E, r), and
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sum over all v e S, then we obtain the lower bound

Since S is finite, combining these last two inequalities gives the desired result,

§3. Abelian surfaces

We now add the assumption that dim(A) = 2, and proceed with the proof of
Theorem 2. Combining Theorem 7 with Lemma 6 (and the other reduction
lemmas), we see that it suffices to show that for sufficiently large n, any set of
n distinct points P1,..., Pn~03A32(D, e) satisfy (P1,..., Pn) ~ Wn. Further, from
Lemma 4, we may assume that D is an irreducible divisor. Since A is an
abelian surface, this means that D is an irreducible curve contained in A. As
in Lemma 7, for each effective divisor D E Div(A) we define

We start with the case that (D(D) is infinite.

Proposition 9

Let D E Div(A) be an effective divisor on an abelian surface. Suppose that
03A6(D) is infinite. Then 03A32(D, f) is finite.

Proof

From Lemma 7, we have

Now the fact that 03A6=03A6(D) is infinite means that it is the product of a finite
group with an elliptic curve. (Remember we are assuming that dim(A) = 2.)
Hence the quotient AIO is an elliptic curve. Further, (pD e Div(A/0) is an
effective diviser, hence ample. It follows from the refined version of Siegel’s
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theorem (cf. [Silverman, 1986], IX.3.1) that 03A32(~D, fI) is finite, and so the
above inclusion shows that ~(03A32(D, E» is also finite.

Next, suppose that we fix a point 03C0 E A/03A6, and look at the set of
P ~03A32(D, f) such that cp(P) = qr. Then using the definition of 03A32(D, e) and
the fact that ~*(~D) = D, we see that

Now for a given 03C0, the right-hand-side is fixed, so there are only finitely many
choices for P. This completes the proof that 2.2(D, E ) is finite. D

Combining Lemma 7 and Proposition 9, we are essentially reduced to the case
of divisors satisfying 03A6(D)={0} (i.e. D is not equal to any of its translates).
We now prove a purely geometric lemma which describes how the differencing
map affects these divisors. As in the proof of Theorem 8, we define the
differencing map on A by

We will also use the following notation: for any set 2, let

Lemma 10

Let D e Div(A) be an effective divisor on an abelian surface with the property
that 0 (D) = {0}. Then for all sufficiently large n, the map

is injective. ( In other words, distinct n-tuples of distinct points in the support of D
have distinct sets of differences.)

Proof

For any T E A, the divisor DT is algebraically equivalent to D, so the
intersection product D. DT is independent of T. Hence, if we choose n &#x3E; D2,
then we will have
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Now suppose that P, Q ~ Supp(D)n&#x3E; &#x3E; and o(P) = o(Q). Since a is a homo-
morphism whose kernel is the diagonal of An, it follows that there is a T ~A
such that Pl = Qi + T for every 1  i  n. Therefore

Pl E Supp(D) ~ Supp(DT) for all 1  i  n.

But by definition of Supp(D)n&#x3E;, the Pl’ s are distinct. It follows from our

choice of n above that D = DT, so T~03A6(D). But by hypothesis, 03A6(D) = {0},
from which we conclude that T = 0 and P = Q. This proves that a is injective
on Supp(D)n&#x3E;.

The next proposition provides the last fact needed to prove Theorem 2. In it
we use Faltings’ theorem (Mordell conjecture) to prove that for trivial 03A6(D)
and sufficiently large n, the exceptional set in Theorem 8 is empty.

Proposition 11

Let D ~ Div(A) be an irreducible effective divisor on an abelian surface, and
assume that 03A6(D)={0}. Then for all sufficiently large n, the set

( I. e. There are no points ( Pl, ... , Pn)~Wn with the property that the Pl’s are
distinct and defined over K. For the definition of Wn, see Theorem 8.)

Proof

Since D is irreducible, we may treat it as an irreducible curve lying on the
abelian surface A. Now abelian varieties do not contain rational curves, so

genus(D) ~ 0. Similarly, if genus(D) = 1, then D would be a translate of an
elliptic curve, and so 03A6(D) would be infinite. We conclude that genus(D)  2.
(Note that if D is singular, the genus of D means the genus of the normal-
ization of D.) From Faltings’ theorem [Faltings, 1983], we know that D(K) is
finite. Choose n to be any integer greater than #(K) such that the map in
Lemma 10 is injective.
Now suppose that P~A(K)n&#x3E; ~ Wn. From the definition of Wn, we have

Wn = 03C3-1(03C3(Dn)), so a(P) E 03C3(Dn). Further, since the Pi’s comprising Pare
distinct, we see that a(P) E 03C3(Dn&#x3E;). Now we use Lemma 10, which says that
a is injective on Dn&#x3E;. In other words, the map

is an injective morphism defined over K. It follows that any K-rational point
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in the image (such as a(P)) comes from a K-rational point in Dn&#x3E;. Let Q be
the inverse image of P. Then Q1,...,Qn~D(K), and the Q;’s are distinct.
This contradicts the choice of n. Therefore A(K)n&#x3E; ~ Wn = Ø. D

Proof of Theorems 1 and 2

From Lemma 3, we see that Theorem 2 implies Theorem 1. It thus suffices to
prove Theorem 2. Next, using Lemma 4, it suffices to prove that 03A32(D, e) is
widely spaced for every irreducible effective divisor D and every &#x3E; 0.

Next consider the set 03A6(D). If C(D) is infinite, then from Proposition 9,
the set 03A32(D, E ) is actually finite. On the other hand, if 03A6(D) is finite, then
the map ~: A~A/03A6(D) is finite. So using Proposition 7, we see that it
suffices to show that 03A32(~D, ~’) is widely spaced. In this way, we reduce to
the case that 03A6(D)={0}.
Now let n be an integer large enough so that the conditions of Proposition

11 hold, namely

It follows in particular that

Therefore Theorem 8 holds for every n-tuple of distinct points

Now Lemma 6 implies that 03A33(D, e, T ) is widely spaced, and then Lemma 5
allows the same conclusion to be made for 03A32(D, e). D
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