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Several diophantine problems can be reduced to the equation

where f is a given polynomial with rational (or algebraic) integer coefficients.
For the study of this equation the distribution of the multiplicities of the zeros
of the polynomial f is important. From some inequalities of Mason and
Brownawell-Masser concerning J-unit equations over function fields we de-
rive some new bounds for the numbers of distinct and simple zeros of

polynomials, respectively, in §2. In §3 we combine these results with known
results on equation (1), proved by the Gelfond-Baker method. Doing so we
obtain some new results on equations of type (1) where m, x and y are
variables, and on some related equations.

§2. Lower bounds f or the number of distinct zeros

Let k be an algebraically closed field of characteristic zero and k(z) the
rational function field over k. Further, let K be a finite extension of k(z) of
genus g and the height of a non-zero element a of K defined by

where v runs through the (additive) valuations of K/k with value group Z.
The following lemma is the powerful inequality of [Mason, 1984].

LEMMA 1 Let -1-1 denote a finite set of valuations on K, and suppose that yl, Y2
and 03B33 are non-zero elements of K such that v(03B31) = V(Y2) = v(03B33) = 0 for all

This paper has been written during a stay at the University of Leiden which was made possible by
a scholarship of the Hungarian Academy of Sciences.
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v ~ J and yl + y2 + 03B33 = 0. Then either YI/Y2 is element of k and so HK(03B31/03B32)
= 0, or

where 1 Y 1 denotes the number of elements of Y.

The following result is a special case of Lemma 1.

COROLLARY A (R.C. Mason) Let Pl, P2 and P3 be coprime polynomials in k [ z ]
with Pl + P2 + P3 = 0, and such that their product P1P2P3 has N distinct zeros in
k. Then either Pl, P2 and P3 are all constants, or

For elements UI’...’ un of K, not all zero, we define the (projective) height as

(cf. [Brownawell and Masser, to appear]).
It is clear that

We adopt the terminology of Brownawell and Masser, and say that elements
ul, ... , un of K satisfying

give rise to a non-degenerate solution if there is no non-empty proper subset
of {u1,...,un} whose elements are linearly dependent over k. Let J be a
finite set of additive valuations of K/k. We recall that an element a of K is
said to be J-unit if v(03B1) = 0 for all valuations v of K/k not contained in J.

LEMMA 2 [Brownawell and Masser, to appear]. Suppose ul, ... , un (n &#x3E; 2) give
rise to a non-degenerate solution of (2) and that ul, ... , un are J-units for some
finite set !/o Then

LEMMA 3 [Brownawell and Masser, to appear]. Suppose u1,..., un (n &#x3E; 2) give
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rise to a non-degenerate solution of (2) and that for 1  j  n the element ui is an

Jj-unit for some finite set 9). Then

By using Lemma 2 we shall prove the following result.

THEOREM 1 Let

be a polynomial in Xl, ... , Xn with non-zero complex coefficients and suppose
that

where f l, ... , fn E C[X] are pairwise relatively prime non-constant polynomials.

Then the polynomial P(X) = F(f1(X), ... f (X)) has at least ( m(F) N(N-1)-1

L deg fj distinct zeros.
j=l

Proof. At first we show that the elements aifk1l 1 ... f,,k,,, (1  i  n) are linearly
independent over C. Supposing the contrary we have

for some 03BBl ~ C (1  i  N) with at least one À different from zero. More-
over, we may assume that the cardinality of J={1 | 03BBl ~ 0} is minimal. Since
m(F)&#x3E;0, there are pqr such that 03BBp03BBq03BBr ~0. From Lemma 2 we
obtain

where the valuation set J consists of the infinite valuations of C( z )/C and all
the finite valuation v such that v(fi) ~ 0 for some i~ (1,.., n} whence
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From the definition of the height function we obtain

Comparing these inequalities with (3), we infer

which contradicts m ( F ) &#x3E; N(N - 1).
Now, we can apply Lemma 2 to the equation

and we have

where s denotes the number of distinct zeros of the polynomial P(X). Finally,
(4) implies the theorem.

In the special case when F( Xl, ... , Xn ) = a1Xk1 + ··· + aNXkNN we shall
prove the following stronger result.

THEOREM 2 Let f1(X),..., fN(X) be non-constant pairwise relatively prime
polynomials with complex coefficients and ai, ... , aN non-zero complex numbers.
Suppose that

Then the polynomial Q(X) = a1fk11(X) + ... + aNfkNN(X) has at least 03BC N-1
distinct zeros.

Proof. Following the argument of the proof of Theorem 1 we can see that there
is no proper subset f of {1,..., NI such that 03A303BBiaifk1i is identically zero

iE/
and J-1 A =1= 0. Let t denote the number of distinct zeros of the polynomial Q.
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Then from Lemma 3 we have

Taking the sum of these inequalities we obtain

which implies our theorem. 
Now we shall give a lower bound for the number of simple zeros of the

polynomial P(X)=aFn(X)+bGm(X) where a, b are non-zero complex
numbers; n, m are positive integers and F, G~C[X] are non-constant

relatively prime polynomials.

THEOREM 3 Suppose that

polynomial P(X) has at least

Since n deg F is a trivial upper bound for the number of simple zeros of P,
our theorem shows that ’almost’ all zeros of P are simple and deg P  2 +

Proof. We assume that P(X) has the representation

with By applying Corollary A

From (5) and (6) we deduce

and

Let 1 denote the number of simple zeros of P(X). Then
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hence

This implies that

which proves the theorem.

COROLLARY 1 Suppose that 4  ( m - 2)(n - 2). Then the polynomial P(X) has
at least two simple zeros. If 4 &#x3E; ( m - 2)(n - 2) then P(X) may have less than
two simple zeros.

Proof. In the case when min{m, n 1 &#x3E; 3 our corollary immediately follows
from Theorem 3. So, we may assume that n = 3 and m  6. By Corollary A we
have

It is easy to see that deg F  2 3 ( k - 1) and deg G 1 3 (k - 1). From (7) we
obtain

which proves the first part of the corollary.
The following examples show the necessity of the condition 4  ( m - 2)

(n - 2).
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Case Take

Case Take

Case We may assume m = 2. Take

(cf. F. Klein, Vorlesungen über das Ikosaeder und die Auflôsung der

Gleichungen vom fünften Grade, Leipzig 1884.)

§3. Power values of polynomials

Let f be a polynomial with rational integer coefficients and consider the
equation

where b ~ 0, m &#x3E; 0, x and z with 1 z | &#x3E; 1 are rational integers. [Tijdeman,
1976] proved m is bounded by a computable constant depending only on f
and b. He assumed that f has at least two simple rational zeros. Schinzel and
Tijdeman, 1976] showed that the supposition of two distinct roots is sufficient.
Later, [Sprindzuk, 1982] and [Turk, to appear] gave explicit upper bounds for
the exponent m. These results were extended by [Shorey and Tijdeman, in
press, Th. 10.3.) to the more general case, when the ground ring is a ring of
integers in an arbitrary algebraic number field and, moreover,

where ’1TI’..., ’1Ts (s  0) are given non-zero algebraic integers. Gyôry, Tijdeman
and the author [Brindza et al., 1985] proved the following result which made it
possible to give effective bounds for the solutions of some diophantine
equations connected with the Fermat equation

THEOREM A Let f(X) E Z[X] be a polynomial with at least two distinct zeros.
Let {P1,..., Ps} be a finite set of primes. Put
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( if s = 0 put Y= (11 and P = 1.) If a, b, m, w, x and y are rational integers
with ab =1= 0, w e Y and |y| &#x3E; 1 such that

then

where A = max{ 1 al, 1 b|, 4) and CI, C2 are computable constants depending
only on the degree and height of f.

Here, we extend Theorem A to the case of any algebraic number field. Let
L be an algebraic number field with ring of integers Z L and let f ( X) E Z L [X].
Further, let a, b, u1,..., Us (s  0) be given non-zero algebraic integers in L
and consider the equation

where x, z E ZL and al’...’ 03B1s, m are non-negative integers.

THEOREM 4 Suppose f(X) has at least two distinct roots and 0 =A z is not a unit
in L. Then (10) implies that

where U = max|NL/Q(ui)|, M=max{|NL/Q(a)|, INL/Q(b)|, 4} and C3,
C4 are effectively computable constants depending only on f and L. Further, if z
is a unit but not a root of unity and s = 0 then

where Ml = max{H(a), H(b), 2) and C5 is a computable constant depending
only on L and f . *

The following result is a simple consequence of Theorem 4.

THEOREM 5

* We denote by H( a) the height of a. By the height of an algebraic number a we mean the height
of the minimal defining polynomial of a with rational integer coefficients.
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in x, y E Z L and rational integer t with t &#x3E; 1 such that 0 ~ cd(B2(t)- 4cA(t))
and 0 =A x is not a unit in ZL satisfy

where C6 is an effectively computable constant depending only on L, A, B, c and
d.

In the special case when L = Q and A(X), B(X) are constant polynomials
this yields a result of [Shorey and Stewart, 1983].

On the equation

Let p be a fixed odd prime. [Inkeri, 1946] proved that there exist at most a
finite number of relatively prime positive integers x, y, z which satisfy the
conditions

and for which at least one of the differences 1 x - yi, z - x, z - y is less than
a given positive number -4Y. Later, [Everett, 1973] gave a new proof for this
result by using Roth’s famous theorem on approximation of algebraic num-
bers. [Stewart, 1977] and [Inkeri and van der Poorten, 1976] independently,
proved that, for any positive number .aet, all positive integer solutions x, y, z
and n &#x3E; 2 of the equation

satisfy max( n, x, y, z}  C7 where C7 is an effectively computable constant
depending only on -4Y. [Inkeri, 1976] studied the more general equation

where h and g are given non-constant polynomials with rational integer
coefficients. He gave an upper bound for the solutions which depends only on
p, h and g under some conditions. In [Brindza, 1984a] the author proved that
these conditions are unnecessary. For some similar and more general results
we refer to [Brindza et al., 1985].

Let K be an algebraic number field and D1,...,Ds (s  0) be distinct prime
ideals in K. Further, let Y denote the set of all valuations of K corresponding
to D1,..., Ds sand OK,Y the ring of J-integers of K. We recall that an element a
of K is said to be J-integral if v(03B1)  0 for all v ~ J. Using Corollary 1 we
shall prove the following result.
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THEOREM 6 Let F, G ~ K[X] ] non-constant polynomials which are relatively
prime and m, n given positive integers such that ( m - 2)(n - 2)  4. Then all
solutions of the equation

with z &#x3E; 2 and 0 ~ y is not a root of unity satisfy

max{

where Cg is an effectively computable number depending only on m, n, F, G, K, s
and maxNK/Q(Dl).

1

In the special case when K = Q, s = 0, m = n and z ( = n) is fixed we have
the above mentioned result of the author.

On the equation

Let K be an algebraic number field with ring of integers Z K and let

f1(X),...,fN(X)~ZK[X], (N &#x3E; 1) be non-constant polynomials which are
pairwise relatively prime. Further, let UI’...’ Us (s  0) be given non-zero
algebraic integers in K. Write U = max |NK/Q(ul)| 1 again. Combining Theo-
rems 2 and 4 we immediately have the following result.

THEOREM 7 Suppose min kl &#x3E; N( N - 1). Then all solutions of the equation

in x, y E ZK and non-negative integers 03B11,..., as, z with 0 =A y is not a unit (in
ZK) satisfy

where C9 and Cl. are computable numbers depending only on the polynomial
fk11(X) +... +fkNN(X) and K.

Auxiliary results

Let K be an algebraic number field of degree d and let R K, h K and rK denote
the regulator, class number and unit rank of K, respectively. By 1 a 1 we shall
denote the maximum of the absolute values of the conjugates of an algebraic
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number a and we denote by N(a) the norm of a. It is known that if a E ZK
with 0 :A a then

LEMMA 4 Suppose rK  1. There exist multiplicatively independent units

~1,..., ~rk in K such that

for every Q-isomorphism cp of K where Cil is a computable constant depending
only on d; further, there are Q-isomorphisms CPI’...’ CPrK such that

where C12 is an absolute constant.

Proof. See [Stark, 1973] and [Zimmert, 1981].

LEMMA 5 Let a be a non-zero element of K. There exists a unit E in the

multiplicative group generated by ’TJI’...’ ’TJrK such that

for every Q-isomorphism cp of K where C13 is a computable number depending
only on d.

Proof. See e.g. [Gyôry, 1980].

The following lemma is a consequence of Baker’s estimate concerning linear
forms.

LEMMA 6 Let al’...’ aN (N  2) be non-zero elements of K and let A1,..., AN
(each  3) be upper bounds for the heights of al’...’ aN, respectively. Put

There exist computable positive absolute constants C14 and C15 such that for
every B  2 the inequalities

have no solution in rational integers bl, ... , bN with absolute values at most B.
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LEMMA 7 If xl, X2 and x3 are non-zero algebraic integers in K satisfying

xi + X2 + X3 = 0 and Xl’ X2, X3 are J-units

then for some 03C3 ~ Z K and Pi E Z K we have

where C16 is a computable number depending on K and J. Further, if
max 1 N(Xl) |  M for some positive M, then

;

where C17 is a computable number depending on K and J.

LEMMA 7 is a special case of Lemma 6 of [Gyôry, 1979].

LEMMA 8 Let a be a non-zero algebraic integer of degree n which is not a root of
unity. There exists an effectively computable positive number C18 depending only
on n such that

Proof. See e.g. [Schinzel and Zassenhaus, 1965].

The following lemma is an effective version of a well-known theorem of

LeVeque. Let f(X) ~ K[X] and assume that f has the representation

with aN ~ 0, n &#x3E; 0 and 03B1l ~ 03B1j for i ~ j. Further, let m &#x3E; 1 be a natural
number and put

LEMMA 9 [Brindza, 1984b] Suppose that {t1,..., tn} is not a permutation of the
n-tuples

Then all J-integral solutions of the equation
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satisfy

where P = max N.p ( if s = 0, put P = 1) and C20 is a computable constant
i

depending on K, f and m.

Proof. See [Brindza, 1984b] (cf. [Shorey and Tijdeman, in press]).
Let 03B31,..., 1 Yn ’1TI’...’ 03C0s ( n &#x3E; 1, s  0) be algebraic integers in K with Yl =1= Y J

for i =1= j and suppose that 0 =A 03C0l is not a unit in K (1  i  s). Put

Consider the equation

where z, y ~ J*, r1,..., rn, m E N, e is a unit and 0 ~ y E ZK is not a unit.
Let T be a positive number.

LEMMA 10 ([Shorey and Tijdeman, in press] Th. 10.3) If

for all prime ideals D then all solutions x, z, E, y, y, m of equation (14) under
the above mentioned conditions satisfy m  C21 where C21 is an effectively
computable constant depending only on K, J*, T and the binary form

Proof of Theorem 4

We shall follow the proof of Theorem A (see [Brindza, 1985]). We assume
throughout that f(X) has the representation

with ak ~ 0 and 03B3l ~ 03B3j for i ~ j. Let K = L(-yl,..., 03B3n) and d = [K : Q]. Then
we have
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where 03B2i = ak03B3i ~ Z K and the number x corresponds to akx in (10). In this
proof cl, C2, ... will denote positive computable numbers which depend only
on f and L.

Let m, ai 1... 1 a,, x, z be an arbitrary but fixed solution of (15). Using
square brackets to indicate principal ideals in K, we get

At first we suppose that z is a unit but not a root of unity and s = 0. Then

Now we can apply Lemma 7 to the equation

We obtain x - f31 = op, and 03B21 - f32 = o?2 where

hence rxl  c2 Ml . Since |~(b-1)| 1 &#x3E; (2M1)-1 for every Q-isomorphism (p of
K and |~(z)| &#x3E;1+c3 for some (p, we obtain from (15) that

hence m  c6 log MI. This proves the second part of Theorem 4.
In the sequel we assume z is not a unit in Z K. Then |N(z)|  2 and from

(15) we deduce

If H(x)  c9M, then our theorem immediately follows. We may therefore
assume without loss of generality that H(x) &#x3E; clo M for a sufficiently large clo
which will be determined later. Then

Let D1,...,Dt t be the distinct prime ideals of K which divide

[ak][u1]... IU,Ilâl where
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Then we have NDl  c12Uc13 and t  c14(S + 1). We write the ideals [a] and [b] ]
in the following form

where vl, w are non-negative integers and A, 9 are integral ideals which are
relatively prime to D1,..., Pt. From (16) we obtain

where A* 1 d, B*|B are relatively prime ideals, 9-n is an integral ideal
which is relatively prime to D1,...,Dt and d l, ... , d are non-negative integers.
The g.c.d. of any two factors [x - 03B2l], [x - f on the left hand side of (18) is a
divisor of the ideal [ à ] and each prime ideal divisor of A*B* divides at most
one of the ideals [ x - 03B2l]. Hence we can write

where Al, B1, mi i are integral ideals with Al|A, Bi|B, M1|M for

i=1,..., n and the dji are non-negative integers. We take the norm and
logarithm of both sides of equation (19); if clo is large enough then we have

For symmetry let us set r 1 = r2 and r2 = rl. From (19) we obtain

Putting

By applying Lemma 5 we may assume that
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for every Q-isomorphism ip of K and
Then

and

By (21) we have

where h = hKr1r2 and ~1, E 2 are units in K. By Lemmas 4 and 5 fi i can be
written in the form

where ~1,..., 11r are units in K with max H(~j)  c24, wi1,.., wir are rational

integers and maxH(03BCi)  C25. From (23) and (24) we deduce

for every Q-isomorphism T of K. Let us consider the absolute values of the
expressions on the right-hand side of (25). It is clear that

and

(where the product is taken over all Q-isomorphisms (J =1= (p of K); on the other
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hand

Comparing (27) with (28) we have

Hence, by (22) and (23), we obtain

Now, we consider the equation (25) for r = rK appropriate Q-isomorphisms of
K. Using Cramer’s rule, Lemma 4, (26), (29) and (30) we have

Let us write Wi’ in the form Wi’ = mw(1)ij+w(2)ij with w(1)ij, w(2)ij~Z and
0  w(2)ij  m. Similarly, f or 1 - 1, 2 and j = 1,..., t put dij = md(1)ij + d(2)ij with
non-negative integers d(1)ij, d(2)ij such that d(2)ij  m. For brevity let us write

By applying Lemma 4 and inequalities (20), (22), (30) and (31) we have

This implies that

Further, by the construction of the elements 81, i and by (22),

Setting wj 
= w15) - w(2)2j and Dj = d(2)1j - d(2)2j we rewrite (23) in the form
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If ( x - 03B21)h = ( x - 03B22) h then x = (~03B22 - 03B21)(~ - 1)-1 where 1 ~ e is a root of
unity in K and so H(x)  C38. We have seen that clo may be chosen arbitrarily
large. So, we may assume that ( x - 03B21)h~(x- 03B22)h. For a Q-isomorphism (p
such that x = 1 cp(x) we obtain by taking CIO large enough

Now, we apply Lemma 6 to give a lower bound for

Finally, comparing (33) with (34) we have Theorem 4.

Proof of Theorem 5

From (11) we have

for some 03BE ~ ZL. It is clear that

where c44 and c4, are computable constants depending only on L, B, A and c.
From Theorem 4 with s = 0 we infer that t is bounded. We may therefore
assume that t is fixed. Hence, Lemma 9 implies Theorem 5.
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Proof of Theorem 6

We assume the polynomial P(X) = Fm(X) + Gn(x) has the representation

with a ~ 0 and 03B1i~03B1j for i =1= j. From Corollary 1 we have P(X) has at least
two simple zeros. Let K be the splitting field of P(X) with ring of integers ZK,
and write xl = ax and Oi = aai, i = 1,..., k. Then the elements 03B21, ... , f3k are
algebraic integers in K and equation (12) can be written in the form

where d = deg P. Using square brackets to indicate principal ideals in K we
obtain

where al, bl, ... , as, bs are non-negative integers and ¥, Wè are integral ideals
such that

It is known that there is an integral ideal q with bounded norm such that

Da11...DassD = [ w ] for some algebraic integer w. Then

and x2:= x103C9~ Z K . Further, it is clear that the greatest prime factor of the
norm of the g.c.d. of [x2] and [ w is bounded. Let q 1, ... , a be the prime ideal
divisors of [ a d - lwd ] and let h denote the class number of K. Write a h = [03C0l].
i = 1,..., t. By Lemma 5 we may assume that max fifl is bounded. From (35)
we have

where e is a unit and 81, ... , 8t are non-negative integers. If y is not a unit
then from Lemma 10 we have z is bounded. If y is a unit then x2 - f31l.AJ,
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X2 -,82w and (03B22 - 03B21) are J1-units where J1 consists of all the valuations v
of K such that v(03C903C01 ... 03C0t(03B22-03B21)) ~ 0. By applying Lemma 7 to

we infer that

is bounded. It follows that H(x1), H(x) and H(yz) are also bounded. Then
there is a bounded non-zero rational integer A such that Ayz ~ Z K therefore
Dblzl| [A], i = 1,..., s. If at least one bl is positive then we have z is bounded; if
bl = ... = bs = 0 then y E ZK and y is not a root of unity, so, by Lemma 8
we obtain

which also implies z is bounded. Finally, from Lemma 9 we have the theorem.
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