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AUTOMORPHISMS OF RATIONAL DOUBLE POINTS
AND MODULI SPACES OF SURFACES OF GENERAL TYPE

F. Catanese *

§0. Introduction

Let S be a minimal surface of general type (complete and smooth over
C), and let -4Y(S) be the coarse moduli space of complex structures on
the oriented topological 4-manifold underlying S.

By a well known theorem of Gieseker, [Gi], N(S) is a quasi projec-
tive variety, and the number v(S) of its irreducible components is
bounded by a function v0(K2, X) (unfortunately: an unknown one) of
the two numerical invariants K2S, X(OS).

This paper is the third of a series (cf. [Cal], [Ca2], [Ca4]), devoted to
the study of general properties of M(S) through a detailed investigation
of certain irreducible components corresponding to special classes of
simply-connected surfaces which are somehow a generalization of hyper-
elliptic curves.

Here we study deformations in the large of these surfaces, and the key
tool is to exploit the relation holding between such deformations and
degenerations of P1  P1 to a normal surface with certain rational

singularities which we call 1/2-Rational Double Points.
As it is well known, hyperelliptic curves are double covers of P1 and

all the curves are obtained as deformations of hyperelliptic curves;
whereas the surfaces we mainly considered in [Cal], sections 2-4, were
certain coverings of degree 4 of P1 X P1 obtained as deformations of
bidouble covers (i. e., Galois covers with group (Z/2)2) of P1  P1 (we
propose to call bidouble covers of P1 X pl " bihyperelliptic surfaces").

To be more explicit and precise, first of all a Galois (ll/2)2-cover is
said to be simple if one of the three non trivial transformations in the
Galois group has a fixed set of codimension at least 2: for the sake of

simplicity we shall consider here only simple bidouble covers of P1  P1.
Simple bihyperelliptic surfaces are obtained by extracting the square

roots of two bihomogeneous forms f, g of respective bidegrees (2 a, 2b),
(2n, 2m).

* Partly supportéd by M.P.I and C.N.R. (contract No. 82.00170.01).
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If V is the vector bundle whose sheaf of sections is OP1 P1(a, b ) ~
OP1 P1(n, m), a simple bihyperelliptic surface is a subvariety of V
defined by equations:

Their natural deformations are the surfaces defined in Tl by equations
(cf. ibidem, 2.8.)

where ~, 03C8 are bihomogeneous forms of respective bidegrees (2 a - n, 2 b
- m ), (2n - a, 2 m - b ), and the 4-fold cover of P1  P1 defined by (0.2)
is said to be admissible if it has only rational double points as singulari-
ties.
We denote by (a,b,)(n,m) the subset of the moduli space obtained by

considering the smooth surfaces which are the minimal resolutions of the
admissible natural deformations (0.2), and by A/(a,b)(n,m) the subset

corresponding to smooth natural deformations. 
We proved ([Cal], Theorem 3.8.):

(0.3) X(a,b)(n,m) is a Zariski open irreducible subset of the moduli
space. In particular, the closure N(a,b)(n,m) is irreducible, and
contains (a,b)(n,m).
It has to be pointed out that two such varieties (a,b)(n,m) and

coincide only if either the roles of f and g are
exchanged, or of x and y, and that they belong to the same moduli
space if and only if the invariants K 2 and X (given by quadratic
polynomials in the integers a, b, n, m) coincide (cf. [Cal]).

We conjecture the closure of  &#x3E; 
to be indeed a connected

component of the moduli space and the main object of this paper is to
describe  when &#x3E; 2n, m &#x3E; 2b (under these assumptions the
polynomials (p, 03C8 in (0.2) are identically zero and (a,b)(n,m) consists
thus entirely of admissible bihyperelliptic surfaces). 

Since Pl X Pl is a deformation of the rational ruled surfaces F2k =
one can consider also admissible covers of type

( a, b)(n, m ) of F2k (cf. [Ca2] for details), and obtain a larger subset of
the moduli space.

Our main goal here is to prove (4.3. + 4.4.) the following
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THEOREM: If a &#x3E; 2 n, m &#x3E; 2 b,  consists of admissible bidouble
covers of some F2k, with k  max(b/(a - 1), n/(m-1)).

In particular  is a closed subvariety of the moduli space if
a &#x3E; max(2n + 1, b + 2), m , max(2b + 1, n + 2).

We remark (cf. [Ca2]) that a result similar to 0.3 holds true if one
enlarges the set  to include also smooth covers of type
( a, b)(n, m ) of F2k; therefore, to prove the above conjecture in the case
a &#x3E; 2n, m &#x3E; 2b, it would suffice to prove that the moduli space is

analytically irreducible at the points corresponding to non smooth
bidouble covers.

The study of the closure of  is achieved in the following
way: if we have a family St ~ So where St is a bidouble cover of P1  P1,
then the canonical model X. of So still admits an action by (Z/2)2 in
such a way that the quotient Zo = Xo/(ll/2)2 is a normal surface which
is a degeneration of P1  P1, and one essentially would like to have that
Zo be one of the Segre-Hirzebruch surfaces 0:2k which realize all the
other possible complex structures on P1  P1. This being in general
false, we have to use the very special fact that the singularities of X. are
at most R.D.P.’s (Rational Double Points), and that we take the quotient
by a group of commuting involutions (an involution being, as in the
classical terminology, an automorphism of order exactly 2).
We define therefore a 1/2 R.D.P. to be the quotient of a R.D.P. by a

group of commuting involutions and, after classifying all the finite

automorphism groups of R.D.P.’s in §1, we classify (§2) all the possible
actions which give a 1/2 R.D.P. as a quotient of a R.D.P., and compute
in §3 the Milnor numbers of the smoothings of 1/2 R.D.P.’s.

This preparatory material occupies the first half of the paper and the
results stated in this part, albeit probably known to experts and in any
case not dificult to obtain, are essential to prove the following result
(Thm. 3.5), which we believe to be of independent interest:

(0.4) a proper flat map over the disk, smooth over the punctured disk
with fibre P1 x Pl, and with central fibre reduced irreducible and
with singularities at worst 1/2 R.D.P.’s, has a central fibre isomor-
phic to F2k or to F2, F4 with the negative section blown down.

In turn this result, plus the precise description of the actions of
commuting involutions on R.D.P.’s, implies the main theorem of the
paper.
We suspect that a generalization of thm. 3.5 should hold true under

the less restrictive assumption that the central fibre have only rational
singularities, and we refer the reader to a recent paper by Badescu for
more general results on degenerations of rational surfaces (cf. [Ba]).

It is a pleasure here to thank F. Lazzeri and especially 0. Riemen-
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schneider for useful discussions on deformations of singularities; also,
l’m indebted to the referees for suggestions to improve the presentation
of the paper.

§1. Automorphisms of R.D.P.’s

In this paragraph we consider the following problem: describing all the
finite groups of automorphisms acting on a Rational Double Point
(R.D.P.).
We lose generality, but gain a simpler exposition, if we assume that

we are working over the complex number field C. In this case, a R.D.P.
X is a quotient singularity X = C 2/ G, where G is a finite subgroup of
SL(2, C) (acting linearly).

Consider the quotient morphism qr : C 2 ~ C2/G = X: since G c

SL(2, C), ~g~G-{Id}, 0 is the only fixed point of g, hence qr is
ramified only at the origin, and 7r,: C2 - {0}~X-{x0} is a normal
unramified covering with group G.

Let T be an automorphism of the germ (X, x0): since 7r’ is unrami-
fied and normal, there do exist exactly |G| 1 liftings f’ of 03C4|X-{x0}|
which, by the Riemann-Hartogs theorem, extend to automorphisms f of
the germ (C2, 0).

Let now H be a subgroup of Aut(X, x0), and let r be the set of
liftings f of elements T of H. Clearly (i) r is a subgroup of Aut(C2, 0),
containing G, (ii) there is a natural exact sequence of groups

We see in particular that Aut(X, xo ) is the quotient, by the subgroup
G, of the normalizer of G in Aut(C2, 0). We observe that this last group
is very big, since it contains all the generalized homotheties

where f E 03C0*(O*X,x0).
In particular the homotheties (w1, w2) ~ (03BBw1, 03BBw2) (03BB~C*) give a

homomorphism of C * - Aut( X, xo), with kernel of order 2 or 1 accord-
ing to whether - Id E G or not.
We assume, from now on, that H is a finite subgroup of Aut(X, xo ).

In this case we can assume that (iii) r is a finite subgroup of GL(2, C)
(acting linearly).

This follows from a beautifully simple lemma of H. Cartan ([C], p.
97), which has been fruitfully generalized ([K]) to the case of a compact
group.
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CARTAN’S LEMMA : If r is a finite subgroup of Aut(Cn, 0), there exists a
new system of coordinates (Zl’...’ zn) = z such that r acts linearly in the
new system of coordinates.

PROOF: For y E r, let y’ be its differential at the origin.
Let w be the original system of coordinates in Cn, r = 1 Gland set

We obtain thus a transformation of (C", 0) to (C n, 0) whose differential
at the origin is the identity, hence a new system of coordinates. Now, for

E r, z equals, in the new set of coordinates, z(gw) 1 Y- · -
and, if we set y = yg, we have 03B3’-1 = g’(’)-1, hence z(gw)

- r E=- g’(’)-1w = g’z(w). Q.E.D.

It follows from the above proof that the action of G c SL(2, C) is the
same in the new set of coordinates.

Now, if X = C2 IG, X has an algebraic structure as Spec(C[w1, w2]G),
where the graded ring of G-invariant polynomials on C2 is generated by
homogeneous elements x, y, z, such that there exists f(x, y, z) with
C[w1, w2]G ~ C[x, y, z]/f(x, y, z). We have therefore the following

COROLLARY 1.1: If H is a finite subgroup of Aut(X, xo), H is contained
in the group of graded automorphisms of the graded ring C[w1, w2]G =
C[x, y, z]/f(x, y, z), a group that we shall denote by Aut(X, x0). In
aprticular, VT E H, 03C4*(f(x, y, z)) = Xf (x, y, z) where À E C * is a root

of unity.

Let us give now a list of the R.D.P.’s (see Table 1) in terms of the
degrees of the generators of the graded ring C[w1, w2]G and in terms of

TABLE 1. R.D.P.’s
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the relation f(x, y, z) = 0 holding between them, where the last equa-
tion follows if we choose as new generators, beyond y,

We recall that we had a C* action on C[w1, W2]G s.t., for 03BB~C*.
one multiplies a homogeneous element of degree m by 03BBm. One notices

immediately that this action is faithful iff the G.C.D. of the respective
degrees of x, y, z, is 1; i.e., always except in the case of An with n odd.
We are now going to determine the group Aut(X, xo ) of graded

automorphisms T * of the graded ring R = C[x, y, z]/f(x, y, z), keep-
ing in mind that the subspaces Rm = (homogeneous elements of degree
m 1 are invariant subspaces for 03C4*, and, in particular, that if there is a
generator of strictly minimal degree, then this generator must be an

eigenvector for T * . 

For A1, obviously, Aut(A1) is the quotient of the conformal group
CO(3,C) by ( ± 11. In the case of A n , n2, consider the following
faithful action of (C*)2, such that (03BB1,03BB2) ~ (C*)2 acts by

If you add to these transformations the involution which permutes u
with v, you get the action of a semidirect product (C * ) 2  Z/2 classified
by the involution of (C *)2 s.t. (03BB1, 03BB2 ~ (03BB1, 03BBn+11. 03BB-12).
We can now state the main result of this section, where by C * we

mean the above described C * action.

THEOREM 1.2: * Given a R . D. P. X in the form Spec(C[x, y, z ]/f ), the
group Aut( X, xo) has the following structure:

* As noticed by a referee, the quotient of the group Aut( X, xo) by the connected
component of the identity is the group of symmetries of the resolution diagram; indeed
our first proof followed this idea.
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PROOF: In case of E7, Eg, it is immediate to see that x, y, z must be

eigenvectors for T * and moreover, up to multiplying T with an element
of C*, we can assume 03C4*(y)=y, while we denote by 03BBx, 03BBz the

respective eigenvalues of x, z.

Since 03C4*(f) must then equal f, we get that, in the case of Eg, À3x = 1,
03BB2z = 1, hence there exists À with a6 = 1 s.t. 03BB-2 = 03BBx, 03BB3 = 03BBz, and thus
03C4~C*, In the case of E7 we get 03BBx=03BB3x=03BB2z, i.e., 03BB2x=1, 03BBx = 03BB2z;
hence there exists 03BB=03BBz with À4 = 1 with 03BBx = 03BB2, and 03C4~C *.

The case of E6: x, y are obviously eigenvectors, while a priori one has
Ir *(Z) = 03BBz. z + 03C1y2. Argueing as before we can assume 03C4*(y) = y, and
then, since

must be a multiple of f, we get p = 0, À, = 1, 03BB2z = 1. Using again the
action of a cubic root of unity in C* we can further assume 03BBx=1.

What is then left out is the involution  and we conclude

since the group is now apparently commutative. 

DEFINITION 1.3: The involution of a R.D.P. such that 03C4*(z)=-z,
03C4*(x) = x, 03C4*(y) = y is called the trivial involution, since it is defined by
the presentation of X as a double cover of C 2 branched on a singular
curve. Any involution a conjugate to T will also said to be trivial, and
will have the property that Xla = (C2, 0).

The case of Dn, n  5 : 1 claim that x, y, z are eigenvectors. The claim is
clear for x, whereas for y, z we must distinguish 2 subcases;

(i) n odd : y is an eigenvector
(ü) n even: z is an eigenvector.

In the case n is odd, 03C4*(z)=03BBzz+03C1x(n-1)/2, and we argue as in the
case of E6 to infer that p = 0; the case where n is even is treated

analogously. We assume then 03C4*(x)=x, and we get 03BB2y=03BB2z=1. The
conclusion is that for n odd, as in the case of E6, our group is the direct
product of C * and of the cyclic group of order 2 generated by the trivial
involution, while for n even the group of order 2 is generated by the
involution (x, y, z) - ( x, - y, z).
The case of An (n  2) : it is clear that y is an eigenvector, and we can
assume (using the C * action) that 03C4*(y)=y. Since 03C4*(f) must be a
multiple of f = uv + yn+1, and 03C4*(f) = 03C0*(u)03C4*(v) +yn+1, we have, if n
is odd
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where the formula makes sense, with p. = p, = 0, also in the case when n
is even. Looking now at the Taylor expansion of 03C4*(f) we get that
(a1u + a2v)(b1u + b2v) is a multiple of uv, hence we can assume, using
the action of (C*)2 Z/2, a2=b1=0, al =1. Then it follows im-

mediately that pu, p, must be zero; moreover, since 03C4*(f) = b2uv + yn+1
is proportional to f, b2 = 1, what shows that (C *)2 Z/2 = Aut(An).
The case of D4 : We can write f as f = z2 + x ( y + ix)(y - ix) and we
notice that, since z has degree 3, z must be an eigenvector. It must then
be

Denoting b y y the matrix ai 1 2 b1 see immediately that our sought

for group Aut(D4) is the following subgroup G’ of GL(2) x C G’ =
{(03B3, 03BB)| 03B3*(x(y2 + X2)) = 03BB2x(y2 + x2)}.

The natural homomorphism of GL(2) onto PGL(2) induces a homo-
morphism P : G’ - PGL(2), whose kernel is the normal subgroup

{ ( 0 , X 03BC3 = 03BB2 which is easily seen to equal C*

The image of P is the symmetric group L3, in fact P(03B3) must give a
proj ectivity of P1 permuting the 3 points x = 0, y = ± i x, hence Im P c
(253; conversely, if 03B3*(x(y2 + x2)) is a multiple of X(y2 + x2)) then one
can find À E e* s.t. (-y, À) EE G’. We have thus gotten an exact sequence
1~C*~G’~J3~1, and we claim that in fact we have a direct
product. To see this, let’s change coordinates in the C2 spanned by x
and y, where are given three distinct lines.

3

1 view 2 as the invariant subspace, in C3, C 2 = {(x1, x2, x3)| L Xi

= 0} for the permutation representation of l3. L3 acts on C permut-
ing the 3 lines spanned by the 3 vectors ei - ej (1  i  j  3), which are
in fact the locus of zeros of the respective linear forms xi, X2, x3.
Therefore the polynomial P = x (y2 + x2) becomes, in the new system of
coordinates, P = x1x2x3 (mod(x1 + x2 + x3)), which is left fixed by the
action of L3 on C2 . Thus, viewing L3 as contained in GL(2), we get an
embedding of L3 in G’ simply associating to g ~ L3 the pair (g, 1). We
finally notice that the elements of C* are of the form (t2 Id, t3), hence
they commute with (53: we conclude then that 6’’ = C * X (53. Q.E.D.
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REMARK 1.4: SL(2) also goes onto PGL(2), but here the (central)
extension

does not split, since a transposition of (25 3 does not lift to SL(2)
(y2 = Id, det y = 1 ~ y = ± Id!). (5 3 is contained in Z/4 X (S 3 and is
generated by x = ( i, (1, 2)), y = (1, (1, 2, 3)). L’3 is indeed the semidirect
product Z/3 X Z/4 since xyx -1 = y 2.

A more important remark is the following: assume H is a finite

subgroup of Aut(X, xo) where (X, xo) is a R.D.P., and that we want to
describe the singularity Y = X/H. Consider then the exact sequence

and denote by G’ = r ~ SL(2, C). Since H’ = 0393/G’ ~ D * is cyclic, we
obtain that Y=C2/f=X’/H’ where X’ is the R.D.P. C2/G’, and H’
is cyclic.

COROLLARY 1.5: The singularities that occur as a quotient of a R. D. P. by
a finite group are exactly the same that occur as a quotient of a R. D. P. by
an automorphism of finite order.

§2. Quotients of R.D.P.’s by (commuting) involutions

In this paragraph we want to determine the involutions (i.e., automor-
phisms of order equal to 2) acting on a R.D.P., and, even more, the
possible actions of (ll/2)n on a R.D.P. We stick to the notation intro-
duced in §1, to call an involution trivial’ if it is conjugate to the
involution z - - z (here and in the following, the variables which are
not mentioned, are to be understood as being left fixed by the involu-
tion).

THEOREM 2.1: The only involution acting on E7, E8 is the trivial one. The
other R. D. P.’s admit the following non trivial conjugacy classes of involu-
tions :

PROOF: Immediate consequence of theorem 1.
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TABLE 2.

THEOREM 2.2: The quotient of a R . D. P. by a non trivial involution not of
type (c); (e), is again a R. D. P. according to Table 2. *

PROOF: Let (Y, yo ) be the quotient singularity of (X, xo ). Then the local
ring (9y,y is generated by (x, y2, z ) for an involution of type a), by
(x, y2, z2, yz) for type b), by (x2, y, z2, xz) for type d). We set, for
convenience, q = y2, 03BE = z2, 03BE = x 2, u = yz, w = xz.

Since the quotient of C3 by an involution of type a) is smooth, it
suffices in this case to write down the equation of the singularity Y in
terms of the coordinates x, q, z : for E6 we get z2 + x3 + ~2, the equation
of A 2, for Dn we get z2 + x(~ + xn-2), i.e. the equation of A1 (take new
coordinates z, x, (TJ+xn-2)!), for A2k+1 we get z2+x2+~k-1, the
equation of Ak.

For an involution of type b), the quotient of C3 is the hypersurface of
equation qf = u2, which is singular, but the equation of X, written in the
(x, q, 03B6, u ) variables, gives a smooth hypersurface where f is a poly-
nomial function of the other 3 variables.

Easy calculations give then the desired result. Q.E.D.

REMARK 2.3: An involution on a smooth point gives either a smooth
point or a singularity of type A1.

Before proceeding to a description of the further singularities occurring
as a quotient of a R.D.P. by an involution, let us recall the notion of the
Dynkin diagram of a rational singularity (cfr. [Al], [A2]).

Given such a singularity (X, xo), there exists a minimal resolution of
singularities 03C0:S~X, which has the property that 03C0-1(x0)red is a
divisor with normal crossings whose components are smooth rational
curves with self-intersection  - 2.

The Dynkin diagram is an indexed graph whose vertices correspond
to the above curves, and are indexed by an integer -k ( k  3) if the self

* The degree 2 coverings corresponding to the cases b), d) are considered also in [A3] from
a different point of view.
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intersection of the corresponding curve is - k, and whose edges corre-
spond to points of intersections of pairs of curves.

These Dynkin diagrams determine completely the singularity (cf. [B2]
2.12).

REMARK 2.3 bis: One recipe for computing, knowing the Dynkin di-
agrams for R.D.P.’s, the Dynkin diagram of the quotient singularity
Y = X/T is the following: T lifts to an involution a on S, and, blowing
up the isolated fixed points of a on S, one gets a modification S of S
with an involution Q acting on S’ in such a way that the quotient
t = / is smooth. t is a resolution of Y, and you get the minimal
resolution T of Y by blowing down successively all the (smooth rational)
curves C with C 2 = -1.

THEOREM 2.4: The quotient Bk of the singularity A2k by an involution of
type c) is defined in C4, with coordinates (u, w, t,11) by the ideal

Ik = (~w - t 2, uw + tl1k, ut + l1k+l).
The (reduced) exceptional divisor D of its minimal resolution T has

normal crossings, consists of k smooth rational curves, and its Dynkin
diagram is

PROOF: For commodity we assume A2k to be the hypersurface singular-
ity in C3 of equation g=uv+y2k+1=0, and T to be the involution

Therefore the subring of invariants is generated by u, w = v2, t = vy,
q = y 2, while the equation wq = t2 defines the quotient Z = C3/03C4.

Consider now a function h on C4 vanishing on Bk, and let h’ be its
pull-back to C3: then h’ is a multiple of g, and it is an even function
(with respect to the involution 03C4).

writing h’ = fg, we see that f is an odd function, hence f belongs to
the ideal ( y, v) and there do exist even function a, b such that
h’ = a ( yg ) + b ( vg ). Since yg = ut + ~k+1, vg = uw + r~k, this proves that,
adding to h a suitable element of the ideal ( ut + ~k+1, uw + t~k), we get
a function h0 which vanishes on Z, and h0 is therefore a multiple of
(w~ - t2). The other assertion follows either from an explicit computa-
tion, as indicated in 2.3 bis, or from the fact that (notation as in §1) G is

generated by the matrix w 0 where w = exp(2’ITi/(2k + 1», r is
generated by w 0 ) and 1 01), hence B is isomorphic to the
quotient of C2 by the cyclic group generated by w 0
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This cyclic group is the group C2k+1,2k-1 in Brieskorn’s notation ([B
2], page 346), and the Dynkin diagram (ibidem, page 345) can be
computed from a corresponding partial fraction. Q.E.D.

THEOREM 2.5: Let Z be the affine cone over the Veronese surface, i.e. the
set of symmetric matrices

of rank  1.

Then the quotient Yk+1 of the singularity A2k+1 by the involution e) is the
intersection of Z with the hypersurface 0 = x6 - xk+13 = 0 ( in particular
Yk+1 can also be defined as the singularity in C5 defined by the ideal

The exceptional divisor D in the minimal resolution T of Yk+1 has normal
crossings, consists of (k + 1) smooth rational curves, and the associated
Dynkin diagram is

REMARK 2.6: The (apparently) funny way of numbering the entries of the
symmetric (3 X 3) matrix can be explained as follows: for k = 0 you get
x6 = X3’ and one immediately sees that Y, is the cone over the rational
normal curve of degree 4 in I? 4.

PROOF oF THEOREM 2.5: The first part is clear, since the map of C3 ~ C6
given by (u, v, y)~t(u, v, y)(u, v, y ) is a quotient map of C3 by e)
and maps onto Z, whereas ~=uv-y2k+2 is an even function, ex-

pressible as x6 - xk+13 in the coordinates of Z.
We can then argue as in the proof of 2.4, observing that Yk is, in

Brieskom’s notation ([B 2], page 346) the quotient of C 2 by the cyclic
group C4k,2k-1 (cf. also [R]). Q.E.D.

For later use we classify all the possible actions of (ll /2) 2 on a
R.D.P., and the respective quotients.
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THEOREM 2.7: Let (X, xo ) be a R. D. P. and let H be a subgroup of
Aut(X, x0), isomorphic to (Z/2)2 . Then H is conjugate to a subgroup
listed in the following table.

PROOF: First of all one can easily check, by the method used in the proof
of 2.2, that for the actions of (Z/2)2 listed in the table, the quotients are
as stated.

Since conjugate subgroups give isomorphic quotients and the first two
actions are not conjugate, (1) inspection on the table shows that to prove
the claim it suffices to check that the number of conjugacy classes of
subgroups of Aut(X, xo), isomorphic to (Z/2)2, is one for E6, Dn, 2 for
A2k, 5 for A2k+l (k  1), 3 for Al.

This last assertion follows from Theorem 1, except for the case of A1,
by easy algebraic considerations.

For A1, we have an exact sequence

Clearly H ED e) ~ ~(H) has 2 elements.
In this case, we notice that two involutions in PGL(2) are always

conjugate.
If ~ (H) contains two commuting involutions, we recall that they are

completely determined by their pairs of fixed points, forming a harmonic
set, which we can therefore assume to be given by (0, 1), (1, 0), (1, 1),
(1, -1) on P1; in the model of P1 as a conic in P2 we can assume that
these two pairs be cut by the two lines f x = 0} and f y = 0}, hence that
x, y, z be eigenvectors for the action of H. It is now easy to check that,
up to conjugation, there are only two cases occurring, according to
whether a trivial character of (Z/2)2 occurs or it does’nt. Q.E.D.

REMARK 2.8: There exists a subgroup H = (Z/2)b, in Aut(X, x0), with
b  3, iff b = 3 and X=A2k+1. Clearly the quotient is then smooth. By
Theorem 2.7 we conclude also that the quotient of a R.D.P. by (Z/2)b
b = 2, 3 is again a R.D.P., and that we get new singularities only taking
the quotient of a R.D.P. by Z/2.

TABLE 3.
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DEFINITION 2.9: A 1/2 R.D.P. is either a R.D.P., or a singularity
obtained by taking the quotient of a R.D.P. by an involution (in view of
2.2-2.5, we are only adding the singularities Bk, Yk).

§3. Milnor numbers of smoothings of 1 / 2 R.D.P.’s and a rigidity result

We recall now the notion of a smoothing of an isolated singularity and
of the associated Milnor fibre and Milnor number.

Let (X, 0) be an isolated singularity in en, let (T, to ) be an irreduci-
ble germ of analytic space, and let f : Ei- T be a deformation of the
singularity (X, 0): this means that X is an analytic subspace of Cn X T,
X:D {0} X T, and the projection of C n X T onto T induces a flat holo-
morphic map f : X- T with f-1(t0) = X. ff is said to be a smoothing of
(X, 0) if f -1 ( t ) is smooth for t in an open dense set U of T.

One can choose a (sufficiently small) ball B in en, with centre 0, such
that, for each t (this is possible, shrinking T if necessary), aB intersects
f-1(t) transversally in a smooth (real) manifold Kt and, for t in U,
Xt = f-1(t) n B is called the Milnor fibre of the smoothing.

For t in U, À7t is a smooth manifold with boundary Kt, moreover
U Kt =X~ ( aB X T) is a topologically trivial bundle over T, whereas

U Xt=x~(B U) is a differentiable fibre bundle on U, hence, U

being connected, the pair (Xt, Kt ) is, up to diffeomorphism, indepen-
dent of t E U (cf. [St], [G-S]).

Now, by a theorem of Grauert ([Gr]), an isolated singularity (X, 0)
has a versal family of deformations g : ~03B2 hence, corresponding to
the irreducible components of the base space e which give a smoothing
of X, one gets several Milnor fibres, and, for any smoothing f : X- T,
the associated Milnor fibre is diffeomorphic to one of them. Let d be the
dimension of X: then the Milnor number JL of the smoothing f : X~ T is
defined by it = dimRHd(Xt, R ).

By Poincaré duality Hd(Xt,R) ~Hdc(Xt, R) and, if d is even, on

Hd(Xt,R) is therefore defined a symmetric quadratic form q (intersec-
tion form) and one can write ju = it 0 + JL+ + 03BC_, where JLo (resp.: 03BC+, 03BC_)
is the number of zero (resp.: positive, negative) eigenvalues for q.

The description of the Milnor fibre (which, being a Stein manifold,
has non zero homology only up to its complex dimension) is rather easy
if one has a simultaneous resolution, i.e. if, (S, F)03C0 (X, x0) being the
minimal resolution of the singularity, ( E = 03C0-1(x0)red), one can find

(i) a smoothing (x, X) (T, t with dim T = 1, X = given Milnor
fibre

(ii) a proper holomorphic map 03C0’:J~X, biholomorphic on X-
{x0}, and with 03C0’: 03C0’-1(X)~X isomorphic to qr : S~ X.
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In fact, in this case, Xt is diffeomorphic to a neighbourhood of E in
S, and homotopically equivalent to E.

In particular, if (X, xo ) is a surface singularity, IL is the number of

components of E, and g since the intersection form on S is

negative definite, by the theorem of Mumford ([M]).
We shall also make use of the following result of Steenbrink ([St],

Thm. 2.24): given a smoothing of a normal surface singularity, 03BC0 + ju,

= dimCH1(Os) = pg, the geometric genus of the singularity.
Hence rational singularities ( pg = 0) are exactly the ones for which the

intersection form q is negative definite. Moreover, the singularities
considered in this paragraph being rational, we shall only limit ourselves
to compute it for smoothings which do not admit simultaneous resolu-
tion, recalling that R.D.P.’s admit a simultaneous resolution by the
results of Brieskorn, Tjurina ([B], [T]).

The singularities Bk, Yk+1, considered in theorems 2.4, 2.5, have been
studied by O. Riemenschneider ([R]), who proved the following results
([R], theorems 10, p. 234, 12, p. 238, 13, p. 243):

(3.1) The singularity Bk has a versal family with smooth base, giving
a smoothing of Bk which admits a simultaneous resolution.

(3.2) The singularity Yk+1 has a versal family with base -q consisting
of two smooth components Tl, T2 intersecting transversally.
Both components Tl, T2 give a smoothing of Yk+1, but only Tl
gives one which admits a simultaneous resolution.

(3.3) We want to describe the Milnor fibre of the smoothing corre-
sponding, in (3.2), to the component T2.

In the notations of theorem 2.5, Z is the cone of symmetric (3 X 3)
matrices of rank 1, ~:C6~C is the function given by x6-xk+13,
Yk+1 = Z ~~-1(0), and, since the origin is the only singular point of Z,
by Sard’s theorem ~:(Z, Yk+1)~(C,0) gives a smoothing of Yk+1,
corresponding to the component T2 ([R], (63), (64), p. 242, where T2 is

denoted by 03A32).
In fact the deformation with base T2 can be easily described as

follows: let i : C3~C3 the involution (of type e)) such that i(y0, y,, y2 )
= (-Yo’ -YI’ -Y2).
The semiuniversal deformation of the singularity A2k+1 is given by

The subfamily X given by 03C8(y0, y1m y2, 03BB0, 03BB2,..., 03BB2k) = y0y2+y2k+21
k

+ 03A303BB2iy2i1=0 is given by a family XJL of surfaces stable by i, and our

family on T2 is just x/i, and our previous smoothing the restriction to
the line 03BB2 = ... 03BB2k = o.
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PROPOSITION 3.4: The Milnor number JL of the above smoothing ~: Z - C
of Yk+1 equals k (notice that the Milnor number of the other smoothing is
instead equal to (k + 1)).

PROOF: Since, with the notations just introduced, Z = C3/i, and the pull
back to C3 of the function is just the function 41 (yo, y,, y2) = yo y2 +
yfk+2, we have that 0-1(,E) = 03C8-1 ~)/i, moreover, if we intersect the ball
of radius 8 in C 6 with Z, its pullback to C contains the ball of radius 03B4
and is contained in the ball of radius 203B4. Hence the Milnor fibre of ~,
F:, is diffeomorphic to the quotient of the Milnor fibre G, of 1/; by the
involution i (which has no fixed points on G(!) Since G, is a connected
4-manifold homotopically equivalent to a bouquet of (2 k + 1) S2 ’s, we
obtain

(i) 03C01(F~) = Z/2
(ii) e(F~) = 1 2e(G~) = k + 1

(where e denotes the topological Euler-Poincaré characteristic). F~ is

obviously connected, and, by i), ii), JL = b2(F) = k. Q.E.D.

After all this preparatory material, we are now in a position to prove a
theorem about normal degenerations of pl  P1, a theorem which,
though it could possibly be given in a more general form, is sufficient for
our present purposes.

THEOREM 3.5 : Let à be the disk of radius 1 in C, à = t 11 t |  1}, and
let f : J~0394 be a proper flat holomorphic map, smooth over 0394* = A/ (0
such that moreover

(i) J is a normal 3-dimensional complex space
(Ü) Zo = f -1(0) is normal, reduced, and with singularities at most 1/2

R. D. P.’s

(iii) Zt = f-1(t) = pl X pl for t =1= 0.
Then either Zo is smooth, hence a Segre-Hirzebruch surface F2,,,, or Zo is
F2 or F4 with the section of negative self-intersection blown down.

PROOF : Let Pl, ... , Pr be the singular points of Zo, and let F1, ... , Fr be
the Milnor fibres of the smoothing f of Zoe We clearly have an
embedding i : F ~ Zt ~ P1 X P1, where F is the disjoint union of the
Fi’s. We recall that our singularities are rational, hence JL = 03BC_, we notice
moreover that the homomorphism

is an isometry, (and thus, in particular, it is injective). But the lattice
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H2(pl  P1, Z) is the hyperbolic lattice associated to the matrix 0 1therefore 
(I) the rank of H2(F, Z) is at most 1, and the intersection form is even.

Since the intersection form is not even for the Bk’s, we can im-
mediately exclude that Z. contains singular points of type Bk.

Hence (I) implies that Z. contains at most one singular point whose
associated smoothing has Milnor number 1 and, in view of our classifica-
tion of 1/2 R.D.P.’s and of their smoothings, there are only 3 possibil-
ities for this singular point, i.e.

(1) Y2, with a smoothing not admitting simultaneous resolution
(2) A1
(3) Y,, with a smoothing admitting simultaneous resolution.

Moreover, again by (I) and the above remark, the singular points of Zo
with smoothing of Milnor number zero can a priori only be of type YI,
with smoothing not admitting simultaneous resolution. The next lemma
shows that there is at most one singular point, with Milnor number 1,
and that case (1) does not occur.

LEMMA 3.6: The smoothings which do not admit simultaneous resolution
don’t occur.

PROOF OF THE LEMMA: Let P be a singular point of type Y,, or Y2, where
the smoothing does not admit a simultaneous resolution.

Though the second case can be treated is the same way as the first, it
is quicker to show that the intersection form is odd. In the notations of
prop. 3.4 let 7r : G~~F~ be the quotient map by the involution i.

H2(G,, Z) is a lattice with intersection form 2 1 2, and if ej is
one of the two generators, we know that

since i * is an isometry. Hence if 03C0*(ej)2 is even, 1*ej is a vector with

square ( - 2), and even scalar product with ej, and then it must be ± ej;
since (i*el)(i*e2) = el - e2, i* should then be + Identity, against the fact
that b1(F~) = 1.
We can thus assume that, locally around p, J be isomorphic to a

neighbourhood of the origin in the cone Z over the Veronese surface,
and, by Riemennschneider’s result, that f is given, in local coordinates,
by x6 - xk+13 ( k = 0, but we like to see what happens in general).

Performing now a blow-up with centre p, we get qr : e, where 1-f
is a smooth 3-fold which is an open neighbourhood of the zero section in
the total space of the line bundle OP2(20132).

To read out  03C0 on J, we consider coordinates (y0, y1, y2, z ),
weighted homogeneous of respective weights (1, 1, 1, - 2) (the projection
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of K to (FD 2 being given by ( yo, y1, y2 )). f is the function (homogeneous
of weight zero) given by

On the other hand 03C0 is given by ( yo, yl, y2, z) ~ (zyiyj). Then f-1(0)
consists of P2, of equation z = 0, and of another component W. If k = 0,
W intersects P2 in the conic (y0y2-y21) = 0, if k  1 P2 n W = {y0y2
= 0}.

Clearly W is smooth iff k  1 (in fact the onl y singular point is

yo = y2 = 0, where the local equation is ( yo y2 - zk) = 0, i.e., a point of
type Ak-1).

Therefore, if we blow-up all the singular points whose smoothing has
03BC = 0, say p1, ... , pr, we obtain f : J~0394, where e has at most one
singular point p, and Î5= W~ P12 U ... ~P21, where W has at most a
singular point, in p.

Consider now the restriction f * : e ~0394* : there exists an effective
divisor J* s.t. J*|zt is of type (1,1). In fact the monodromy
automorphism, being holomorphic, leaves the class (1,1) invariant, and
the Leray spectral sequence tells us that the associated invertible sheaf
has a section on e *.

Let 2 be the closure of J*, let further ÍIJ!!i be the dualizing sheaf on
J, and Kay the associated Weil divisor. Since, for t ~ 0, KJ|Jt = KZt, we
have 

where B is a divisor supported on the special fibre Z.. Let’s finally
consider a component P2 = pi2 of Zo : by the adjunction formula KP2 *

(KJ+P2)|P2 and since Zo --- 0, we can write

This is however a contradiction, since W|P2 2 is a conic, hence the right
term is divisible by 2. Q.E.D. for Lemma 3.6.

l’m now in the situation where f : J ~ 0394 is such that Zo has at most 1
singular point p, either of type A1, or of type Y, where f is a smoothing
admitting a simultaneous resolution. Hence, by a base change 0394’ ~ A, 1
have f ’ : J’ ~ A’ with eo’ a minimal resolution of Zo.

Then, since it is well known that J’0 = F2m, moreover the exceptional
curve has self-intersection either ( - 2) or ( - 4), while on F2m there is
only one curve with negative selfintersection, equal to - 2m, we con-
clude that if p is singular 20 is F2 or IF 4 with the negative section blown
down (i.e., Zo is the projective cone over either a conic or over a rational
normal curve of degree 4). Q.E.D.
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§4. Limits of bidouble covers of P1  P1

As in [Cal], we define a bidouble cover 03C0: S~X to be a finite Galos
cover with group (Z/2)2, moreover we shall say that the bidouble cover
is smooth if S, X are smooth.

THEOREM 4.1: Assume that f : J~0394 is a smooth proper 1-dimensional

family, such that for t E 0394* = 0394 - {t0} St = f-1(t) is a smooth minimal

bidouble cover of pl  P1 of general type. Then ,So is the minimal

resolution of a bidouble cover of F 2 m with at most R. D. P.’s as singular-
ities.

PROOF: Let X g à be the corresponding family of canonical models (the
fibres of g have only R.D.P.’s as singularities). Then (Z/2)2 acts

biregularly on X, and preserving the fibres of g (cf., e.g. [Ca2] Thm. 1.8.)
(though, cf. [B-R], (Z/2)2 does not necessarily act biregularly on J!).

Let’s denote by X the quotient e= X/(Z/2)2, and by qr the quotient-
map. Then we have f : J~0394 with Z, ~ P1  P1 for t ~ to, and the

hypotheses of Theorem 3.5 are clearly satisfied.
If Zo is smooth, then there is nothing to prove, since So is minimal

too (by the stability of exceptional curves of the I kind, cf. [Ko]).
Assume that Z. has a singular point p. We claim that it cannot be a

singular point of type YI, quotient of a singular point q of type A1 by the
involution (e). In fact, if F~ is the Milnor fibre of the smoothing f of p,
03C0-1(F~) is an unramified double cover (we are restricting ourselves to a
neighbourhood of q) of F~, which therefore must be disconnected, since
F~ is homotopically equivalent to S 2. This is a contradiction, since, by
arguments similar to those used in the proof of 3.4., we see that 03C0-1(F~)
is diffeomorphic to the Milnor fibre of the smoothing of q, which is
connected (note that the essential fact which is being used is that if Z/2
preserves the fibres, there can be no simultaneous resolution downstairs).

Therefore p can only be a singular point of type A1. Assume again
that ir(q) = p : we claim that q cannot be a smooth point (the quotient
being given by an involution having q as an isolated fixed point on Xo ).

In fact, in this case, q would be a smooth point of X, and the
involution, since it preserves the fibres of g, would have a 1-dimensional
fixed locus in Pr near q, hence also Z, would be singular for t ~ to.

Second, we claim that, if 03C0(q) = p, the isotropy subgroup of q cannot
be the whole of (Z/2)2.

In fact, cf. Theorem 2.7., the only possibility is to have an action of
the fourth type (since, for k = 0, the action of the third type is a

conjugate one).
In this case the same argument as before applies, since there is a

trivial involution a acting on q, hence X/03C3J is such that p is the

quotient of a smooth point, contradicting the nonsingularity of Z, for
t =1= to.
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So the only remaining possibility is that above p lie two points ql, q2,
which are (both) either of type A3 or of type Dn, and are fixed by an
involution of type (a) (cf. Thm. 2.1.).
We have a diagram

and we have to check only that e is indeed a morphism. In fact, locally
around p, Xo is obtained from Zo by taking the square root y of q,
where the local equation of Zo is either z2+x2+~2=0 or z2+x(~+
xn-2)=0. On the blow-up F2 of Zo the divisor 03C3* (div(q)) is of the

form E + D, where E is the exceptional curve of a, and D·E = 2, and,
moreover, in the first case D = Di + D2 with the D,’s crossing E trans-
versally in two distinct points, in the second case D has a double point
of type (v2 - xn-1)=0.

Case 1:

The double covering W of a neighbourhood of E, branched on E + D,
has 2 A1 singularities, respectively 1 Dn-1 singularity ( D3 = A3), and it is
easy now to see that the minimal resolution of W equals the minimal
resolution of (X0, ql) (cf. [B-P-V], III §7). Q.E.D.

REMARK 4.2: We have given some indication about the proof that 7r is a

morphism because we wanted to single out an important piece of

information; i.e., in the case when X0/(Z/2)2 is a quadratic cone, hence
So can be gotten as the minimal resolution of a Galois cover Wo of F2, we
know that, Bj, B2, B3 being the 3 branch loci of the 3 non-trivial
involutions of (Z/2)2, B1 = E + D, with E· D = 2, moreover E · B2 = E ·
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B3 = 0. It follows then immediately that, °0 and f (°5 = 2, f 2 = 0,
03C30 · f = 1) being the standard basis for Pic(F2), since E - °0 = 0, E·f=1,
B2 ~ d203C30, B3 ~ d303C30, D ~ 2f + (dl - 1)°0’ so that, finally, Vi B, = dloo.
Hence St, for t =1= 0, is a bidouble cover of P1  P1 branched on 3 divisor
of respective types (d1, d1), (d2, d2), (d3, d3). This allows us to prove
the desired result

THEOREM 4.3: Let N(a,b)(n,m) be the family of smooth simple bidouble
covers of P1  P1 branched on 2 curves of resp. bidegrees (2 a, 2 b ),
(2n, 2m), and assume that a &#x3E; 2n, m &#x3E; 2b. Then the closure X(a,b)(n,m)
consists of surfaces whose canonical model is a simple bidouble cover of
some F2k, with k  max 1 a-b, n m-1
PROOF: Let X. be a canonical a model of a surface whose isomorphism
class belongs to  then we can find a family X g 0 as in
theorem 4.1. s.t. Xt, for t ~ 0, is a smooth simple bidouble cover of
P1 X pl branched on two curves of resp. bidegrees (2 a, 2b), (2n, 2m),
Btl, B 2. Then the minimal resolution of Xo equals, by Theorem 4.1, the
minimal resolution of a simple bidouble cover of some F2k branched on
two divisors Bo, B5, such that either

or

(cf. e.g. [Ca2], §2). Since B10, B20 are effective and reduced, in the first
case one must have b  (a - 1)k (equality holds iff the section at infinity
03C30 is contained in BÕ: since then B10 and B20 have no common compo-
nent, it must be m  nk).

Anyhow, we remark that we have the following inequalities: m 2  b 
(a-1)k2nk~m 4 n k, therefore in our range b  ( a - 1 ) k is the

only inequality which has to hold effectively.
In the second case, a symmetrical argument gives k  n m-1.

Q.E.D.

COROLLARY 4.4: The family  of simple bidouble covers of
P1  P1 with branch curves of bidegrees (2 a, 2b)(2n, 2m), and with at
most R. D. P.’s as singularities, when is a closed

component of the moduli space.
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