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Abstract. We study ergodicity of cylinder flows (x, t)— (Tx, t + ¢(x)), where T is a von
Neumann-Kakutani adding machine transformation on R/Z and ¢(x)=1,(x)— B, 4 an arc in
R /Z of length B.

Introduction

We shall be interested in cylinder flows of the following type. Let T:R /Z —
R/Z, x — Tx, be measure preserving and ergodic with respect to Lebesgue
measure A on R /Z, let G be either a closed subgroup of R or G = R /aZ with
ain R. Let & denote Haar measure on G and let ¢:R/Z — G be measurable
with [ dA=0.

The cylinder flow T_(x, t) = (Tx, ¢+ ¢(x)) acts on the measure theoretic
product space X =R /Z ® G and preserves the product measure A ® h on X.
We shall study ergodicity (with respect to A ® k) of the following class:

Example 1

Let T, be the cylinder flow where T:R/Z - R/Z is a generalized von
Neumann-Kakutani adding machine transformation (definition in Part II of
this paper), and let ¢(x)=1,(x)— B, where 4 is an arc in R/Z of length B,
0 < B < 1. Let G be the closed subgroup of R generated by 1 and B. If B is
irrational, then G =R and /4 will denote Lebesgue measure. If 8 =r/s, r and
s positive integers, (r, s)=1, then G=(1/s) Z and h will stand for the
counting measure.

The ergodicity of this class of cylinder flows is directly related to irregularities
in the distribution of generalized van-der-Corput sequences. For this reason,
necessary conditions for the ergodicity of 7, and hence for B follow from
results in [Hellekalek, 1984]. For the general background, in particular the
important coboundary theorem and its consequences, the reader is referred to
[Liardet, 1952, 1985].
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Results on ergodicity of cylinder flows date back to [Anzai, 1951] (T an
irrational rotation, G = R /Z). The following class is now well-known.

Example 2

Let T be the cylinder flow where T: R/Z > R/Z, x = x+a mod 1, «
irrational, and @(x) =1, 5(x) —B,0<B < 1. Let G be as in Example 1.

Ergodicity of Example 2 was studied by [Oren, 1983], completing an earlier
result of [Conze, 1980]. Oren has proved: T, is ergodic if and only if B is
rational or 1, « and B are linearly independent over Z.

Example 2 is also related to a class of sequences well-known in the theory
of uniform distribution modulo 1, the sequences (na), ., ,. Good references are
[Petersen, 1973] and, in particular, [Liardet, 1985].

I. Remarks

From now on it will be assumed that 7, is the cylinder flow of Example 1,
although the following remarks can easily be generalized to cover Example 2
and a large class of other cylinder flows as well.

T, is ergodic if and only if, for every T, -invariant measurable subset B of
R/Z ® G, either B or its complement has measure zero. We study ergodicity
of T, by reducing the problem from the infinite case (i.e. T, on R/Z ® G) to
a finite case (i.e. T, on R/Z ® G/aZ; a € G, a#0).

Definition: An element ¢ of G is called a period of T, if, for every T -
invariant function 1,, B a measurable subset of the product space R/Z ® G,
the equality 1,(x, ) =1g(x, t +c) holds A® h — a.e..

The set P, of periods of T is a subgroup of G. [Schmidt, 1976] has extensively
studied what he calls ‘essential values’ of a cylinder flow. It follows from
Theorem 5.2. in [Schmidt, 1976] that essential values and periods are the same.

Remarks: it is not difficult to see that

i)ifp=g—ge°T A—ae, g R/Z — G measurable, then P, = {0};

i) if p=y+g—geT A—ae, ¢, g R/Z - G measurable, then P =P,.
Let a be an element of G and let S, denote the cylinder flow T, on
R/Z® G/al:

S.:R/Z®G/al »R/I® G/al
S,(x,1)=(Tx, t+¢(x) mod a).

Ergodicity of T, and S, are related as follows. S, is a factor of T, hence
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ergodicity of T, implies ergodicity of S,. If a is a period of T, and if §, is
ergodic then T, is ergodic. We shall use this observation later on.
Ergodicity of T, is associated with the following type of functional equa-
tion. Define
- I'={xe G: the functional equation h o T = x(@)h A — a.e. has a nontriv-
ial measurable solution h: R/Z — C}, and, for a in G,
- I,=={x€(G/aZ): h > T=x(p)h A—ae. has a nontrivial measurable
solution #:R/Z — C}. The sets I" and I, are subgroups.

LEMMA O: Let a€ G, a+ 0. Then S, is ergodic if and only if T, is trivial.
Proof: This result is classical, see [Anzai, 1951]. O
THEOREM 1 If c € P, then I'=T..

Proof: Clearly I, is a subset of I'. Let x be an arbitrary element of I' and let
h be a nontrivial measurable solution of the equation 2 e T = x(p)h A —ae..
The measurable function f(x, t)=h(x)x(¢) is invariant under T, hence
f(x,t+c)=h(x)x(t)x(c)=f(x, t)A ® h — a.e.. This implies x(c) =1, thus x
belongs to I',. O

COROLLARY: The following are equivalent:

i) T, is ergodic; R

ii) P,# {0} and T is the trivial subgroup of G.

We shall now study example 1. We ask under which conditions for 8 and vy will
[, be trivial (hence S, ergodic) and 1 be a period of T, = T (B, v)-

II. A class of cylinder flows

We shall consider the following generalization of the von Neumann-Kakutani
adding machine transformation on R/Z. Let g=(q,),,, be a bounded
sequence of integers ¢;, 2 < ¢; < K for all i, with some positive constant K.

If A(g) denotes the compact Abelian group of g-adic integers, then the
transformation z — z + 1 on A(q) is uniquely ergodic with respect to normal-
ized Haar-measure on A(q) (see [Hewitt and Ross, 1963] for details on A(q)).

Consider next the one-dimensional torus R /Z with Haar measure A. We
shall write

p(k)=q,"...-q., k=1,2,...
p(0):=1.
If

o0
Z=Ezip(i)7 Zie{o’l""’qi+l—1}
i=0
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is an element of A(g), then

[oe]

®(z)= )Y z,/p(i+1) mod1
i=0

belongs to R/Z. The map ®: A(g) — R /Z is measure-preserving and injec-
tive on A(gq) except on a subset of Haar measure zero.
The g-adic representation of an element x of R/Z,

x=Y x/p(i+1), x,€{0,1,....q.,,~1},
i=0

is unique under the condition x, # ¢, ; — 1 for infinitely many i. We shall call
x non-q-adic if x has infinitely many nonzero digits x,. The uniqueness
condition for the representation ensures that the following transformation 7
R/Z — R/Z is well-defined:

Tx=®(z+1), wherez=z(x)= ) x, p(i).
i=0

T is ergodic with respect to A and T o ®(z) = ®(z + 1) for aimost all z. For
further properties of T see [Hellekalek, 1984]. T may be called a (generalized)
von Neumann-Kakutani adding machine transformation (see [Petersen, 1983]).
A rational number B in |0, 1[, 8 =r/s, r and s positive integers, (r, s) =1,
is called strictly non-q-adic if k/s is non-g-adic for all k, 1<k<s—1;
equivalently, if no prime divisor of s divides an element of the sequence gq.

THEOREM 2: Let T be the g-adic transformation defined above and let ¢(x) =
Lio,p1(x) — B, 0<B<1. Let T, be the cylinder flow defined in Example 1.

Then the following are equivalent:
i) T, is ergodic;
ii) B is irrational or strictly non-g-adic.

We can generalize this result to:

THEOREM 3: Let T be as in Theorem 2 and let (x)=1,(x) — B, where A is an

arcin R/Z of length B,0< B <1, A=v+[0, B[ mod 1 with 0 <y < 1. Define

T, as in Example 1. Then

i) T, ergodic implies B irrational or strictly non-g-adic;

it) B irrational implies T, ergodic, for all v;

iii) B strictly non-q-adic and vy gq-adic (i.e. y=a/p(g) with nonnegative
integers a and g, a < p(g)) imply T, ergodic;

v) q,=q>2 foralli, and B strictly non-g-adic imply T, ergodic for almost all
Y.
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The proof of these two theorems will be given by Lemmata 1 to 6 and their
corollaries. In Lemma 6 we will prove a stronger result than iv) of Theorem 3.

In the sequel we shall write ¢, for the sum g+ @ o T+ -+ +@ o T" 1L,
n=1,2... Lemma 1 below indicates how to obtain periods. The idea is due to
[Oren, 1983] (Proposition 1).

LEMMA 1: Ler (k,);-, be a subsequence of (n)y_, and let (A, )y_; a
sequence of measurable subsets of R/Z such that

i) P, Is constant on A,

i) hm <pp(k (A ) extsts "and

iii) inf A(A k,)>0.
Then ¢ = lim Ppk,)(Ag,) will be a period of T,,.

Proof: Let 1, be an arbitrary T, -invariant measurable function on R/Z ® G.
The set M = {x €R/Z such that 15(x, t)=1g(x, t+ c) for almost all ¢ in
G} is invariant under 7, thus of measure 0 or 1. We shall find a subset of M
of positive measure. This will prove the lemma.

Let a, =, (A4, ) and put g, (x, 1) = [15(T?*x, t+a, )= 1p(x, t +
c)|. Let X = IR/Z X [—N, NJ], N a positive integer. We note that |T7®x —
x| <1 /p(k) for all x and all positive integers k, hence

lim [ g dA®h=0 forall N.

n—o Jx,

Therefore, by diagonalization, we can find a subsequence (k) of (k,)%_
such that hm gk (x,t)=0ae. onR/Z®G. Let A= limsup4,,. The set A

has posmve measure (condition iii)) and almost all elements of A belong to M
(conditions i) and ii)). O

LEMMA 2: Ergodicity of T, implies that B is either irrational or strictly
non-g-adic.

Proof: 1f T is ergodic, so is the compact factor Sy, S;(x, ) = (Tx, (1 + ¢(x))
mod 1). For every character x of G/Z x(¢(x))=x(—B) is constant. There-
fore I} is trivial (hence S, ergodic) if and only if there are no eigenfunctions of
T to the eigenvaue x(— B). The eigenvalues of T are known to be of the form
exp(2wia), a g-adic. O

LeMMA 3: If B is non-g-adic and v is g-adic, then 1 is a period of T.

o0
Proof: The g-adic representation of B is given by 8= Z B,/p(i +1) with
digits 8,€(0,1,...,49,., — 1}, infinitely many B, +# q,+1 1 Define B(k)
k-1

= Y B./p(i+1), k=1,2,3 ... Then 0 <8~ B(k)<1/p(k) for all k. If
i=0
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o0
y= Y. v,/p(i+1), then y(k) =7 for all k sufficiently large. T is a bijection

alm(;st0 everywhere and maps elementary g-adic intervals [a/p(k), (a+
1) /p(k)[,0<a<p(k)—1,into elementary g-adic intervals of length 1/p(k).
For any x in R /Z exactly one point T’x, 0 <j < p(k) — 1, belongs to a given
elementary g-adic interval. For sufficiently large k the function ¢,,, takes
only two values on R/Z, ¢,,(x) € {B(k)p(k)— Bp(k), 1+ B(k)p(k)—
Bp(k)}. Let Ay ={x:@,4)(x)=(B(k)— B)p(k)} and let B, denote its
complement. The integral of the function ¢, ,, is zero, hence A(4,)=1— (B
— B(k))p(k) and A(B,)=(B— B(k))p(k). B has infinitely many nonzero
digits B;, hence there is subsequence (i,)%_; such that 0 < ,B and B, ,; <

4 .,— 1. This implies 1/K < (8 — B(i,))p(i,) <1 — 1/K?2. Therefore we can
find a subsequence (k,)_; of (i,)%_; such that 0 < hm (B—B(k,)p(k,) <

1. We apply lemma 1 to the sequences of sets (A ) _; and (B, )., and
obtain that 1 is a period of T,. O

COROLLARY: If B is strictly non-q-adic then T, is ergodic for all g-adic .

LEMMA 4: If B is non-q-adic then the set {1, 2} contains a period of T, for every
Y.

Proof: Let A=y +[0, B{mod 1,0 <y <1, and ¢(x)=1,(x)— B. In view of
Lemma 3 we are only interested in non-g-adic y. Let § =y + 8 mod 1. We
shall assume that § is non-g-adic, otherwise Lemma 3 applies. Let

y=Y v/p(i+1), 8= Y 8/p(i+1),
i=0 i=0

infinitely many digits y,# ¢,,, — 1, infinitely many §,# ¢,,; — 1. We shall
denote by y(k) and 8(k) the representations truncated at k& (see Lemma 3).
Elementary calculations as in Lemma 3 show that for all x, @,,(x) € { y;, ¥,
—1, y,+1}, where y,=(y—v(k)p(k)—(8—8(k)p(k), y,€{(B(k)—
Byp(k), 1+ (B(k)—B)p(Kk)). Let A,={xER/Z: §,4)(x)=y;), Bi=
{x: @,y =y —1} and C, = {x: @, 4, =y, + 1}. As the integral of ¢ is zero,
the relation A(B,) =y, + A(C,) holds. We shall check if conditions ii) and iii)
of Lemma 1 can be satisfied.
— Condition ii): it is clear from the proof of Lemma 3 that there is a sequence
(k,)%_; such that0<| lim Yk, ‘<1
— Condition iii): due to the ziobove relation between A(B,) and A(C,) we can
always find a suitable subsequence (k/)®_; of (k,)%_; such that condition
iii) holds for (4,,)y>_, and one of (B,,);_; or (C;,)_; (Which implies that
1 is a period) or (Bk, 1 and (C;,)x_, (which implies that 2 is a period).
O

LEMMA 5: If B is irrational, then T, is ergodic for all vy.
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Proof: We only have to show that S, is ergodic, i.e. that I’, is trivial. Let x be
an arbitrary element of I', and let /4 be a nontrivial measurable solution of the
functional equation h o T=x(¢) h a.e.. Then h%? o T=x2(¢) h?, hence x>
belongs to T'. S, is ergodic for irrational B and thus the latter group is trivial.
Hence x is the trivial character of R /2Z. O

The argument employed in Lemma 5 is not valid for strictly non-g-adic B: for
a nontrivial character x in G/2Z, x? can be trivial in G/Z. It is not difficult
to see that I, would be trivial if the functional equation h-T=®h ae.,
®(x)=1o0n 4 and ®(x) = —1 on the complement R /Z-A, had no nontrivial
measurable solution 4.

LEMMA 6: Let B be rational and non-q-adic. If there is a strictly increasing
sequence (i,)y_, such that, for all n, B; #0, B, ., <q, ;,,—1, i, —i,<L
with a constant L, then 1 is a period of T, for almost all v in R /Z.

Proof: We shall take as basis the proof of Lemma 4. Hence we assume that y
and § =8(y) =y + B mod 1 are non-g-adic. It will be shown that for almost
every v there is a subsequence (k,)%_; of (i,)_; such that conditions ii) and
iii) of Lemma 1 are satisfied. It is then easy to deduce from Lemma 4 that 1 is
a period of T, = T_(B, v).

Let I be an elementary g-adic interval of length 1/p(k), I=1[a/p(k),
(a+1)/p(k),0<a<p(k)—1. Choose i and j, 0<i, j<p(k)—1 such
that A(T'IA[y(k), Y(k)+1/p(k)) =0, A(T’IA[8(k), 8(k)+1/p(k)])=0.
We write D, =T 'ly(k), Y[, E,=T718(k), 8[. D, and E, are subsets of I
and the following relations hold:

A,NI=I—-D,AE,, B,NI=D,—E, C,/NI=E,—D,.

Therefore A(A,NI)=1/p(k)+2X(D,NE;)—A(D;)—A(E;). Let a, and
b, be those integers with ®(a,)=7vy(k) and ®(b,)=28(k). Then 0<aq,,
b, <p(k)—1 for sufficiently large k and a,,,=a,+v,p(k), b, ., =b,+
8,p(k). Let a be an arbitrary integer such that 0 <a <min(a,, b,). If we
consider the elementary interval I = I(a)=[®(a), ®(a)+1 /p(k)[ then the
condition a < min(a,, b,) implies that D; and E, are intervals, D, =]®(a),
®(a)+y—v(k), E; —]fb(a) ®(a)+ 6 —6(k)[. This yields the following
estimate for A(4,):

A(A4,) = (1~ | y|) min(a,, b,)/p(k).

Itis1/K><1— |y, | <1-1/K? thus only min(a,, b, )/p(i,) requires fur-
ther study. We see that a, /p(i,,,)>v, /K" and b, /Pl =8, /KR
We study F={y inR/Z: v, 5, +#0 for 1nf1n1tely many n} If v belongs to F,
then there is a subsequence (k ), of (i,)y-, such that infA(4, e

1/K?*L > 0. Hence condition iii) of Lemma 1 is satlsfled. Condition i) will
hold for a suitable subsequence.



136 P. Hellekalek

It is elementary to show that the set F is invariant under 7. Thus A(F) is
either zero or one. One calculates A({y: v, 8, #0})>1/31f ¢, ,; > 3 and that
it is equal to (8 — B(i,)) p(i,) — 1/2if g, ,; = 2. One deduces that A(F)=1.
O

COROLLARY: With the additional assumption that B be strictly non-q-adic
Lemma 6 implies that T, is ergodic for almost all vy.

COROLLARY: Suppose that q,=q>2 for all i, q an integer. If B is strictly
non-q-adic then T, is ergodic for almost all .

Proof: The g-adic representation of rational numbers is periodic. As 8 is
strictly non-g-adic, S, is ergodic and further there is a sequence (i,)%_,; which
satisfies the conditions of Lemma 6. O
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