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Abstract. We define p- Kahler manifolds requiring the existence of closed (p, p)-forms transverse
to the complex structure and then characterize them by a condition on the space of positive
currents of the manifolds. The behaviour of the p-Kâhler condition with respect to holomorphic
submersions and immersions is also studied.
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Introduction

The classical examples of compact complex non-Kahler manifolds are the
parallelisable compact manifolds which are not tori, and the Calabi-Eckmann
spheres. In this paper (Chapter 3) we study this type of manifolds as non
trivial examples of p-Kähler manifolds. These are defined in Chapter 1 by
requiring the existence of a closed ( p, p )-form ’transverse’ to the complex
structure, and are precisely the Kahler manifolds for p = 1 and the balanced
(cosymplectic) manifolds for p = dimc M - 1.

They can be also characterized by a condition on the space of positive
currents of the manifold; this condition turns out to be simpler for p-sym-
plectic manifolds (see Def. 1.11).

The behaviour of the p-Kähler condition with respect to holomorphic
submersions and immersions is studied in Chapter 2, and this is perhaps the
simplest way for testing the ’Kahler degree’ of a compact complex manifold.

Preliminaries and notation

A manifold M is always supposed to be complex, compact and connected. Let
Cp,q(M) (CP(M)) denote the Fréchet space of complex valued ( p, q)-dif-
ferential forms ( p-differential forms), while C;,q(M) (C;(M)) denotes it’s

dual space of complex currents of bidimension ( p, q) (dimension p). The
complex structure of M induces an R-linear conjugation on CP(M) sending
dzj to dij. A p-form a is real if 03C9 = a, and a p-current T is real if T = T, in
the sense that T(~)= T(§5) for all ~~03B5p(M).
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03B5p(M)R and 03B5’p(M)R denote respectively the space of real p-forms and
real p-currents, and analogously for 03B5p,p(M)R and 03B5’p,p(M)R.
We recall also the following definitions:

Definition

A symplectic manifold (M, a) is a pair consisting of a 2 n-dimensional real

manifold M together with a closed real 2-form a which is non-degenerate (i.e. an
never vanishes).

Definition

A balanced ( cosymplectic) manifold M is a complex compact manifold admitting
an hermitian metric h with Kahler form w such that d ,n-1 . 0 (n = dimC M).

1.

In order to expose the main ideas of the paper, we need a few concepts
concerning a real differentiable manifold M introduced by [Sullivan, 1976].
For the comfort of the reader, we recall them here.

1.1. Definition

A compact convex cone C in a ( locally convex topological) vector space over R
is a convex cone such that, for some (continuous) linear functional L, L (x) &#x3E; 0

for x =1= 0 in C and L-1(1) rl C is compact. The latter set is called a base for the
cone. We will sometime identify a base with the set of rays in the cone, denoted
by ç.

1.2. Definition

A cone structure on a manifold M is a continuous field of compact convex cones
C, m in the vector spaces 039Bp(x) of real tangent p-vectors on M. Continuity
of cones is defined by the Hausdorff metric on the compact subsets of the rays in
039Bp. Namely the bases of the cones move continuously relatively to the metric
h (ç, ç’) = max(supc~ ç03C1(c, ç’), supc, . ç’p(c’, ç)) where p is a convenient metric

on rays defined in some local trivialisation of A p.
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1.3. Definition

A differential p-form w ( of class C ~) on M is transversal to the cone structure
C if 03C9x(v) &#x3E; 0 for each v =1= 0 in Cx c 039Bp(x), x E M.

1.4. Proposition

([Sullivan, 1976], Prop. 1.4). A cone structure C admits p-forms transversal to C.
n

1.5 Definition

A Dirac current is a current determined by the evaluation of p-forms on a single
p-vector at a point. The cone of structure currents associated to the cone

structure C is the closed convex cone of currents generated by the Dirac currents
associated to elements of Cx, x E M.

Now, let M be again a compact complex manifold of complex dimension n.
M has natural cone structures Cl, ... , Cn defined by the almost complex
structure J as follows: at a point x, Cp(x) is the compact convex cone in

039B2p(x) generated by the positive linear combinations of complex subspaces of
C-dimension p (i.e. finite sums of the type 03A303BBlVl, 03BBl  0); (see also [Sullivan,
1976], p. 251).

1.6. Definition

The complex currents on M obtained by extending C-linearly the structure

currents of the cone structure Cp are called positive currents of bidimension
( p, p). We denote the cone of these currents by Pp,p(M).

1. 7. Proposition

The cone of positive currents of bidimension ( p, p) on a compact complex
manifold M is a compact convex cone.

1.8. Proposition

For any positive current T of bidimension ( p, p) there is a non negative measure
~T~ on M and a ~ T ~-integrable function T into 039Bc2p satisfying Tx E C;(x),
such that T = fm T 11 T 11 (the upperscript c denotes the complexification of the
real vector space).
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The proofs of Propositions 1.7. and 1.8. are the same as those of Proposition
1.5. and Proposition 1.8. in [Sullivan, 1976], but for the complex case. To
prove Proposition 1.7. and to have uniqueness of the representation in

Proposition 1.8., we need an auxiliar hermitian metric on M.

1.9. Definition

The complex 2p-forms on M obtained by extending C-linearly the 2p-forms
transversal to the cone structure Cp are called complex transverse 2p-forms.

1.10. Remarks

a) In [Harvey, 1977], the elements in Cp(x) are called strongly positive
( p, p )-vectors (p. 312); our complex transverse ( p, p )-forms belong to
the interior of the cone of strongly positive ( p, p )-forms (p. 323) and our
definition of positive currents agrees with that of strongly positive
currents (p. 326).

b) Positive currents and complex transverse forms are real in the sense that
T = T or w = w. Moreover, any complex current (or form) which is real
(in this sense) is in fact the C-linear extension of a real current (or form).

We define now two classes of complex manifolds generalizing symplectic and
Kahler manifolds.

1. 11. Definition

A complex manifold M is called p-Kahler if it admits a closed complex
transverse ( p, p)-form, called the p-Kahler form. The integer p will be called
Kahler degree of M. M is called p-symplectic if it admits a closed complex
transverse 2p-form, called p-symplectic form.

(We could give the definitions more generally for an almost complex
manifold, but this is far from the aim of this paper).

Note that every M of dimension n is simultaneously n-Kähler and n-sym-
plectic. Moreover, for p  n - 1, if w is the Kahler form of an hermitian
metric on M and 03C9p turns M into a p-Kâhler manifold, then M was already
1-Kahler; in fact to prove that d03C9p = 0 implies d03C9 = 0 for p  n - 1 is merely
a linear algebra computation (not a short one!).

The following propositions give a first motivation to the definitions.
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1.12. Proposition

If M is 1-symplectic, then M is symplectic.

Proof

If 03C8# is a 1-symplectic form of M, consider the real 2-form 03C8 of which 03C8# is

the C-extension. 03C8 is always closed, and of maximal rank if kerxBfJ:= (Xe
TxM/03C8x(X, Y) = 0 V Y E T MI = 0 b’x E M. Suppose XE kerx03C8. Then

03C8x(X, JX) = 0 but (X, JX) ~ C1(x) so X = 0 ( J is the complex structure of
M). n

To have the converse of this result, standing the definition of a symplectic
manifold usually in the realm of real geometry, we need the following remark:
given a symplectic structure 03C8 on M, since GL ( n , C) c GL (2 n , R) and
Sp (2 n , R) c GL (2 n , R) have the same maximal compact U(n) c GL (2 n, R)
there is a well defined contractible set of almost complex structures J

determined by 41. They are in fact characterized by the transversality condition
Ip (XI JX) &#x3E; 0.

1.13. Definition

On a complex manifold ( M, J) a symplectic structure 03C8 is said to be compati-
ble with the complex structure if J belongs to the set of almost complex

. structures determined by %p.

We have immediately

1.14. Proposition

If M has a symplectic structure compatible with the complex structure, then M is
1-symplectic. 0

The definition of p-Kahler manifold is more natural in the context of complex
geometry and in fact we have:

1.15 Proposition

a) M is 1-Kiihler iff M is Kahler.
b) M is (n-1)-Kähler if and only if it is balanced.
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Proof

a) Suppose M Kähler with Kähler form w. It is known that w is a complex
(1, l)-form which is real and since the metric is positive 03C9x(X, JX) &#x3E; 0

~X~TxM. Being w closed by definition, M is 1-Kahler. Conversely,
suppose M 1-Kähler and w a closed complex transverse (1, l)-form. We
define, for all x E M and for all X, Y~TxM, h(X, Y)=03C9(JX, Y ) +
i03C9(X, Y); h becomes an hermitian metric on M with Kâhler form w. The
positivity of h descends from the transversality of w.

b) If M is balanced with Kähler form w, then 03C9n-1 is, analogously to the case
a), a closed complex transverse (n - 1, n - l)-form. Let now H be a closed
complex transverse ( n - 1, n - l)-form. We claim that 0 . 03C9n-1 where w
is a complex transverse (1, l)-form. This is simply a matter of multilinear
algebra which can be found in ([Michelson, 1983], p. 279). As in the case a)
we can find an hermitian metric on M with Kähler form w. By the
hypothesis, d(03C9n-1) = dO = 0. D

1.16. Remarks

a) If M is p-Kähler, then M is p-symplectic.
b) If M is 1-Kähler (1-symplectic), then M is p-Kähler ( p-symplectic) for

1  p  n. More generally if M is p-Kähler ( p-symplectic) then M is
rp-Kâhler ( rp-symplectic) for 1  rp  n.

Now we give the main result which follows readily from an application of the
Hahn-Banach theorem [Schäfer, 1971] and a finite dimensionality theorem
descending from a particular resolution of the sheaf P of pluriharmonic
functions.

1.17. Theorem

a) M is p-Kiihler if and only if there are no non trivial positive currents of
bidimension ( p, p) which are ( p, p )-components of boundaries.

b) M is p-symplectic if and only if there are no non trivial positive currents of
bidimension ( p, p) which are boundaries.

To prove the theorem we need a few more definitions and lemmas.

1.18. Definition

Let  denote the space of real currents dual to

and let
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defined by

where 03C0p,p denotes the natural projection

and d is the usual differential operator for currents.

1.19. Theorem

Proof

It follows from the resolution of the sheaf H of pluriharmonic functions
studied in [Alessandrini and Andreatta, 1985]. 1:1

1.20. Corollary

The operator

has closed range.

Proof

As noted above d p, p is the adjoint operator of
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From the closed range theorem [Schafer, 1971] it is sufficient to prove that d
has closed range. This follows from the open mapping theorem and Theorem
1.19. D

l. 21. Lemma

The operator d2p: 03B5’2p+1(M)R ~ é’2’p (M) . has closed range.

Proof

Analogous to but easier than that of Corollary 1.20. D

We will denote by Bp,p(M) the range of d p, p and by B2p(M) the range of
d2 p. 

1.22. Lemma

Let w be a p-Kiihler ( p-symplectic) form on a p-Kiihler ( p-symplectic) manifold
M. For every T E Pp,p, T * 0, we have T(03C9) &#x3E; 0. For every T E Bp,p(B2p), we
have T( c.v ) = 0. 

Proof

If T ~ Pp, p, it follows from Proposition 1.8. that T(03C9)=M03C9(T)~T~. By
definition, if T =1= 0, 03C9x(Tx) &#x3E; 0 in both cases and consequently T(03C9) &#x3E; 0.

If T~Bp,p(B2p) then T=dp,pS (T=d2pS). From the definition of dual
operators we have the equalities: 0 = (d03C9, S) = (03C9, dp,p,S) = ( w, T) = T( w )
(0=(d03C9,S)=(03C9,dwpS)=(03C9,T)=T(03C9)). E 

Proof of theorem 1.17

The ’only if’ part follows from Lemma 1.22. in both cases. On the contrary,
from Proposition 1.7. we have that Pp,p(M) is a compact convex cone in

03B5’p,p(M)R (03B5’2p(M)R). Now as for part a), Corollary 1.20. says that Bp,p(M)
is a closed subspace of 03B5’p,p(M)R, and as for part b) by Lemma 1.21. B2p(M)
is closed in 03B5’2p(M)R. So the Hahn-Banach separation theorem applies to tell
us that there exists a form 03C9~[03B5p,p(M)]R([03B52p(M)]R) which is zero on

Bp,p(M)(B2p(M)) and strictly positive on Pp,p(M).
Now, T(03C9) = 0 for all T~Bp,p(M)(B2p(M)) implies d w = 0. Choose Tx~

Ccp(x), x ~ M. Then T = Tx8x E Pp, p (03B8x is the Dirac measure in x) and so
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T(03C9)&#x3E;0, but 03C9x(Tx)=M03C9(Tx)03B8x=T(03C9)&#x3E;0. This can be done for every
x E M and every Tx E Ccp(x) completing the proof. 0

1.23. Remarks

In the case p = 1 Theorem 1.17. a) provides the same characterization of
Kahler manifolds already given in [Harvey and Lawson, 1983] and Theorem
1.17. b) is in [Sullivan, 1976]. On the other side, in the case p = n - 1, Theorem
1.17. a) gives the characterization of balanced manifolds in [Michelson, 1983].

2.

In this chapter we examine firstly the behaviour of p-Kähler manifolds with
respect to holomorphic submersions. This will provide useful criterions expe-
cially in the study of examples of p-Kähler manifolds for the various degrees
p.

Then we extabilish other results regarding submanifolds of p-Kâhler mani-
folds and the fundamental class of analytic varieties in p-Kähler manifolds.
We don’t consider here the p-symplectic case, for which anyway analogous
results hold.

2.1. Theorem

Suppose f : M - N is a holomorphic submersion with p-dimensional fibres onto
a p-Kiihler manifold (p  nl2, n = dim M). Then there exists a p-Kiihler form
on M if and only if the fibre of f is not the ( p, p )-component of a boundary.

2.2. Remarks

a) Any two fibres of f are homologous. Hence, if a fibre is a ( p, p )-compo-
nent of a boundary, then so are the others.

b) The condition on the fibres of the submersion is necessary as we shall show
with some examples in Chapter 3.

For the proof of Theorem 2.1., we need a lemma.

2.3. Lemma

Choose an auxiliar hermitian metric on M. Suppose f : M - N as in Theorem
2.1. and that T is a positive current of bidimension ( p, p) on M. Then the
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push-forward f*T of T to N is zero if and only if T = f MF Il T Il where F is the
field of unit 2 p-vectors tangent to the fibre (and ~ T ~ is a non negative measure
on M).

If in addition aaT = 0 then T = f *(03BC) for some non negative measure tt on N.

Proof

Suppose T = M~ T 11. For any 2p-form w on N we have f*03C9(F) = 0. Hence
f* T(,w) = T( f *03C9) = 0, thus f*T = 0.

On the contrary suppose f*T = 0 and represent T as in Proposition 1.8.
T = MT ~ T ~ with Tx~ Ccp(x) and of unit norm for every x ~ M. Let w be
any transverse 2p-form on N. We have

Now dfx(T)~ Ccp(f(x)) because f is holomorphic and so from the transver-
sality of w, (f*03C9)x(Tx)=03C9f(x)(dfx(T))&#x3E;0 unless dfx(T) = 0. We conclude
that (df(T))f(x) = 0 ~T~-a.e., and consequently that T=F as claimed.
Now suppose in addition ~~T = 0. One can think a positive ( p, p )-current

as a (n - p, n - p)-form with measure coefficients, and so our T can be
written as

where A is a volume form on N. But ~~T = 0 implies (~~ ~ T Il) 039Bf*(039B) = 0,
so that Il T Il is harmonic in the fibre directions, and then constant on the
fibres. Therefore Il T Il is the pull-back of a measure Il’ on N, and then

Proof of theorem 2.1

The ’only if’ part follows trivially from Theorem 1.17. As for the ’if’ part,
suppose that M is not P-Kâhler. Then by Theorem 1.17. there exists a positive
current T of bidimension ( p, p) on M which is the ( p, p )-component of a
boundary, i.e. T = d p, p S for some (2 p + l)-current S. Since f is holomorphic,
f*T is a positive current of bidimension ( p, p) on N and f*T = dp,p(f*S).
Thus, since N is p-Kähler, we conclude that f*T = 0. From T=dp,pS we
have that ~~T=0, so Lemma 2.3. implies that T=f*(03BC) for some non

negative measure p on N.
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Put now c = fit and recall that any two measures with the same total mass
are homologous on N. So, for any y E N, if 5 is the Dirac measure at y, we
have c8y - jn = d R for some current R on N. Pulling back by f we have that

(We denote by [f-1(y)] the current given by integration along the fibre

f-1(y)). Therefore the fibre [f-1(y)] is the ( p, p )-component of a boundary.
n

We have the following corollary to Lemma 2.3.:

2.4. Proposition

Suppose that f : M - N is a holomorphic submersion with p-dimensional fibres of
a non p-Kiihler manifold M onto a p-Kähler manifold N (p  nl2, n = dim M).
Then the cone of all positive currents which are ( p, p )-components of boundaries
is equal to {T/T=f*(03BC) for some non negative measure IL on N}.

We give now the dual theorem ( p &#x3E; n/2) for which we still need the closure
property stated in Corollary 1.20.

2.5. Theorem

Let f: Mn~Nn-p be a holomorphic submersion, where the fibre is p-dimen-
sional and (2 p - n)-Kâhler ( p &#x3E; nl2). Then M is p-Kâhler if and only if the
fibre of f is not the ( p, p )-component of a boundary.

Proof

The ’only if’ part is obvious from Theorem 1.17.; on the contrary, suppose
M not p-Kähler, and let T be a positive current on M such that T = dp,p S
for some real (2 p + l)-current S. 

The proof follows that of Theorem 5.5. of [Michelson, 1983], and we refer
to this paper for a technical lemma which we shall use.

Let us construct a tubular neighbourhood of the fibre well behaved with
regard to the complex structure, that is fix a’ point y E Y and let z =

( zl, ... , zn-p), 1 z  1 a chart on N centered at y. Let 0394={|z|03B50} be a
sufficiently small disk such that D:=f-1(0394) is a tubular neighborhood of
F:=f-1(y) and g: D ~ A X F is a Woo product structure with the property
that the complex structure makes ’infinite order contact with the A-factors
along (0) X F’. This means: let J be the almost complex structure on D and
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carry J over à X F via the diffeomorphism g. Let Jo be the natural product
almost complex structure on à X F. Then we want the tensor J - Jo to be zero
to infinite order at all points of {0} X F. This can be done by exponentiating
the normal bundle of F with any hermitian (vJ = 0) connection on D.
Now consider the family of ( n - p, n - p )-f orms on N given by

where cp E L~0(-1, 1) is a bump function and fMCP( = 1, and define the
currents T’~=f*~~ A T, S::= f*cp( 1B S which are positive currents with com-
pact support in D. They are related by

because of the maximal dimension of ~~.
Set m~:=max{1, ~T~~}, and define T~:=T’~/m~, S~:=S’~/m~. We still

have that TE is the (2 p - n, 2 p - n )-component of a boundary, namely S,. By
general compactness theorems, (the TE’s have bounded supports and bounded
masses), given a sequence ~m~0, there is a subsequence {~mj} such that
T : T(~mj) ~ Too (weakly) where Too is a positive (2 p - n, 2 p - n )-current
with support on F.

Claim Too = 0, so that lim, 0T~ = 0.
Furthermore, by positivity, limj ~Tj~ = ~T~~, and so we get that f *cp( A T

~ 0 in the mass norm on M. Now, let w be a volume form on N: then
f *a A T = 0 on M, so that Tx = Fx (the field of unit 2p-vectors tangent to the
fibre) for Il T ~ - a.a. x in M. This fact, together with the assumption T = dp,pS,
allows us to write T=f*(03BC) for some non negative measure IL on N, as in the
proof of Lemma 2.3., and to conclude the proof as in Theorem 2.1.

Proof of the claim

Consider p : D ~ F, given by p := proj.og, and the push-forward currents p*T,
and p*St:’ fore small. Since suppT~ c F and Too is tangent to F at Il Too II-a.a.
points, p*Too = T~ Then

(03C1*T~)2p-n,2p-n = (03C1*d2p-n,2p-nS~ = (p*(dSt: - EBr*s
dr,sS~))2p-n,2p-n = (d(P*S~))2p-n,2p-n + Et: where EE is a sum of terms of the
type (03C1*(dr,sS~))2p-n,2p-n which limj~~ E~j = 0 (it is a consequence of the
’infinite order contact structure’ which we choosed above: see ([Michelson,
1983], Lemma 5.8).

Then Too = p*Too = limjP*1J = limjd2p-n,2p-n(03C1*S~j) but the subspace of
(2 p - n, 2 p - n )-components of boundaries in F is closed (Corollary 1.20) so
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that T~ = d2p-n,2p-n(S~) for some real (4 p - 2 n + l)-current Soo on F. Since
the fibre is (2 p - n )-Kàhler, we conclude that Too = 0. 0

Notice that a submanifold of a Kahler manifold is Kähler and analogously
for the dual statement: if M is balanced and there exists a holomorphic
submersion f : M - N, then N is balanced. For p-Kâhler manifolds these
statements generalize as follows:

2.6. Proposition

Let f : Mn ~ N n -p be a holomorphic submersion with p-dimensional fibres. If M
is q-Kâhler with n  q &#x3E; p, then N is ( q - p )-Kiihler.

Proof

Suppose q  n otherwise there is nothing to prove. Let wM be a q-Kähler form
on M; since M and N are compact, we can define wN := f*wM where f*wM is
the push-forward of tom regarded as a ( n - q, n - q )-current. In local coordi-
nates, if 03C9M=03A3|J|=q~J dzJ 03BB then f*03C9M=03A3|k|=q
where 

d wN = 0 because com is closed. Now fix a point y E N and let F=f-1(y); let
(ei, Je1,...,en-p, Jen-p} be a basis for TyN and extend it to a basis

{e1, Jel’...’ en, Jen} for TxM, x E F. If

so that w N is positive. Then N is ( q - p)-Kahler. 0

2. 7. Proposition

If M is a p-Kiihler manifold of dimension m and N is a submanifold of dimension
n  p, then N is p-Kâhler.
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Proof

Let i : N - M be the inclusion map, and wM be a p-Kâhler form on M.
03C9N:= i*03C9M is a closed ( p, p )-form on N, and if v e Ap (N) is not zero,

C.0N(V) = (i*03C9M)(v) = 03C9M(di(v)) &#x3E; 0 because d i is injective. D

2.8. Proposition (corollary to Theorem 1.17)

In a p-Kiihler manifold M, the fundamental class of any analytic subvariety
V c M of dimension p is non zero. 

3.

Let us now consider complex compact (holomorphically) parallelisable mani-
folds. By ([Wang, 1954], Theorem 1), they are homogeneous manifolds G/r,
where G is a complex Lie group and r a discrete uniform subgroup of G.

In [Wang, 1954] it is also shown that the only 1-Kahler manifolds among
them are the complex tori.

Let us now prove the following.

3.1. Proposition

On a complex compact parallelisable manifold M = G/0393 there is a G-invariant
hermitian metric such that the corresponding hermitian connection has zero

curvature.

Proof
(see also [Goldberg, 1962], Chapter 6)

Let 1,..., en 1 be holomorphic vector fields everywhere linearly independent
on M which give a basis for g, the Lie algebra of G, and let (pn 1 be
the dual basis of g *. Define a connection by requiring v., j = e, = ’7ei el
vâ, j = 0 for i, j = l, ... , n. To show that this is the hermitian connection
of the metric h = LCPlqJl and that the curvature R is zero is a routne computa-
tion. 

Consider now the following result due to Gauduchon:

3.2. Proposition

Let (M, h) be an hermitian manifold of dimension n. If the curvature of the
associated hermitian connection is zero, then M is ( n - 1)-Kähler.
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Proof ([Gauduchon, 1977], p. 140). D

Combining the last two propositions, we conclude that every complex compact
parallelisable manifold of dimension n is (n - 1)-Kähler; it is Kahler if and

only if it is a complex torus. On the contrary, note that the Calabi-Eckmann
spheres are examples of non balanced manifolds.

We will now say more about a subclass of the class of complex parallelisable
manifolds, i.e. the nilmanifolds.

3.3. Definition

M is said to be a nilmanifold (solvmanifold) if M is a homogeneous space G/r,
where G is a complex, connected, simply connected, nilpotent (solvable) Lie
group which is biholomorphically equivalent to the universal covering of M, and
F is the fundamental group of M, a discrete uniform subgroup of G.

In particular, M is holomorphically parallelisable and has Cn as universal
covering; we denote by * the product on en which makes (C n, *) isomorphic
to G as a Lie group. More about nilmanifolds can be found in [Alessandrini
and Andreatta, 1986]; we recall here only a characterization which we shall use
later.

3.4. Definition

A principal torus tower of height one is a complex torus. A principal torus
tower of height m, m &#x3E; 1, is a holomorphic principal bundle with a complex
torus as fibre and a principal torus tower of height m - 1 as basis. We shall call
base torus the last torus which results from the backwards inductive decomposi-
tions of a principal torus tower.

3.5. Theorem [Barth and Otte, 1969J

Let M be a compact homogeneous manifold. Then M is a principal torus tower if
and only if M is a nilmanifold. 

In order to compute the Kahler-degree of a nilmanifold, we need to know the
De Rham cohomology groups HbR(M) which can be calculated using the
Leray spectral sequence, as in [Alessandrini and Andreatta, to appear]. We
begin with the following:
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3.6. Proposition

Let M be a homogeneous principal torus tower with fibre T of dimension j; then
M is not p-Kâhler for 1  p  j.

Proof

We shall exhibit a p-dimensional submanifold of M which is homologous to
zero, getting then the thesis from Theorem 1.17. Let M be cnlf, (C *) ~ G,
{1,..., n} be a basis for g, the Lie algebra of G, such that 1 ’Û, h] =
03A3k&#x3E; max(l, h)ckih e c h ~ C (the existence of such a basis is guaranted by a well
known theorem of Lie), and let { ~1, (p,, 1 be the dual basis of g *. As shown
in [Alessandrini and Andreatta, 1986], we can find coordinates on C n such
that T = {z1 = const.,..., zn-J = const.} and such that the 1-forms CPI and -
are of the form

For 1  p  j, let Tp:=Tj ~{zn-j+1 = const.,..., zn-p = const.}. Tp represents
a class in H2 p(M, Z), and by De Rham’s theorem, Tp is a boundary iff for
every 03B1~H2pDR(M), fT a = 0, or considering the Leray spectral sequence on
M, iff fTpqp = 0 for every (p E Ea,b3 with a + b = 2p. But (see [Alessandrini and
Andreatta, to appear] from which we also take the notation) E3o,2p = 0, so
every non trivial element of E3a,b contains a least one epk or ~k for k = 1,...,
n - j. Restricting the forms of Ea,b3 on T, epk 1 T = ~k Tp = 0 for k = 1,..., n
-j. So we get fT pgg=O for every ~~Ea,b3, a + b = 2 p. D

Now we give examples of manifolds which are p-Kähler. For n = dim M = 3,
the typical example is the Iwasawa manifold, which, as said before in general,
is not 1-Kahler but is 2-Kähler (balanced) and 3-Kähler.

For n  4, the simplest but very interesting example is a ’generalised
Iwasawa manifold’, In which we shall describe now. Let qr: (Cn, *) ~
(Cn-p, +) the projection (z1,...,zn)~(z1,...,Zn-p) for 1  p  n/2 and
n  4, where (y1,...,yn)*(z1,...,zn)=(y1+z1,...,yn-1+zn-1,yn+zn+
yn-2zn-1) (see [Alessandrini and Andreatta, 1986]) and + is the usual abelian
sum. The map 7r is a Lie group homomorphism.
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Let 0393  Cn be a discrete uniform subgroup (for instance (Z[i])n), and let
0393’:=03C0(0393)~Cn-p; r’ is still a discrete uniform subgroup of Cn-p and we
have 03C0’; In:=Cn/0393 ~ Cn-p/0393’ = Tn-p which is a holomorphic submersion.

(Cn, *) is a Lie group of dimension n whose Lie algebra g has a Lie basis
{~1,..., *n 1 such that d~1 = 0,..., d~n-1 = 0, dqgn = - (Pn-2 n ~n-1 where {~l}
is the dual basis. Moreover, in coordinates we have

Let w be the following d-closed ( p, p)-form on I,,:

For q E Tn-p’ we get

The fibre 03C0-1(q) is not a ( p, p ) component of a boundary; for if 03C0-1(q) =

dp,p(S), we get a contradiction by

Then, since Tn-p is Kahler and hence p-Kähler, we conclude from Theorem
2.1. that In is p-Kâhler. We cannot extend this procedure to the case p = 1
because w is not closed.

So we have proved that the generalized Iwasawa manifold In is 2-Kähler, 3-
Kähler,...,[n/2]-Kähler, and we have noticed that it is not 1-Kahler but is

( n - 1)-Kähler. I4 is then completely solved from this point of view. If n  5,
what can we say about the degrees between [nI2] + 1 and n - 2?

Let j be an integer between 3 and [(n - 1)/2], and consider

The map a is a Lie group homomorphism. As above, we obtain a holomor-
phic submersion Q’ : In ~ Ij. The fibre is a torus of dimension n - j, which is
Kahler and so 2(n-j) - n(=n - 2j)-Kähler. Then we get from Theorem 2.5.
that In is (n - j)-Kahler if we prove that Tn-j is not the ( n - j, n-j)-
component of a boundary. Let us consider

w is a closed form, and for q ~ Ij, 03C3-1(q)03C9 = volume of 03C3-1(q) &#x3E; 0, so we
conclude as above that In is (n - j)-Ktihler for 3  j  [( n - 1)/2].
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The case ( n - 2) requires a particular examination, because the above proof
does not work. To prove that In is (n - 2)-Kahler, let us suppose first n  6
and consider

Then T induces a holomorphic submersion T’ : In - T2 with fibre In-2. But the
fibre is a submanifold of In, which is (n - 4)-Kähler by the above proof, so
that In-2 is (n - 4)-Kahler (Proposition 2.7). Now from Theorem 2.5. (the
fibre is 2( n - 2) - n ( = n - 4)-Kähler) In is ( n - 2)-Kähler if In _ 2 is not the

(n - 2, n - 2)-component of a boundary. But consider the closed form w =

cp3 A ... 039B~n A if3 039B...039B~n: the integration of w on the fibre gives us the
volume of the fibre, so we can conclude as above. For n = 5, we cannot use
this proof, because I3 is not 1-Kahler. But 15 is the fibre of T’ : I7 ~ T2 as
above, and h is 3-Kähler so that I. is 3-Kähler too. We have then proved

3.7. Proposition

The generalized Iwasawa manifold In is j-Kahler for j = 2,..., n but is not

1-Kähler. D

3. 8.

We make here a brief digression about the generalized Iwasawa manifold. The
computation of the Betti numbers of In done as indicated in [Alessandrini and
Andreatta, to appear] shows that b2 p ( In ) &#x3E; 0 for p = 0,..., n and b2p+1(In) =
2 k for p = 0,..., n - 1. This is not peculiar to In : if M is a nilmanifold, the
odd order Betti numbers are even because if 03C8 is a d-closed form which

represent a cohomology class, 03C8 too represents a class which is clearly
different from [03C8] if the degree of 4, is odd. Moreover, if a manifold is

p-Kâhler, then b2rp(M) &#x3E; 0 for p  rp  n (using the p-Kâhler form). So the
Betti numbers are of no use to decide that these manifold don’t support a
Kahler metric.

The techniques employed for the generalized Iwasawa manifold can be used
for many other classes of examples; for instance for n  5 consider tn = G/r
where the 1-forms {~j} dual to the Lie basis for g satisfy d~1 = 0,...,d~n-2
= 0, dTn - 1 = - ~1 A CP2’ dqgn = - CPI A CP3. tn is a principal torus tower of
height two and fibre T2 [Alessandrini and Andreatta, to appear]. From
Proposition 3.6., tn is not 2-Kahler, and obviously is not 1-Kahler either, but it
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is (n - l)-Kâhler. We prove that tn is p-Kahler, for 3  p  nl2. Indeed
consider the map

( zl, ... , zn) ~ (Zp-ll ... Zn - 2 ) where * is the product which makes G isomor-
phic to (C", *) as a Lie group: explicitely, (y1,..,yn)*(z1,....zn)=(y1+
z1,...,yn-2+zn-2, yn-1+zn-1+y1z2, yn+zn+y1z3). 03C0 is a Lie groups ho-
momorphism, so it induces a holomorphic submersion 03C0’: tn:=Cn/0393~
Cn-p/0393’ = Tn-p where r is a discrete uniform subgroup of G. Since p  n/2,
Tn-p is a p- Kahler manifold; we can exhibite a ( p, p )-closed form whose
integral over a fibre gives the volume of the fibre: this form is

The conclusion follows from Theorem 2.1.
Now we prove that tn is p- Kahler for n/2  p  n - 2. First consider p,

n/2  p  n - 5, and let

where * is as above and

(1 induces 03C3’:tn ~ tn-p, whose fibre is a Tp. The closed ( p, p)-form ú) is now
w - ~n-p-1 A ... 039B~n-2 1B ~n-p-1 039B ... 039B~n-2 and we conclude from Theo-
rem 2.5.

For n - 4  p  n - 3, p &#x3E; n/2, we must consider

which is a holomorphic submersion with fibre tp. tn is (2p-n)-Kähler,
because n - 4  p  n - 3, and so tp, which is a submanifold of tn, is (2 p - n )-
Kahler. Now use again Theorem 2.5. considering

we can now repete the argument. So we get
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3.9. Proposition

tn is p-Kahler for p = 3,..., n and is not 1-Kahler and 2-Kahler. 
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